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Abstract: In this work, we introduce a new xgamma-Poisson lifetime model called the quasi xgamma-
Poisson distribution. Some of its mathematical properties are derived. The proposed model can be motivated
with a physical motivation by compounding the quasi xgamma construction with the truncated Poisson
distribution. The quasi xgamma-Poisson model also motivated by the wide use of the xgamma distribution
in many applied areas as well as for the fact that the new generalization provides more flexibility to analyze
real data. We discuss the maximum likelihood estimation of the quasi xgamma-Poisson model parameters.
An application to illustrate that the proposed quasi xgamma-Poisson model provides consistently better fit
than the other competitive models.
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1. Introduction
When the lifetime data present a bathtub shaped hazard rate function, such as human mortality

and machine life cycles, practical problems generally require a wider range of possibilities in the
medium risk. Researchers in the last years developed various extensions and modified forms of
the xgamma distribution to obtain more flexible models with different number of parameters. A
state-of-the-art survey on the class of such distributions can be found in Sen et al. (2016) and
Sen and Chandra (2017). The xgamma distribution with its delegate structural and distributional
properties serves as a potential survival model among the other popular lifetime models in the
literature, more details can be seen in Sen et al. (2018). Recently, Sen et al. (2017) have introduced
and studied a weighted version of xgamma distribution along with its length biased version for
modeling time-to-event data sets. The quasi xgamma distribution, a two-parameter extension or
generalization of xgamma distribution, shows superiority over many more life distributions when
applied to real life survival and/or reliability data set.
In this present investigation, our aim is to introduce and study a three parameter extension of

quasi xgamma distribution for modeling lifetime data. This extension is proposed by mixing quasi
xgamma and zero-truncated Poisson distributions similarly Lindley-Poisson distribution (Gui et
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al., 2014). We can interpret the proposed model as follows: A situation where failure of a unit
or system (be it mechanical or biological) occurs due to the presence of some unknown number
of initial defects of similar kind. If we assume these unknown number of initial defects follow a
zero-truncated Poisson distribution and their respective lives follow a quasi xgamma distribution,
then the first failure distribution leads to what we call quasi xgamma-Poisson distribution. we aim,
in this article, sythesis of the proposed model, its essential properties, method of estimating model
parameters and real life application of the model.
The rest of the article is organized as follows. The proposed distribution is synthesized in Sec-

tion 2. Different properties, such as, survival function, hazard rate function, moments and related
measures, distributions of extreme order statistics and stochastic ordering, are discussed and stud-
ied in Section 3 and in its deliberate subsections. In Section 4, method of maximum likelihood is
proposed for estimating the unknown parameters of the proposed distribution. Algorithm of a sim-
ulation is proposed along with a simulation study in Section 5. Section 6 deals with an application
of the model with a real data illustration and comparison. Finally, Section 7 concludes.

2. Synthesis
If Y is a random variable (rv) following quasi xgamma (QXG) model with parameters α and θ

(Sen and Chandra, 2017), then it has pdf as

f(y) =
θ

(1+α)

(
α+

1

2
θ2y2

)
e−θy|(y>0,α,θ>0). (2.1)

Let us denote it by Y ∼QXG(α, θ), corresponding cdf is given by

F (y) = 1−
(
1+α+ θy+ 1

2
θ2y2

)
(1+α)

e−θy|(y>0,α,θ>0).

The new xgamma-Poisson distribution can be synthesized as follows:
Suppose that the life of a unit (be it mechanical or biological) fails due to the presence of M (an
unknown number) initial defects for some kind. Let Y1, Y2, . . . , YM denote the lives of the initial
defects, then the life of the unit, say X, can be expressed as

X =Min{Y1, Y2, . . . , YM}.

