JOURNAL OF UNIVERSAL MATHEMATICS Vol.2 No.1 pp.22-31 (2019) ISSN-2618-5660

I-WEIGHTED LACUNARY STATISTICAL τ -CONVERGENCE IN LOCALLY SOLID RIESZ SPACES

ŞÜKRAN KONCA AND ERGIN GENÇ

ABSTRACT. An ideal I is a family of subsets of positive integers \mathbb{N} which is closed under taking finite unions and subsets of its elements. In this paper, we introduce the notions of ideal versions of weighted lacunary statistical τ -convergence, statistical τ -Cauchy, weighted lacunary τ -boundedness of sequences in locally solid Riesz spaces endowed with the topology τ . We also prove some topological results related to these concepts in locally solid Riesz space.

1. INTRODUCTION

A Riesz space is an ordered vector space which is lattice at the same time. A locally solid Riesz space is a Riesz space equipped with a linear topology that has a base consisting of solid sets. The Riesz space was first introduced by F. Riesz in 1928, at the International Mathematical Congress in Bologna [1]. Soon after, in the mid-thirties, H. Freudental [2] and L. V. Kantrovich [3] independently set up the axiomatic foundation and derived a number of properties dealing with the lattice structure of Riesz space. Riesz space have many applications in measure theory, operator theory and optimization. They also have some applications in economics [4]. For further results we may refer to [5, 6, 7].

The notion of statistical convergence was introduced by Fast [8] and Steinhaus [9] independently in the same year 1951. Recently, a new concept has been introduced by Başarır and Konca [10] for sequences which is called weighted lacunary statistical convergence (also for the concept weighted statistical convergence see [11, 12]). Then they extended this concept to locally solid Riesz space in [13]. The concept of *I*-convergence (*I* denotes the ideal of subsets of \mathbb{N}) was initially introduced by Kostyrko et al. [14] as a generalization of statistical convergence. More applications of ideals can be seen in [15, 16, 17, 18].

Date: Review December 5, 2018, accepted January 16, 2019.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46A40; Secondary 40A35; 46A45; 40G15; 46A40.

Key words and phrases. Ordered topological vector space; locally solid Riesz space; *I*-weighted lacunary statistical τ -convergence; I-convergence.

In this paper, we define I-weighted lacunary statistical τ -convergence, I-weighted lacunary statistical τ -boundedness and examine some inclusion relations in locally solid Riesz space.

2. Definitions and Preliminaries

Let X be a real vector space and " \leq " be a partial order on this space. Then X is said to be an ordered vector space if it satisfies the following properties:

(1) $\forall x, y \in X \text{ and } y \leq x \text{ imply } y + z \leq x + z \text{ for each } z \in X,$

(2) $\forall x, y \in X \text{ and } y \leq x \text{ imply } \alpha y \leq \alpha x \text{ for each } \alpha \geq 0.$

In addition, if X is a lattice with respect to the partial order, then X is said to be a Riesz space (or a vector lattice) [7].

A subset S of a Riesz space X is said to be solid if $y \in S$ and $|x| \leq |y|$ implies $x \in X$. A topological vector space (X, τ) is a vector space X which has a linear topology τ such that the algebraic operations of additions and scalar multiplication in X are continuous. Every linear topology τ on a vector space X has a base \mathcal{N}_{sol} for the neighborhoods of zero satisfying the following properties:

- (1) Each $Y \in \mathcal{N}_{sol}$ is a balanced set, that is, $\alpha x \in Y$ holds for all $x \in Y$ and every $\alpha \in \mathbb{R}$ with $|\alpha| \leq 1$.
- (2) Each $Y \in \mathcal{N}_{sol}$ is an absorbing set, that is, for every $x \in X$ there exists $\alpha > 0$ such that $\alpha x \in Y$.
- (3) For each $Y \in \mathcal{N}_{sol}$, there exists some $W \in Y$ with $W + W \subseteq Y$.

A linear topology τ on a Riesz space X is said to be locally solid Riesz space if τ has a base at zero consisting of solid sets. A locally solid Riesz space (X, τ) is a Riesz space equipped with a locally solid topology τ [7].

