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Abstract: We introduce a new circular distribution named as wrapped flexible skew Laplace distribution.
This distribution is the generalization of wrapped Laplace which was introduced by Jammalamadaka and
Kozubowski 2003 and has more flexibility properties in terms of skewness, kurtosis, unimodality or bimodal-
ity. We also derive expressions for characteristic function, trigonometric moments, coefficients of skewness
and kurtosis. We analyzed two popular datasets from the literature to show the good modeling ability of
the WFSL distribution.
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1. Introduction

Circular or directional data is encountered in various fields of science such as meteorology,
astronomy, medicine, biology, geology, physics and sociology. The first studies on the modeling of
directional data are very old. The book ”Statistics for Circular Data” written by Mardia 1972 can
be regarded as the first work in this area. Other important works on this subject can be listed
as ”Statistical Analysis of Circular Data” [4], ”Directional statistics” [10], ”Topics in Circular
Statistics” [7]. In the following years, many authors have proposed models and statistical methods
for the analysis of circular data.
The von Mises distribution, also known as the circular normal or the Tikhonov distribution, is one

of the principal symmetric distributions on the circle. However, most of the classical models such as
Von-Mises, cardioid and wrapped Cauchy are symmetric-unimodal distributions and rarely applied
in practice, since circular data is very often asymmetric and multimodal. Therefore, several new
unimodal/multimodal circular distributions are capable modeling symmetry as well as asymmetry
has been proposed, for example asymmetric Laplace distribution [5], nonnegative trigonometric
sums distribution [3], asymmetric version of the von Mises distribution [13] and stereographic
extreme–value distribution [12].
In recent years, studies on obtaining circular models have generally focused on wrapping linear

probability models on a circle. In the literature, there are many wrapped models obtained by various
well-known linear distributions. Pewsey 2000 obtained the wrapped skew normal distribution by
using the Azzalini’s skew normal distribution 1985. Jammalamadaka and Kozlowski 2004 studied
the circular distributions obtained by exponential and Laplace distributions. Rao et al 2007 derived
new circular models by wrapping the lognormal, logistic, Weibull, and extreme-value distributions.
In a previous paper [14] we introduced the flexible skew Laplace (FSL) distribution. This distri-

bution is a member of skew-symmetric distribution family, and that means it has a pdf form that
h(x) = 2f (x)F (g (x)) where f and F are the pdf and cdf of Laplace distribution and

g (x) =
(
λ1x+λ3x

3
) (

1+λ2x
2
)− 1

2 , λ1, λ3 ∈R, λ2 ≥ 0. (1.1)
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We showed that, this distribution has remarkable flexibility properties in data modelling via con-

tained parameters such as unimodality-bimodality, skewness or kurtosis. In this paper, the wrapped

version of the flexible skew Laplace distribution will be presented.

2. Definition

A well-known approach to obtain circular distributions is wrapping method. In this approach,

a known distribution is taken on the real line and wrapped around a unit circle. Namely, taking

a real random variable (say Y ) and wrapping it around the circle by transformation Y (mod 2π).

The new random variable Y (mod 2π) can be named as the corresponding wrapped version of Y

and has a probability density function (pdf) form that

fY (mod 2π) (θ) =
∞∑

r=−∞

fY (θ+2πr) ,

where fY is the pdf of random variable Y .

Let Y be a FSL (μ,σ,λ1, λ2, λ3) random variable, i.e. has a pdf

fY (y;υ) =
1

2σ
e−

|y−μ|
σ

⎡⎢⎣1+ sgn

⎛⎝λ1 (y−μ)+ λ3
σ2 (y−μ)

3√
σ2 +λ2 (y−μ)

2

⎞⎠
⎛⎜⎝1− e

−

∣∣∣∣∣∣
λ1(y−μ)+

λ3
σ2 (y−μ)3

(σ2+λ2(y−μ)2)
0.5

∣∣∣∣∣∣
⎞⎟⎠
⎤⎥⎦ ,

where υ= (μ,σ,λ1, λ2, λ3) . Then the corresponding circular random variable is defined as

Θ= Y (mod 2π),

and has the density

fΘ (θ;υ) =
1

2σ

[
e−

|θ−μ|
σ +

e
θ−μ
σ + e

μ−θ
σ

e
2π
σ − 1

+A (θ, υ)