Suppose that the lives of the initial defects, Y1, Y2, . . . , YM , follow identically and independently
distributed (i.i.d) QXG(α, θ) and the number of initial defects M follows a zero-truncated Poisson
distribution with parameter λ. Then, the probability mass function (pmf) of M is

Pr(M =m|λ>0,m=1,2,...) = p(m) =
λme−λ

m! (1− e−λ)
=

λm

m! (−1+ eλ)
.

Assuming that the rvs Yi(i = 1,2, . . . ,M) and M are independent, the conditional density of X
given M =m is

f(x|m) =
mθ

(
1
2
θ2x2+α

) (
1
2
θ2x2 + θx+α+1

)−1+m

(1+α)memθy
|(x>0).

Then, the marginal pdf of X can be obtained as

f(x) =
∞∑

m=1

f(x|m)p(m)
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=
∞∑

m=1

mθ
(1+α)−m

(
1
2
θ2x2+α

)
e−mθy(

1
2
θ2x2 + θx+α+1

)1−m
.

λm

m! (−1+ eλ)

=
λθe−θx

(
1
2
θ2x2+α

)
(−1+ eλ) (1+α)

∞∑
m=1

λ−1+m

(
1
2
θ2x2 + θx+α+1

)−1+m

(1+α)−1+m(−1+m)!eθ(−1+m)x

=
λθ

(
1
2
θ2x2+α

)
(−1+ eλ) (1+α)

exp

[
λ
(
1
2
θ2x2 + θx+α+1

)
(1+α)eθx

− θx

]
|(x>0,α,θ,λ>0).

2.1. The quasi xgamma-Poisson distribution
We have the following definition for the new distribution obtained from the above synthesis:
Definition 1. An absolutely continuous rv X will be said to follow quasi xgamma-Poisson

(QXGP) distribution with parameters α, θ and λ if its pdf is of the form

f(x) =K(α, θ,λ)

(
1

2
θ2x2+α

)
e

λe
−θx(1+α+θx+1

2 θ
2
x
2)

(1+α)
−θx

, x > 0, α, θ,λ > 0, (2.2)

where K(α, θ,λ) = λθ

(eλ−1)(1+α)
, a function of α, θ and λ.

We denote it by X ∼QXGP (α, θ,λ).
Special cases:
(i) When α= θ in (2.2), we obtain a new family of probability distributions, can be termed as

xgamma-Poisson (XGP) distribution, with the following pdf:

f1(x) =K1(θ,λ)

(
1+

θ

2
x2

)
e

λe
−θx(1+θ+θx+1

2 θ
2
x
2)

(1+θ)
−θx

, x > 0, θ, λ > 0,

where K1(θ,λ) =
λθ2

(−1+eλ)(1+θ)
, a function of θ and λ.

We can denote it by X ∼XGP (θ,λ).
(ii) While λ→ 0 in (2.2), the QXG model is obtained.
(iii) When α= θ and λ→ 0 in (2.2), we obtain xgamma distribution with parameter θ (see for

more details Sen et al., 2016).
The pdf curves for different values of α, θ and λ are shown in Figure 1.
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(a) α= 0.5, and varying θ and λ. (b) α= 1.0, and varying θ and λ.

(c) α= 3.0, and varying θ and λ. (d) α= 5.0, and varying θ and λ.

Figure 1. The pdf curves of QXGP distribution for various values of α, θ and λ.

3. Properties
The cdf of QXGP (α, θ,λ) is obtained as

F (x) =
eλ− e

λe
−θx(1+α+θx+1

2 θ
2
x
2)

(1+α)

eλ− 1
|(x>0). (3.1)

The corresponding survival function (or reliability function) is given by

S(x) =
e

λe
−θx( 1

2 θ
2
x
2+θx+α+1)

(1+α) − 1

eλ− 1
|(x>0).

The failure rate function (or hazard rate function(hrf)) is, then, derived as

h(x) =
f(x)

S(x)
=

λθ
(
1
2
θ2x2+α

)
e

λe
−θx( 1

2 θ
2
x
2+θx+α+1)

(1+α)
−θx

(1+α)

[
e

λe−θx( 1
2 θ2x2+θx+α+1)
(1+α) − 1

] |(x>0).