Throughout the paper, the symbol \mathcal{N}_{sol} will denote any base at zero consisting of solid sets and satisfying the above conditions (1), (2), (3) in a locally solid Riesz topology τ . For our convenience, here and in where follows, we shall write a word "LSRS" instead of a locally solid Riesz space and we mean $\lim_{k\to\infty} x_k$ by $\lim x$ for brevity.

Let $E \subseteq \mathbb{N}$. Then the natural density of E is denoted by $\delta(E)$ and defined by

$$\delta\left(E\right) = \lim_{x \to \infty} \left| \left\{ k \le n : k \in E \right\} \right|,$$

where the vertical bars denote the cardinality of the respective set [19].

Let (X, τ) be a locally solid Riesz space. A sequence $x = (x_k)$ in X is said to be $S(\tau)$ -convergent to an element x_0 in X if for each τ - neighborhood V of zero

$$\delta\left(\left\{k \in \mathbb{N} : x_k - x_0 \notin V\right\}\right) = 0$$

i.e.,

$$\lim_{n \to \infty} \frac{1}{n} |\{k \le n : x_k - x_0 \notin V\}| = 0.$$

In this case, we write $S(\tau)$ -lim $x = x_0$ or $(x_k) \stackrel{S(\tau)}{\to} x_0$ [20].

By a lacunary sequence we mean an increasing sequence of integers $\theta = (k_r)$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. Throughout the paper, the intervals determined by θ will be denoted by $I_r := (k_{r-1}, k_r]$ and the ratio k_r/k_{r-1} will be abbreviated by q_r . Let (p_k) be a sequence of positive real numbers and $P_n = p_1 + p_2 + ... + p_n$ for $n \in \mathbb{N}$. Then the Riesz transformation of $x = (x_k)$ is defined as $t_n = 1/P_n \sum_{k=1}^n p_k x_k$. If the transformation sequence (t_n) has a finite limit x_0 then the sequence $x = (x_k)$ is said to be Riesz convergent to x_0 . Let us note that if $P_n \to \infty$ as $n \to \infty$ then Riesz mean is a regular summability method. Throughout the paper, let $P_n \to \infty$ as $n \to \infty$ and $P_n = p_0 = 0$ [11].

Let θ be a lacunary sequence of positive real numbers such that $H_r := \sum_{k \in I_r} p_k$, $P_{k_r} := \sum_{k \in (0,k_r]} p_k$, $P_{k_{r-1}} := \sum_{k \in (0,k_{r-1}]} p_k$, $Q_r := \frac{P_{k_r}}{P_{k_{r-1}}}$, $P_0 = 0$ and the intervals determined by θ and p_k are denoted by $I'_r = (P_{k_{r-1}}, P_{k_r}]$. It is easy to see that $H_r = P_{k_r} - P_{k_{r-1}}$. If we take $p_k = 1$ for all $k \in \mathbb{N}$, then $H_r, P_{k_r}, P_{k_{r-1}}, Q_r$ and I'_r reduce to h_r, k_r, k_{r-1}, q_r and I_r respectively. Throughout the paper we assume that $P_n \to \infty$ as $n \to \infty$ such that $H_r \to \infty$ as $n \to \infty$ [10].

A family of sets $I \subseteq P(\mathbb{N})$ (power sets of \mathbb{N}) is said to be an ideal if;

 $\begin{array}{ll} (1) \ \emptyset \in I, \\ (2) \ A \cup B \in I, \mbox{ for each } A, B \in I, \\ (3) \ A \in I \mbox{ and } B \subseteq A \mbox{ imply } B \in I. \end{array}$

A non-empty family of sets $F \subseteq P(\mathbb{N})$ is a filter on \mathbb{N} if and only if:

- (1) $\emptyset \notin F$,
- (2) $A \cap B \in F$, for each $A, B \in F$,
- (3) $A \in F$ and $B \supset A$ imply $B \in F$.

I is called non-trivial if $I \neq \emptyset$ and $\mathbb{N} \notin I$. It is called admissible ideal when it contains all singletons $\{\{n\} : n \in \mathbb{N}\}$ [14]. We assume that I is non-trivial admissible ideal of \mathbb{N} throughout the paper.