]
(2.1)

where

A (θ, υ) =
∞∑

r=−∞

e−
|θrμ|
σ sgng

(
θrμ
σ

)(
1− e

−

∣∣∣∣g( θrμ
σ

)∣∣∣∣
)
,

and 0 ≤ θ < 2π, θrμ = θ + 2πr − μ. The parameters μ ∈ R location, σ > 0 scale parameter and

λ1, λ3 ∈ R, λ2 ≥ 0 are shape parameters. The random variable Θ having wrapped flexible skew

Laplace distribution is denoted by Θ∼WFSL (μ,σ,λ1, λ2, λ3). Illustrations of the pdf of WFSL
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distribution for several values of parameters are shown in Figure 1.
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Figure 1. The pdf of WFSL distribution for several values of parameters.

The following sections of this article are organized as follows: In Section 3 we give the characteristic

function of wrapped flexible skew Laplace distribution and some moments properties, i.e. location,

dispersion, skewness and kurtosis. We also provide some results of limiting cases of parameters,

and a simulation study in this section. In last section we will analyze two popular datasets from

the literature.

3. Basic Properties

In this section, we obtain the equations for characteristic function, trigonometric moments,

location, dispersion and coefficients of skewness and kurtosis. We also provide some properties and

relations with other known distributions.

3.1. Trigonometric Moments

The characteristic function defines the entire probability distribution in the circular models as

well as in the models defined on the real line. Note that, since the random variables with such

distributions are periodic, have the same distribution when shifted by 2π. So if we consider Θ
dist
=

Θ+2π, it must be

ϕΘ(p) =E(eipΘ) =E(eip(Θ+2π)) = eip2πϕΘ(p).

Hence p must be an integer. The value of the characteristic function at an integer p is called the

pth trigonometric moment of Θ. One can also write pth trigonometric moments in terms of αp and

βp

ϕp =ϕΘ(p) = αp + iβp, p= 0,±1,±2, . . . .
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where αp is pth cosine moment and defined as αp =E(cospΘ), βp is pth sine moment and defined
as βp =E(sinpΘ). In order to obtain pth cosine and sine moments of WFSL (μ,σ,λ1, λ2, λ3) dis-
tribution, we define two signum functions

∇=

{
sgn (λ1) , if λ1λ3 < 0

0 , if λ1λ3 ≥ 0
and Δ=

⎧⎨⎩
0 , if λ1 = 0 and λ3 = 0

sgn (λ3) , if λ1 = 0 and λ3 �= 0
sgn (λ1) , if λ1 �= 0

,

and quantities

Cp =
1

2σ

2π∫
0

cospθ

∞∑
r=−∞

e−|θ
r
μσ
−1| sgng

(
θrμσ

−1
)
e−|g(θ

r
μσ
−1)|dθ

and

Sp =
1

2σ

2π∫
0

sinpθ

∞∑
r=−∞

e−|θ
r
μσ
−1| sgng

(
θrμσ

−1
)
e−|g(θ

r
μσ
−1)|dθ.

It follows that the pth cosine and sine moments are

αp =
cospμ+2∇e−k sin (pμ) ξp

p2σ2 +1
−

Δpσ sinpμ

p2σ2 +1
−Δ2Cp, (3.1)

βp =
sinpμ− 2∇e−k cos (pμ) ξp

p2σ2 +1
+

Δpσ cospμ

p2σ2 +1
−Δ2Sp, (3.2)

where

ξp = sinkpσ+ pσ coskpσ,

and

k=

{(
−λ1λ

−1
3

)0.5
, if λ1λ3 < 0

0 , if λ1λ3 ≥ 0
.

Using these trigonometric values, an alternative representation for the density of Θ can be written
as

fΘ (θ;υ) =
1

2π
−

1

π

∞∑
p=1

⎧⎪⎨⎪⎩
(

2∇e−k sinp(θ−μ)ξp
p2σ2+1

)
− cosp(θ−μ)+Δpσ sinp(θ−μ)

p2σ2+1

+Δ2 (Cp cospθ+Sp sinpθ)

⎫⎪⎬⎪⎭ .