The failure rate curves for different values of α, θ and λ are shown in Figure 2.

3.1. Moments and related measures
When X ∼QXGP (α, θ,λ), the kth raw moment of X is given by

μ
′

k = k

∫ ∞

0

xk−1S(x)dx

=
k

eλ− 1

∫ ∞

0

xk−1

[
e

λe
−θx( 1

2 θ
2
x
2+θx+α+1)

(1+α) − 1

]
dx |(k=1,2,··· ). (3.2)

μk’s can not expressed in a closed form and hence numerical integration can be applied to fine the
mean and other important related measures. The jth order central moment can be obtained by the
following relationship.

μj =E[(X −μ)
j
] =

j∑
r=0

(
j

r

)
μr
′(−μ)j−r |( j=2,3,...),
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(a) α= 0.5, and varying θ and λ. (b) α= 1.0, and varying θ and λ.

(c) α= 3.0, and varying θ and λ. (d) α= 5.0, and varying θ and λ.

Figure 2. Failure rate curves of QXGP distribution for various values of α, θ and λ.

where μ=E(X).
With above formula, the skewness and kurtosis coefficients are respectively given by

√
β1 =

√
μ2
3

μ3
2

and β2 =
μ4

μ2
2

.

The values for mean, variance,
√
β1 and β2 for selected values of α, θ and λ are shown in Table 1.

We note that for fixed values of α and λ, the values of
√
β1 and β2 do not depend on varying θ.

3.2. Asymptotic distributions of order statistics
Let X1,X2, . . . ,Xn−1,Xn be a random sample (rs) of size n from QXGP (α, θ,λ), then by the

central limit theorem, the mean (X1 + X2 + . . . + Xn)/n approaches to normal distribution as
n→∞.
Sometimes one might be interested in the asymptotics of the extreme order statistics. Let us denote:

X1:n =Min{X1,X2, . . . ,Xn} := Smallest order statistic

and
Xn:n =Max{X1,X2, . . . ,Xn} := Largest order statistic.

These extreme order statistics represent the lives of series and parallel systems respectively and
have important applications in reliability engineering and system sciences. We have the following
theorem on the distributions of extreme order statistics.

Theorem 1. If Xn:n and X1:n denote, respectively, the largest and smallest order statistics
from QXGP (α, θ,λ), then

(1) limn→∞Pr(Xn:n ≤ tbn) = e−t−1
, t > 0 | [F−1

(
1− 1

n

)
= bn

]
.
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Table 1. Mean, variance, coefficients of skewness and kurtosis for different values of parameters

(α, θ,λ) μ V ar(X)
√
β1 β2

(0.5,0.5,0.5) 4.1906 11.764 1.3027 5.3126

(1.0,0.5,0.5) 3.5504 10.795 1.5115 5.9875

(2.0,0.5,0.5) 2.9321 9.0414 1.8055 7.3156

(5.0,0.5,0.5) 2.3348 6.5830 2.1681 9.5956

(0.5,0.5,1.0) 3.7410 10.523 1.4526 5.9288

(0.5,0.5,2.0) 2.9497 7.9725 1.7761 7.6041

(0.5,0.5,5.0) 1.5026 2.7438 2.5810 14.719

(0.5,1.0,0.5) 2.0953 2.9409 1.3027 5.3126

(0.5,2.0,0.5) 1.0476 0.7352 1.3027 5.3126

(0.5,5.0,0.5) 0.4190 0.1176 1.3027 5.3126

(0.5,0.05,1.0) 37.410 1052.3 1.4526 5.9288

(1.0,5.0,0.5) 0.3550 0.1079 1.5115 5.9875

(5.0,5.0,5.0) 0.0654 0.0092 4.9895 42.528

(2) limn→∞Pr(X1:n ≤ b∗nt) = 1− e−t, t > 0 | [F−1
(
1
n

)
= b∗n

]
.