If we take $I = I_f = \{A \subseteq \mathbb{N} : A \text{ is finite subset}\}$. Then I_f is a non-trivial admissible ideal of \mathbb{N} and the corresponding convergence coincide with the usual convergence.

A sequence $x = (x_k)$ in a topological space X is said to be *I*-convergent to $x_0 \in X$ if for every neighborhood V of x_0

$$\{k \in \mathbb{N} : x_k \notin V\} \in I.$$

In this case, we write $I - \lim x = x_0$ or $x_k \xrightarrow{I} x_0$ and I denotes the set of all ideal convergent sequences [16].

Let (X, τ) be a locally solid Riesz space. A sequence $x = (x_k)$ in X is said to be $I(\tau)$ -convergent to an element x_0 in X if for each τ -neighborhood V of zero

$$\{k \in \mathbb{N} : x_k - x_0 \notin V\} \in I$$

i.e.,

$$\{k \in \mathbb{N} : x_k - x_0 \in V\} \in F.$$

In this case, we write $I(\tau)$ -lim $x = x_0$ or $x_k \stackrel{I(\tau)}{\to} x_0$ [15].

3. Main Results

Definition 3.1. Let (X, τ) be a LSRS and θ be a lacunary sequence. We say that $x = (x_k)$ in X is said to be $S^I_{(\bar{N},\theta)}(\tau)$ -convergent to $x_0 \in X$ if for every neighborhood V of zero and $\delta > 0$,

(3.1)
$$\left\{ r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin V \right\} \right| \ge \delta \right\} \in I,$$

that is;

$$\left\{r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{k \in I'_r : p_k \left(x_k - x_0\right) \notin V\right\} \right| < \delta \right\} \in F(I).$$

In this case, we write $S^{I}_{(\bar{N},\theta)}(\tau)$ or $x_{k} \stackrel{S^{I}_{(\bar{N},\theta)}(\tau)}{\to} x_{0}$.

(1) If we take $p_k = 1$ for all $k \in \mathbb{N}$ in (3.1) then we obtain the def-Remark 3.2. inition of *I*-lacunary statistical τ -convergence which can be given as follows:

Let (X, τ) be a LSRS and $\theta = (k_r)$ a lacunary sequence. Then a sequence $x = (x_k)$ in X is said to be $S^I_{\theta}(\tau)$ -convergent to x_0 if for every τ -neighborhood V of zero and for any $\delta > 0$,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \{x \in I_r : x_k - x_0 \notin V\} \right| \ge \delta \right\} \in I.$$

In this case, we write $S_{\theta}^{I}(\tau) - \lim_{k \to \infty} x = x_0$ or $x_k \stackrel{S_{\theta}^{I}(\tau)}{\to} x_0$. (2) For $I = I_{fin}$ and $p_k = 1$ for all $k \in \mathbb{N}$, $S_{(\bar{N},\theta)}^{I}(\tau)$ -convergence reduces to $x_k \stackrel{S_{\theta}(\tau)}{\to} x_0 \text{ in } [21].$

Now, we give the definition of *I*-weighted statistical τ -convergence in LSRS.

Definition 3.3. Let (X, τ) be a LSRS and θ be a lacunary sequence. We say that $x = (x_k)$ in X is said to be $S^I_{\bar{N}}(\tau)$ -convergent to $x_0 \in X$ if for every neighborhood V of zero and $\delta > 0$, $\left\{ r \in \mathbb{N} : \frac{1}{P_n} | \{k \le P_n : p_k (x_k - x_0) \notin V\} | \ge \delta \right\} \in I$. In this case, we write $S_{\bar{N}}^{I}(\tau) - \lim_{k \to \infty} x = x_0 \text{ or } x_k \xrightarrow{S_{\bar{N}}^{I}(\tau)} x_0.$