Thus, the first two trigonometric moments of WFSL (0,1, λ1, λ2, λ3) are

ϕ1 =
1+ iΔ

2
−∇ie−k [cosk+sink]− iΔ2S1,

ϕ2 =
1+2iΔ

5
−

2

5
∇ie−k [2 cos 2k+sin2k]− iΔ2S2.

Since the clear analytical form of both Cp and Sp cannot be found, they need to be evaluated
numerically. However, the following two lemmas provide the values of Cp and Sp in some special
cases of parameters.

Lemma 1. When μ= 0 for each integer p,
(a) Cp = 0.
(b) Sp = 0 when Δ=0.
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Proof. (a) When Δ= 0, it is immediate g (θr0σ
−1) = 0 and thus Cp = 0. When Δ �= 0, denote

Λ(θ) =
∞∑

r=−∞

e−|
θ−π+2πr

σ | sgng
(
θr0σ

−1
)
e−|g(θ

r
0σ
−1)|.

It’s easy to see Λ(θ) is an odd function, i.e. Λ (θ)+Λ(−θ) = 0, θ ∈ (−π,π) . One can rewrite

Cp =
1

2σ

2π∫
0

cospθ
∞∑

r=−∞

e−|
θ+2πr

σ | sgng
(
θr0σ

−1
)
e−|g(θ

r
0σ
−1)|dθ

=
(−1)

p

2σ

π∫
−π

Λ(θ) cospθdθ= 0.

(b) Proof is clear since g (θr0σ
−1) = 0 for Δ= 0.

Lemma 2. For each integer p,
(a) When λ1 →∞ or λ3 →∞, Cp = 0 and Sp = 0.
(b) When ∇= 0 and λ2 →∞,

Cp =−
Δpσ sinpμ

p2σ2 +1
and Sp =

Δpσ cospμ

p2σ2 +1
.

Proof. (a) Let’s just consider λ3 →∞

lim
λ3→∞

Cp = lim
λ3→∞

1

2σ

2π∫
0

cospθ
∞∑

r=−∞

e−|θ
r
μσ
−1| sgng

(
θrμσ

−1
)
e−|g(θ

r
μσ
−1)|dθ

=
1

2σ

2π∫
0

cospθ
∞∑

r=−∞

[
e−|θ

r
μσ
−1|

{
lim

λ3→∞
sgng

(
θrμσ

−1
)
e−|g(θ

r
μσ
−1)|

}]
dθ

= 0.

The situation is the same for λ1 →∞ or λ1 →∞, λ3 →∞ and the proof is similar for Sp.

(b) Just consider Cp since the proof is similar for Sp. While λ2 →∞, e−|g(θ
r
μσ
−1)| tends to 1.

Thus,

lim
λ2→∞

Cp =
1

2σ

2π∫
0

cospθ lim
λ2→∞

∞∑
r=−∞

e−|θ
r
μσ
−1| sgng

(
θrμσ

−1
)
e−|g(θ

r
μσ
−1)|dθ

=
1

2σ

⎡⎣ 2π∫
0

cospθ lim
λ2→∞

∞∑
r=−∞

e−|θ
r
μσ
−1| sgng

(
θrμσ

−1
)⎤⎦

=− (Δpσ sinpμ)
(
p2σ2 +1

)−1
.

3.2. Location and Dispersion

Resultant vector length and direction for pth trigonometric moment of a circular distribution
are

ρp =
√

α2
p +β2

p and μp = atan
(
αpβ

−1
p

)
(3.3)
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respectively, where atan (.) is quadrant inverse tangent function and defined as

atan (y/x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
tan−1 (x/y) , y > 0, x≥ 0

π/2 , y= 0, x > 0
tan−1 (x/y)+π , y < 0
tan−1 (x/y)+ 2π , y≥ 0, x < 0

undefined , y= 0, x= 0

.

The pth trigonometric moment can be expressed in ϕp = ρpe
iμp and has a special meaning for p= 1.

The values of ρ1 and μ1 obtained from (3.3) are called the angular concentration and the mean

direction, respectively. Mean direction of WFSL (0, σ,λ1, λ2, λ3) distribution is

μ1 = atan
[(
σΔ−Δ2S1

(
1+σ2

)
− 2∇e−k [sinkσ+σ coskσ]

)−1
]

(3.4)

= atan
[(
σΔ−Δ2S1

(
1+σ2

)
− 2∇e−kξ1

)−1
]
.