Proof. We apply the following asymptotic results (see Arnold et al., 2008) for X1:n and Xn:n.
(1) For the largest order statistic Xn:n, we have

lim
n→∞

Pr(Xn:n ≤ an + bnt) = e−t−d

, t > 0, c > 0 (Fréchet type),

where an = 0 and bn = F−1(1− 1/n) iff F−1(1) =∞ and ∃ a constant d> 0 such that,

lim
x→∞

1−F (xt)

1−F (x)
− t−d.

From the cdf of QXGP (α, θ,λ) distribution as given in (3.1), letting F (x) = 1, we can easily see
that F−1(1) =∞ and

lim
x→∞

1−F (xt)

1−F (x)
− t−1.

Therefore, we obtain d= 1, an = 0 and bn = F−1(1− 1/n).
(2) For the smallest order statistic X1:n, we have

lim
n→∞

Pr(X1:n ≤ a∗n + b∗nt) = 1− e−tc , t > 0, c > 0 (Weibull type),

where a∗n = F−1(0) and b∗n = F−1(1/n)−F−1(0) iff F−1(0) is finite,

lim
ε→0+

F (F−1(0)+ εt)

F (F−1(0)+ ε)
= tc ∀ t > 0, c > 0.

Letting F (x) = 0 we see that F−1(0) = 0 and finite. Moreover,

lim
ε→0+

F (0+ εt)

F (0+ ε)
= t.

Finally, we have c= 1, a∗n = 0 and b∗n = F−1(1/n).
Hence the proof is completed.
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İSTATİSTİK: Journal of the Turkish Statistical Association 11(3), pp. 65–76, c© 2018 İstatistik 71

3.3. Stochastic ordering
For a positive continuous rv, stochastic ordering is an important tool for judging the comparative

behavior. Let us denote the pdf, cdf, hrf amd mean residual life function (mrl) of a positive contin-
uous rv X by fX(·), FX(·), hX(·) and mX(·), respectively, and those of another positive continuous
rv Y by fY (·), FY (·), hY (·) and mY (·), respectively. We recall some basic definitions.
Definition 2. A rv X is said to be smaller than a rv Y in the
(i) The stochastic order (X ≤(sto) Y ) if FX(x)≥ FY (x), ∀ x.
(ii) The hazard rate order (X ≤(hro) Y ) if hX(x)≥ hY (x), ∀ x.
(iii) The mean residual life order (X ≤(mrlo) Y ) if mX(x)≤mY (x), ∀ x.

(iv) The ikelihood ratio order (X ≤(lro) Y ) if fX (x)

fY (x)
decreases in x.

The below given implications (see Shaked and Shanthikumar, 1994) are well justified:[
X ≤(lro) Y

]⇒ [
X ≤(hro) Y

]⇒ [X ≤mrl Y ] and
[
X ≤(hro) Y

]⇒ [
X ≤(sto) Y

]
(3.3)

The following theorem shows that the QXGP distributions are ordered with respect to different
stochastic orderings.

Theorem 2. Let X ∼QXGP (α, θ,λ1) and Y ∼QXGP (α, θ,λ2). If λ1 >λ2 then
[
X ≤(lro) Y

]
and

[
X ≤(hro) Y

]
,
[
X ≤(mrlo) Y

]
,
[
X ≤(sto) Y

]
.

Proof. For any x> 0, the ratio of the densities is given by

g(x) =
fX(x)

fY (x)
=

λ1 (e
λ2 − 1)

λ2 (eλ1 − 1)
exp

⎧⎨⎩(λ1−λ2)e
−θx

(
1+α+ θx+ θ2

2
x2

)
(1+α)

⎫⎬⎭
Taking derivative with respect to x, we have

g′(x) =−
θλ1(λ1−λ2) (e

λ2 − 1) e−θx

(
α+ θ2

2
x2

)
λ2 (eλ1 − 1) (1+α)

exp

⎧⎨⎩(λ1−λ2)e
−θx

(
1+α+ θx+ θ2

2
x2

)
(1+α)

⎫⎬⎭
Now, g′(x)< 0 if λ1 >λ2 and hence X ≤lr Y if λ1 >λ2. The other orderings are immediate by (3.3).
Hence the proof is completed.