Definition 3.4. Let (X, τ) be a LSRS. We say that $x = (x_k)$ in X is said to be $S^{I}_{(\bar{N},\theta)}(\tau)$ -bounded if for every neighborhood V of zero and there exists $\alpha > 0$ such that, for any $\delta > 0$,

$$\left\{r \in \mathbb{N}: \frac{1}{H_r} \left| \left\{k \in I_r^{'}: \alpha p_k x_k \notin V\right\} \right| \geq \delta \right\} \in I.$$

Theorem 3.5. Let (X, τ) be a Hausdorff LSRS and $x = (x_k), y = (y_k)$ be two sequences in X. Then the followings hold:

- (1) If $S^{I}_{(\bar{N},\theta)}(\tau) \lim x = x_0$ and $S^{I}_{(\bar{N},\theta)}(\tau) \lim x = y_0$, then $x_0 = y_0$.
- (2) If $S_{(\bar{N},\theta)}^{\dot{T}}(\tau) \lim x = x_0$, then $S_{(\bar{N},\theta)}^{\dot{T}}(\tau) \lim \alpha x = \alpha x_0$, for every $\alpha \in \mathbb{R}$,
- (3) If $S_{(\bar{N},\theta)}^{I}(\tau) \lim x = x_0$ and $S_{(\bar{N},\theta)}^{I}(\tau) \lim y = y_0$, then $S_{(\bar{N},\theta)}^{I}(\tau)$ $\lim x + y = x_0 + y_0.$

Proof. (1) Suppose that $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = x_{0}$ and $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = y_{0}$. Let V be any τ -neighborhood of zero. Then there exists a $Y \in \mathcal{N}_{sol}$ such that $Y \subseteq V$. Choose $W \in \mathcal{N}_{sol}$ such that $W+W \subseteq Y$. Since $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = x_{0}$ and $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = y_{0}$, we can write for $\delta > 0$,

$$A_{1} = \left\{ r \in \mathbb{N} : \frac{1}{H_{r}} \left| \left\{ k \in I_{r}^{'} : p_{k} \left(x_{k} - x_{0} \right) \notin V \right\} \right| < \delta \right\} \in F(I),$$

and

$$A_{2} = \left\{ r \in \mathbb{N} : \frac{1}{H_{r}} \left| \left\{ k \in I_{r}^{'} : p_{k} \left(x_{k} - y_{0} \right) \notin V \right\} \right| < \delta \right\} \in F\left(I \right).$$

Since $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = x_0$ and $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = y_0$, we get $A_1, A_2 \in F(I)$ and for every $r \in A_1$ and A_2

$$\frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin W \right\} \right| < \frac{\delta}{2},$$

similarly

$$\frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - y_0 \right) \notin W \right\} \right| < \frac{\delta}{2}$$

Now, let $A_1 \cap A_2 = A$. Then we have

 $p_k(x_0 - y_0) = p_k(x_0 - x_k + x_k - y_0) = p_k(x_k - x_0) + p_k(x_k - y_0) \in W + W \subseteq Y \subseteq V.$ Thus

$$\frac{1}{H_r} \left| \left\{ k \in I_r^{'} : p_k \left(x_k - x_0 \right) \notin W \right\} \right| \le \frac{1}{H_r} \left| \left\{ k \in I_r^{'} : p_k \left(x_k - x_0 \right) \notin W \right\} \right| < \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

Consequently, we obtain

$$\left\{r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{k \in I'_r : p_k \left(x_k - y_0\right) \notin V \right\} \right| < \delta \right\} \in F(I).$$

Finally, for every τ -neighborhood V of zero, we get $p_k(x_0 - y_0) \in V$. Since (p_k) is a sequence of positive real numbers and (X, τ) is Hausdorff, the intersection of all τ -neighborhood V of zero is the singleton set $\{\theta\}$. Thus we get $x_0 - y_0 = \theta$, i.e., $x_0 = y_0$.