The mean direction vector gives information about the mean of the distribution as an analogy

of the mean in the linear models. The length of this vector is a measure of its dispersion around

the mean and corresponds to the usual standard deviation or variance in linear models. Square of

angular concentration for WFSL distribution is

ρ21 =
∇2

ς
ξ21
(
4e−2k

)
+

∇

ς
ξ1
(
4Δe−k

) (
ΔS1 −σ+σ2ΔS1

)
+

1

ς

(
ΔS1

(
σ2 +1

) (
ΔS1 − 2σ+σ2ΔS1

)
+σ2Δ2 +1

)
,

or with value of μ1

ρ1 =−Δ2S1 sinμ1 +
Δσ sinμ1

σ2 +1
−

2∇e−kξ1 sinμ1

σ2 +1
+

cosμ1

σ2 +1
(3.5)

=

[
Δ

σ

σ2 +1
−Δ2S1 −∇

2e−kξ1
σ2 +1

]
sinμ1 +

cosμ1

σ2 +1
,

where ς = σ4 +2σ2 +1.

Corollary 1. When μ= 0 and Δ=0, ϕp = (p2σ2 +1)
−1

eipμ, for each integer p. Hence, μ1 = μ
and ρ1 = (σ2 +1)

−1
for WFSL (μ,σ,0, λ2,0) distribution.

Corollary 2. When λ1 →∞ or λ3 →∞, μ1 tends to [μ+atan (σ)]mod(2π) and ρ1 tends to
(σ2 +1)

−0.5
for WFSL (μ,σ,λ1, λ2, λ3) distribution.

Corollary 3. When λ2 → ∞, μ1 tends to μ and ρ1 tends to (σ2 +1)
−1

for

WFSL (μ,σ,λ1, λ2, λ3) distribution.

It is clear that 0≤ ρ1 ≤ 1 and tends to maximum value when the concentration increases around

the mean. The effect of μ and σ parameters on the angular concentration and the mean direction
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of the Θ random variable are shown in Figure 2. If Θ is rotated by θ0 degrees, the value of angular
concentration does not change but mean direction is shifted by θ0.
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Figure 2. Amount of concentration and average direction change.

Another circular dispersion measure is the circular variance and defined as V = 1− ρ1. Using
(3.4) and (3.5), the circular variance of WFSL (0, σ,λ1, λ2, λ3) is

V = 1−β1 sinμ1 −α1 cosμ1 (3.6)

= 1+S1 sinμ1Δ
2 −

Δσ sinμ1

σ2 +1
+

2∇e−kξ1 sinμ1

σ2 +1
−

cosμ1

σ2 +1
.

Circular variance is interpreted as the opposite of angular concentration. That is, the circular
variance decreases while the concentration around the mean direction increases and vice versa. In
Figure 3, it can be seen (σ,V ) plots for different λ1, λ2, λ3 values (μ= 0). In generally, according to
Figure 3 it can be said that the circular variance increases with the increase of σ. When λ1λ3 ≥ 0,
the circular variance decreases with increasing λ1 or λ3 and increases with λ2. But this is only valid
for some values of σ when λ1λ3 < 0.
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Figure 3. (σ,V ) plots for different λ1, λ2, λ3 values (μ= 0).

3.3. Skewness and Kurtosis

In a circular model, the pth central cosine moment and sine moments are ᾱp =E [cosp (θ−μ1)]
and β̄p =E [sinp (θ−μ1)] respectively. Both of coefficients kurtosis and skewness are obtained using
the second central moment and aren’t affected by parameter μ. So, it is enough to calculate both
coefficients according to μ= 0. Thus,

ᾱ2 =E [cos 2 (θ−μ1)] (3.7)
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=

[
Δ

2σ

4σ2 +1
−Δ2S2 −∇

2e−kξ2
4σ2 +1

]
sin2μ1 +

cos2μ1

4σ2 +1

and

β̄2 =E [sin 2 (θ−μ1)] (3.8)

=

[
Δ

2σ

4σ2 +1
−Δ2S2 −∇

2e−kξ2
4σ2 +1

]
cos2μ1 −

sin2μ1

4σ2 +1
.