4. Maximum likelihood estimation (MLE)
Let x1, x2, . . . , xn be a rs from the QXGP. Let ϕ=(α, θ,λ)T be the parameter vector. Then, the

log likelihood (LL) function for ϕ, say � (ϕ) = �,

� = −n log (1+α)+n log θ+n logλ−n log(eλ− 1)

+
n∑

i=1

log

(
1

2
θ2x2+α

)
+

n∑
i=1

[
λe−θxi

(
1+α+ θxi +

1
2
θ2x2

i

)
(1+α)

− θxi

]
. (4.1)

Equation (10) can be maximized directly via some sub-routine in any packet programs. The score
vector components, say U (ϕ) = ∂�

∂ϕ
= (Uα,Uθ,Uλ)

T
, are given by λ

Uα =− n

1+α
+

n∑
i=1

(
1

2
θ2x2

i+α

)−1

−λ
n∑

i=1

e−θxi
θxi +

1
2
θ2x2

i

(1+α)2
,

Uθ =
n

θ
+

n∑
i=1

θx2
i

1
2
θ2x2+α

−
n∑

i=1

[
e−θxi

(1+α)

(
αxi +

1

2
θ2x3

i

)
+xi

]
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and

Uλ =
n

λ
− neλ

eλ− 1
+

n∑
i=1

e−θxi
(
1+α+ θxi +

1
2
θ2x2

i

)
(1+α)

.

Setting Uα = Uθ = Uλ = 0 and solving them simultaneously we get the MLE ϕ̂ = (α̂, θ̂, λ̂)T of
ϕ = (α, θ,λ)T . The likelihood ratio (LR) statistic can be used for comparing the QXGP model
with XGP model, which is equivalently to test H0 : α = θ. For this situaiton, the LR statistic is
computed with w = 2[�(α̂, θ̂, λ̂)− �(θ̃, λ̃)], where (α̂, θ̂, λ̂) are the unrestricted MLEs and (θ̃, λ̃) are
the restricted estimates under H0. The statistic w is asymptotically (as n→∞) distributed as
χ2
υ, where υ is difference of two parameter vectors of nested models. For example, υ= 1 for above

hypothesis test.

5. Simulation study
We can generate a random data from the QXGP (α, θ,λ) distribution using the following simu-

lation algorithm:
1. Generate M ∼ zero-truncated Poisson (λ);
2. Generate Ui ∼ uniform [Uni(0,1)] , i= 1,2, . . . ,M ;
3. Generate Vi ∼ exponential [Exp(θ)] , i= 1,2, . . . ,M ;
4. Generate Wi ∼ gamma [Gam(3, θ)] , i= 1,2, . . . ,M ;
5. If Ui ≤ α/(1+α), then set Yi = Vi, otherwise, set Yi =Wi, i= 1,2, . . . ,M ;
6. Set X =min(Y1, Y2, . . . , YM), then X is the required sample.
Here, we give the simulation study based on graphical results to see performance of the maximum

likelihood estimations of parameters. We generate N = 1000 samples of sizes n = 20,21, . . . ,250
from QXGP model with the true parameters values α= 2.2, θ = 1 and λ= 0.5. Random numbers
procedure has been obtained by using inverse of QXGP cdf. We obtain the empirical mean (em),
standard deviations (sd), bias and mean square error (MSE) of the MLEs for this simulation study.
The empirical bias and MSE are calculated by (for h= α, θ,λ)