(2) We assume that $S^{I}_{(\bar{N},\theta)}(\tau)$ -lim $x = x_0$ and let V be an arbitrary τ -neighbourhood of zero. Then there exists $Y \in \mathcal{N}_{sol}$ such that $Y \subseteq V$. Since $S^{I}_{(\bar{N},\theta)}(\tau)$ –

 $\lim x = x_0$, we can write for any $\delta > 0$

$$B = \left\{ r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin Y \right\} \right| < \delta \right\} \in F(I)$$

Since Y is balanced, $p_k(x_k - x_0) \in Y$ implies that $\alpha p_k(x_k - x_0) \in Y$ for every $\alpha \in \mathbb{R}$ with $|\alpha| < 1$. Therefore

$$\left\{k \in I'_{r} : p_{k}\left(x_{k}-x_{0}\right) \in Y\right\} \subseteq \left\{k \in I'_{r} : \alpha p_{k}\left(x_{k}-x_{0}\right) \in Y\right\}$$
$$\subseteq \left\{k \in I'_{r} : \alpha p_{k}\left(x_{k}-x_{0}\right) \in V\right\}.$$

Thus we obtain

$$\left\{ r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : \alpha p_k \left(x_k - x_0 \right) \notin V \right\} \right| < \delta \right\} \in F(I)$$

26

for each τ -neighborhood V of zero.

Now let $|\alpha| > 1$ and $\llbracket \alpha \rrbracket$ be the smallest integer greater than or equal to $|\alpha|$. Then there exists $W \in N_{sol}$ such that $\llbracket \alpha \rrbracket W \subseteq Y$. Since $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = x_{0}$, we have

$$B = \left\{ r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin Y \right\} \right| < \delta \right\} \in F(I).$$

We also have,

 $\left|\alpha p_{k}\left(x_{k}-x_{0}\right)\right|=\left|\alpha\right|\left|p_{k}\left(x_{k}-x_{0}\right)\right|\leq\left[\!\left[\alpha\right]\!\right]\left|p_{k}\left(x_{k}-x_{0}\right)\right|\in\left[\!\left[\alpha\right]\!\right]W\subseteq Y\subseteq V.$

Since Y is solid, we have $\alpha p_k (x_k - x_0) \in Y$ this implies that $\alpha p_k (x_k - x_0) \in V$. Consequently,

$$\left\{ r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : \alpha p_k \left(x_k - x_0 \right) \notin V \right\} \right| < \delta \right\} \in F(I)$$

for each τ -neighborhood V of zero. Hence $S^{I}_{(\bar{N},\theta)}(\tau) - \lim \alpha x = \alpha x_{0}$, for every $\alpha \in \mathbb{R}$.

(3) Let V be an arbitrary τ -neighbourhood of zero. Then there exists $Y \in \mathcal{N}_{sol}$ such that $Y \subseteq V$. We choose $W \in \mathcal{N}_{sol}$ such that $W + W \subseteq Y$. Since $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = x_{0}$ and $S^{I}_{(\bar{N},\theta)}(\tau) - \lim y = y_{0}$, we have

$$C_{1} = \left\{ r \in \mathbb{N} : \frac{1}{H_{r}} \left| \left\{ k \in I_{r}^{'} : p_{k} \left(x_{k} - x_{0} \right) \notin V \right\} \right| < \frac{\delta}{2} \right\} \in F\left(I \right),$$

and

$$C_{2} = \left\{ r \in \mathbb{N} : \frac{1}{H_{r}} \left| \left\{ k \in I_{r}^{'} : p_{k} \left(y_{k} - y_{0} \right) \notin V \right\} \right| < \frac{\delta}{2} \right\} \in F\left(I \right).$$

Let $C_1 \cap C_2 = C$. Hence we have also,

 $p_k ((x_k + y_k) - (x_0 + y_0)) = p_k (x_k - x_0) + p_k (y_k - y_0) \in W + W \subseteq Y \subseteq V,$ for $r \in C_1 \cap C_2$ we get

$$\frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left((x_k + y_k) - (x_0 + y_0) \right) \notin W \right\} \right| \le \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin W \right\} \right| + \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(y_k - y_0 \right) \notin W \right\} \right| < \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

Consequently,

$$\begin{cases} r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left((x_k + y_k) - (x_0 + y_0) \right) \notin V \right\} \right| < \delta \\ \\ \subseteq \left\{ r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(y_k - y_0 \right) \notin V \right\} \right| < \frac{\delta}{2} \\ \\ \cup \left\{ r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin V \right\} \right| < \frac{\delta}{2} \\ \end{cases}$$

Since $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = x_0$ and $S^{I}_{(\bar{N},\theta)}(\tau) - \lim y = y_0$, it is obviously seen that the left side belongs to F(I). This shows that $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x + y = x_0 + y_0$.