As a measure of asymmetry, skewness coefficient of a circular distribution is calculated by γ1 =
β̄2V

−3/2 [9]. Using the values of (3.6) and (3.8) the skewness of WFSL distribution is

γ1 =
(Δ2σ−Δ2S2 (4σ

2 +1)− 2∇e−kξ2) cos 2μ1 − sin2μ1

(4σ2 +1)V 3/2
.

If the distribution is symmetric and unimodal, the skewness coefficient will be zero.

Corollary 4. WFSL (μ,σ,0, λ2,0) is unimodal and symmetric about μ. From Corollary 2
mean direction is μ1 = 0, when μ= λ1 = λ3 = 0, since Δ=∇= 0 and μ1 = 0, γ1 = 0.

Kurtosis of a circular distribution is γ2 = (ᾱ2 − ρ41) (1− ρ1)
−2

[9]. Using the given values (3.5),
(3.6) and (3.7) kurtosis of WFSL (0, σ,λ1, λ2, λ3) is

γ2 =
(Δ2σ−Δ2S2 (4σ

2 +1)− 2∇e−kξ2) sin2μ1 +cos2μ1 − (4σ2 +1)ρ41
(4σ2 +1)V 2

.

Corollary 5. Kurtosis of WFSL (μ,σ,0, λ2,0) is γ2 = (σ4 +4σ2 +6) (4σ2 +1)
−1

(σ2 +1)
−2

.

3.4. Some Propositions

In this section, we provide some properties related to the introduced distribution and the rela-
tionships with other distributions.

Proposition 1. WFSL (0, σ,0, λ2,0)
dist
= WL (σ−1,1) where WL (λ,κ) denotes the wrapped

Laplace distribution [5].

Proof. Let denote ϕWFSL
p and ϕWL

p are characteristic functions of WFSL (0, σ,0, λ2,0) and
WL (σ−1,1) respectively. When λ1 = 0, λ3 = 0 and μ = 0, it’s easy to see for each integer p,
ϕWFSL

p =ϕWL
p = (p2σ2 +1)

−1
.

Proposition 2. Let WE (λ) denotes the wrapped exponential distribution and WL (λ) denotes
the wrapped Laplace distribution [5].

(a) limλ1→∞WFSL (0, σ,λ1, λ2, λ3)
dist
= WE (σ−1) .

(b) limλ3→∞WFSL (0, σ,λ1, λ2, λ3)
dist
= WE (σ−1) .

(c) limλ∗→∞WFSL (0, σ,λ∗, λ2, λ
∗)

dist
= WE (σ−1) .

(d) limλ2→∞WFSL (0, σ,λ1, λ2, λ3)
dist
= WL (σ−1,1) .

Proof. (a) The characteristic function of WE (σ−1) distribution is

ϕWE
p = (1+ ipσ)

(
p2σ2 +1

)−1
.

Using Lemma 3a pth cosine moment of WFSL (0, σ,λ1, λ2, λ3) is

αp =
(
p2σ2 +1

)−1
,
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when λ1 →∞. If λ3 < 0, e−k tends to 0 otherwise ∇= 0. So in both cases pth sine moment will be
equal to

βp = pσ
(
p2σ2 +1

)−1
.

Thus

ϕWFSL
p =ϕWE

p = (1+ ipσ)
(
p2σ2 +1

)−1
.

(b) In a similar way, when λ3 tends to ∞, αp tends to

αp =
(
p2σ2 +1

)−1
.

If λ1 < 0, e−k tends to 1, ∇=Δ=−1 and ξp → pσ. Otherwise if λ1 > 0, ∇ equals to 0. So in both
cases

βp = pσ
(
p2σ2 +1

)−1
.

(c) Proof is clear, since ∇= 0 when λ1 and λ3 tends to ∞.
(d) When λ2 →∞, from Lemma 3b and (3.1) it can be seen immediately that αp = (p2σ2 +1)

−1

and

βp =−
pσΔ(1−Δ)(1+Δ)

p2σ2 +1
= 0,

for all cases of Δ. Thus

ϕWFSL
p = αp =

(
p2σ2 +1

)−1
=ϕWL

p .