̂Biash =
1
N

∑N

i=1

(
ĥi−h

)
and

̂MSEh =
1
N

∑N

i=1

(
ĥi−h

)2

,

respectively. All results and estimations have been calculated by optim-CG routine in the R pro-
gramme. We give results of this simulation study in Figure 3. This Figure shows that that when
the sample size (n) increases, all estimated means approach to true parameter value as well as
empirical biases approach to 0. The sds and MSEs also decrease in all the cases, while sample size
increases.
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50 150 250

1.9
2.1

2.3
2.5

n

me
an

 of
 al

ph
a

50 150 250

0.6
1.0

1.4
1.8

n

sd
 of

 al
ph

a

50 150 250

−0
.1

0.1
0.3

0.5

n

Bia
s o

f a
lph

a

50 150 250

0.5
1.5

2.5

n

MS
E 

of 
alp

ha

50 150 250

1.0
0

1.1
0

1.2
0

n

me
an

 of
 th

eta

50 150 250

0.1
0

0.2
0

0.3
0

0.4
0

n

sd
 of

 th
eta

50 150 250

0.0
0

0.1
0

0.2
0

n

Bia
s o

f th
eta

50 150 250

0.0
5

0.1
5

0.2
5

n

MS
E 

of 
the

ta

50 150 250

0.1
0.3

0.5

n

me
an

 of
 la

mb
da

50 150 250

0.4
0.8

1.2

n

sd
 of

 la
mb

da

50 150 250

−0
.4

−0
.2

0.0

n

Bia
s o

f la
mb

da

50 150 250

0.5
1.0

1.5
2.0

n

MS
E 

of 
lam

bd
a

Figure 3. The empirical means, sds, biases and MSEs of the estimated parameters versus n

6. Application with real data illustration
We illustrate the flexibility of the QXGP model on the real data set. We also compare this model

with the QXG model, XGP model, XG model, exponential Poisson (EP) model (see Kuş (2007)),
exponentiated Weibull (EW) model (see Mudholkar and Srivasta (1993)), Weibull Poisson (WP)
model (see Lu and Shi (2012)), exponentiated exponential (EE) model (see Gupta and Kundu
(1999)) and exponentiated Nadarajah-Haghighi (ENH) model (see Lemonte (2013)) under the
estimated log-likelihood values �̂, Akaike Information Criteria (AIC), corrected Akaike information
criterion (CAIC), Cramer von Mises (W ∗) and Anderson-Darling (A∗) goodness of-fit statistics
for all distribution models. We note that The AIC and CAIC are by given by AIC = −2�̂ +
2p andCAIC =−2�̂+2pn (n− k− 1)

−1
, where p is the number of the estimated model parameters

and n is sample size. The W ∗ and A∗ statistics have been described as

W ∗ =
∑n

i=1

(
F̂

(
x(i)

)− i− 0.5

n

)2

+
1

12n

and

A∗ =−
∑n

i=1

2i− 1

n

[
ln F̂

(
x(i)

)
+ ln ˆ̄F

(
x(n+1−i)

)]−n

by Evans et al. (2008). Also, one may see Chen and Balakrishnan (1995) for W ∗ and A∗ in detail.
It can be seen as the best model which has the smaller the values of the AIC, CAIC, W ∗ and
A∗ statistics and the larger the values of �̂. The real data set is the stress-rupture life of kevlar
49/epoxy strands which are subjected to constant sustained pressure at the 90% stress level until
all had failed. This data set was studied by Andrews and Herzberg (1985), Cooray and Ananda
(2008), and Paraniaba et al. (2013).