Proposition 3. Θ∼WFSL (0, σ,λ1, λ2, λ3)⇔−Θ∼WFSL (0, σ,−λ1, λ2,−λ3) .

Proof. Let’s use gλ1,λ2,λ3
(x) notation instead of g (x) notation in equation (1.1). It’s easy to

see

g−λ1,λ2,−λ3
(x) = gλ1,λ2,λ3

(−x) =−gλ1,λ2,λ3
(x) .

Thus,

A (θ,μ,σ,−λ1, λ2,−λ3) =A (−θ,μ,σ,λ1, λ2, λ3)

and

fΘ (θ; 0, σ,−λ1, λ2,−λ3) = fΘ (−θ; 0, σ,λ1, λ2, λ3) .

Corollary 6. Mean direction of −Θ∼WFSL (0, σ,−λ1, λ2,−λ3) is 2π−μ1, where μ1 is the
mean direction of Θ∼WFSL (0, σ,λ1, λ2, λ3) .

Proposition 4. Let X and Y be independent Laplace (η) random variables. Define the random
variable Θ as

Θ= {X|Y < g (X)} (mod2π)

where g (.) defined as (1.1). Then Θ∼WFSL (0, η, λ1, λ2, λ3) .

Proof. Proof is clear since X|Y < g (X)∼ FSL (η,λ1, λ2, λ3) [14].

Corollary 7. {−X|Y > g (X)} (mod2π)∼WFSL (0, η, λ1, λ2, λ3) .

Corollary 8. Θ= [IX − (1− I)X] (mod2π)∼WFSL (0, η, λ1, λ2, λ3) where

I =

{
1 , Y < g (X)
0 , Y ≥ g (X)

.
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3.5. Simulation

The result of last proposition can be used to generate random numbers from WFSL distribution.
The following algorithm is based on this result and generates n random numbers.

Step 1. Generate n× 1 random vectors X ∼Laplace (1) and Y ∼Laplace (1) .

Step 2. Calculate g (X) = (λ1X +λ3X
3) (1+λ2X

2)
−0.5

.
Step 3. Calculate T = [Y < g (X)]X − [Y ≥ g (X)]X.
Step 4. Calculate Z = [μ+σT ] (mod2π) .

Obtaining clear forms of maximum likelihood (ml) estimators is an insurmountable problem
because of complex likelihood function. Therefore, likelihood function must be maximized by an
iterative method. In this simulation study we used Matlab’s mle function to obtain ml estimates of
parameters. We ran the above algorithm 100 times for different values of n and μ= 0.79, σ = 1.5,
λ1 = 3, λ2 = 3 and λ3 =−5. The bias and MSE(in parentheses) values of the parameters calculated
with the ml estimates obtained in each step, are shown in Table 1.

Table 1. Average values of bias and MSE (in parentheses) of parameters.

n μ̂ σ̂ λ̂1 λ̂2 λ̂3

100 0.1187(0.0113) 0.0067(0.0388) 0.4875(3.0552) 0.2682(11.491) -1.3720(19.436)

250 0.0006(0.0032) 0.0029(0.0200) 0.2574(1.0001) 0.7384(7.7087) -0.5679(4.9759)

500 0.0070(0.0017) -0.0134(0.0113) 0.0164(0.3399) 0.2394(5.7541) -0.0891(1.6226)

1000 0.0034(0.0009) -0.0030(0.0049) 0.0105(0.1427) 0.0440(1.6380) -0.0269(0.7009)

From Table 1 it can be seen that, as the sample size increases, the bias and MSE values of param-
eters decrease to zero.

4. Application to Real Data

In order to demonstrate the modelling behavior of the WFSL distribution, we will analyze two
popular data sets from the literature. Both data sets in this section have been discussed in many
studies and used for fitting the distributions proposed by the authors. Table 2 shows estimates of
the parameters, estimated average direction and resultant length. We also provide maximized log
likelihood value (L), Akaike information criterion (AIC), Bayesian information criterion (BIC) and
Watson’s U 2 (W2) value in the same table.