In the applications, the information about the hazard shape can help in selecting a par-
ticular model. For this aim, a device called the total time on test (TTT) plot (Aarset,
1987) is useful. The TTT plot is obtained by plotting T

(
r
n

)
against r/n where T

(
r
n

)
=



Sen et al.: Quasi Xgamma-Poisson Distribution
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i=1 y(i) +(−r+n)y(r)
]
/
∑n

i=1 y(i) |(r=1,...,n) and yi are the order statistics of the sample. It is
convex shape for decreasing hrf and is concave shape for increasing hrf. The TTT plot for the kevlar
data in Figure 4 deals with convex-concave-convex shaped. That is it has a firstly bathtub-shaped
then decreasing shaped on the other words down-and-up shaped failure rate function. The MLEs
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Figure 4. TTT plot for the kevlar data

of all models parameters, their standard erros, AIC, CAIC, W ∗ and A∗ statistics are listed in Table
2 for data set. Table 2 shows that the QXGP model could be chosen as the best model among the
fitted models under the AIC, CAIC, HQIC, and W ∗ statistics. We note that to show the likelihood
equations have a unique solution, we plot the profiles of the LL of α, θ and λ in Figure 5. The WP
model is better than QXGP model according to A∗ statistics. In this case, the WP model can be
choose as the best model.
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Figure 5. The profile of the LL function plots

The plots of the fitted densities, cdfs and hrfs of all models are displayed in Figure 6. These plots
also shows that the QXGP model provides the good fit to these data compared to the other models.
The fitted hrf shape both QXGP and WP models have firstly bathtub-shaped then decreasing
shaped (convex-concave-convex).
A comparison of the proposed distribution with some of its sub-models using LR statistics is

performed in Table 3. Table 3 shows that QXGP model provides a better representation of the
data than the their sub-model based on the LR test at the 6% significance level. Hence, we reject
all H0 hypotheses in favour of the QXGP model.
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Table 2. MLEs, standard erros of the estimates (in parentheses), �̂, AIC, CAIC, A
∗ and W

∗ statistics for the
applications models

Model α̂ θ̂ λ̂ −�̂ AIC CAIC A∗ W ∗

QXGP 0.3065 1.0051 4.4307 101.1425 208.2849 208.5324 0.9527 0.1168

(0.1099) (0.2652) (1.7112)

QXG 1.9343 1.6408 104.0904 212.1807 212.1807 1.0947 0.1397

(2.0215) (0.4662)

XGP 1.4839 0.6804 103.7876 211.5751 211.6976 1.0761 0.1673

(0.3296) (0.9887)

XG 1.6978 104.1007 210.2015 210.2419 1.0916 0.1322

(0.1248)

EP 0.9340 0.1720 103.4497 210.8994 211.0218 1.2332 0.1742

(0.1963) (0.7079)

WP 0.8059 1.4042 -1.2719 102.3688 210.7376 210.9851 0.9303 0.1514

(0.1273) (0.3703) (1.0984)

ENH 1.0717 0.7860 0.8473 102.7904 211.5808 211.82834 0.9633 0.1668

(0.3093) (0.4094) (0.1308)

EW 0.7929 0.8210 1.0604 102.7872 211.5743 211.8218 0.9554 0.1648

(0.2873) (0.2654) (0.2400)

EE 0.8660 0.8883 102.8200 209.6369 209.7624 1.0215 0.1812

(0.1097) (0.1201)
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Figure 6. Fitted pdfs, cdfs and hrfs for data set

Table 3. LR statistics for data set

Model Hypothesis Test statistics p-value
QXGP vs XGP H0 : α= θ & H1 : H0 false 5.2902 0.0214
QXGP vs QXG H0 : λ= 0 & H1 : H0 false 5.8958 0.0151
QXGP vs XG H0 : α= θ,λ= 0 & H1 : H0 false 5.9164 0.0520
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7. Conclusions
In this paper, we propose a new three-parameter xgamma-Poisson model, called the quasi

xgamma-Poisson (QXGP) distribution, which extends the xgamma-Poisson (XGP), QXG and
xgamma distributions . In fact, the QXGP model is motivated by the wide use of the xgamma
distribution in many applied areas and also for the fact that the new generalization provides more
flexibility to analyze real data. We discuss the MLE of the model parameters. An applications illus-
trate that the proposed model provides consistently better fit than the other competitive models
like QXG, XGP, XG, EW, EE, EP, WP and ENH models.
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