Table 2. Summary of fits for the turtle data and ant data.
Turtle Data Ant Data

Estimates Estimates

μ̂ 1.7104 -L 107.7552 μ̂ 3.67 -L 128.936
σ̂ 1.1761 AIC 225.5104 σ̂ 0.92 AIC 267.8722

λ̂1 −3.029 BIC 237.1641 λ̂1 −2033 BIC 280.8980

λ̂2 0.0127 W2 0.0375 λ̂2 2.86E6 W2 0.2050

λ̂3 1.1393 λ̂3 280.5
Mean Direction 1.09(∼ 62.6

◦
) Mean Direction 3.15(∼ 180.63

◦
)

Res. Lenght 0.5146 Res. Lenght 0.6209

Turtle Data: The first dataset in this section refers to the orientations of 76 turtles after laying
eggs [7]. Left panel of Figure 4 represents the circular data plot over rose diagram and fitted
WFSL distribution. The arrow and its length represents the sample mean resultant vector m1 and
resultant length r1, respectively. Calculated sample statistics are a1 = 0.2166, b1 = 0.4474, m1 =
1.12 (∼ 64.2◦) and r1 = 0.4971. Maximum likelihood estimation of parameters are obtained by
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maximizing the likelihood function in Matlab via mle function. In order to avoid localmaxima,
parameter intervals have been kept as wide as possible. The maximum likelihood estimates are
seen in Table 2.
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Figure 4. Plots for turtle data. Circular data plot, fitted circular
pdf and rose diagram (left), linear histogram and fitted pdf (right).

This dataset was recently used by Joshi and Jose 2018 as an application of the wrapped Lindley
(WL) distribution. The authors reported the AIC value for WL distribution is 243.29, BIC value
is 243.75 and maximized log likelihood value is 119.71. In the same study, the AIC value for the
wrapped exponential distribution is 243.29, the BIC is 245.63 and maximized log likelihood value
is 120.65. Yilmaz and Biçer 2018 modeled this data set using the transmuted version of wrapped
exponential (TWE) distribution and they obtained the AIC, W2 and maximized log likelihood
value values as 239.89, 0.25 and 117.95, respectively. Also, Fernandez-Duran 2004 used this data
set as an application for non-negative trigonometric sums (NNTS) distribution and obtained the
lowest AIC value is 225.94. Based on the AIC, BIC, maximized log likelihood and W2 statistics
values reported by these authors, the WFSL distribution gives better fit to turtle data than the
mentioned alternatives.
Ant Data: The second data set consist of the directions chosen by 100 ants which have been

analyzed by Fisher 1995 with the aim of fitting a von Mises distribution. Ants were placed into an
arena one by one, and the directions they chose relative to an evenly illuminated black light source
placed at 180◦ were recorded. Calculated sample statistics are a1 =−0.6091, b1 =−0.0334, m1 =
3.1964 (∼ 183.14◦) and r1 = 0.6101. The maximum likelihood estimates obtained via Matlab are
seen in Table 2.
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Figure 5. Plots for ant data. Circular data plot, fitted circular
pdf and rose diagram (left), linear histogram and fitted pdf (right).

Fisher concludes that the von Mises distribution is not a suitable model for this data. The AIC
and BIC values for this model was equal to 288.24 and 293.4, respectively. Fernandez-Duran 2004
reported the AIC values as 276.64 for the NNTS distribution, 276.84 for the skewed wrapped
Laplace and 275.74 for the symmetric wrapped Laplace distribution. Based on the AIC and BIC
values reported by these authors, the WFSL distribution gives better fit to ant data than the
mentioned alternatives.
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5. Conclusion

In this study, wrapped version of the flexible skew Laplace (FSL) distribution is introduced. The
proposed distribution inherits the flexibility properties of FSL distribution. We also discussed char-
acteristic function, trigonometric moments, location, dispersion and coefficients of skewness and
kurtosis of proposed distribution. As we mentioned about, it is not possible to find explicit forms of
maximum likelihood (ML) estimators of parameters. However, as can also be seen from many stud-
ies in recent years, this problem can be overcome with the help of computer softwares. Therefore,
in last section, the mle function of Matlab used for obtaining the estimation of the parameters.
Based on the AIC, BIC, maximized log likelihood and W2 statistics values, the results showed that
the proposed model is better fits to these datasets than the recently published wrapped Lindley
distribution [8], transmuted wrapped exponential distribution [15] and non-negative trigonometric
sums distribution [3].
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