Theorem 3.6. Let (X, τ) be a LSRS and $\theta = (k_r)$ be a lacunary sequence. If a sequence $x = (x_k)$ is $S^{I}_{(\bar{N},\theta)}(\tau)$ -convergent and (p_k) is bounded, then $x = (x_k)$ is $S^{I}_{(\bar{N},\theta)}(\tau)$ -bounded.

Proof. Suppose that $x = (x_k)$ is $S^I_{(\bar{N},\theta)}(\tau) - \lim x = x_0$ and (p_k) is bounded sequence. Let V be an arbitrary τ -neighborhood of zero. Then there exists $Y \in \mathcal{N}_{sol}$ such that $Y \subseteq V$. We choose another element $W \in \mathcal{N}_{sol}$ such that $W + W \subseteq Y$. Since $S^I_{(\bar{N},\theta)}(\tau) - \lim x = x_0$, we have;

$$D = \left\{ r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin W \right\} \right| \le \delta \right\} \in I.$$

Since W is absorbing, there exists a > 0 such that $ax_0 \in W$. Let $b \leq 1$ and $b \leq a$. Since (p_k) is bounded then there exists a $M = \frac{a}{b} > 0$ such that $p_k \leq M$ for all $k \in \mathbb{N}$. Then we can write $bp_k \leq a$ for all $k \in \mathbb{N}$. Since W is balanced $p_k(x_k - x_0) \in W$ implies that $bp_k(x_k - x_0) \in W$. Then we have $bp_kx_k = bp_k(x_k - x_0) + bp_kx_0 \in W + W \subseteq Y \subseteq V$ for each $k \in \mathbb{N} \setminus D$. Thus,

$$\left\{n \in \mathbb{N} : \frac{1}{n} \left| \{k \le n : bx_k \notin V\} \right| \ge \delta \right\} \in I.$$

This shows that $x = (x_k)$ is $S^I(\tau)$ -bounded.

Theorem 3.7. Let (X, τ) be a LSRS, $\theta = (k_r)$ be a lacunary sequence and let $(x_k), (y_k), (z_k)$ be the sequences in X such that;

(1) $x_k \leq y_k \leq z_k$, for each $k \in \mathbb{N}$, (2) $S^I_{(\bar{N},\theta)}(\tau) - \lim x = x_0 = S^I_{(\bar{N},\theta)}(\tau) - \lim z = x_0$, then $S^I_{(\bar{N},\theta)}(\tau) - \lim y = x_0$.

Proof. Let V be an arbitrary τ -neighbourhood of zero. Then there exists $Y \in \mathcal{N}_{sol}$ such that $Y \subseteq V$. Choose $W \in \mathcal{N}_{sol}$ such that $W + W \subseteq Y$. From the condition (2), we have $D_1, D_2 \in F(I)$ where

$$E_{1} = \left\{ r \in \mathbb{N} : \frac{1}{H_{r}} \left| \left\{ k \in I_{r}^{'} : p_{k} \left(x_{k} - x_{0} \right) \notin W \right\} \right| < \delta \right\} \in F\left(I \right),$$

and

$$E_{2} = \left\{ r \in \mathbb{N} : \frac{1}{H_{r}} \left| \left\{ k \in I_{r}^{'} : p_{k} \left(z_{k} - z_{0} \right) \notin W \right\} \right| < \delta \right\} \in F\left(I \right).$$

We also get $E = E_1 \cap E_2 \in F(I)$ and from (i), we have

$$p_k(x_k - x_0) \le p_k(y_k - y_0) \le p_k(z_k - z_0)$$

for all $k \in \mathbb{N}$. This implies that for all $k \in K_1 \cap K_2$,

$$\Rightarrow |y_k - y_0| \le |x_k - x_0| + |z_k - z_0| \in W + W \subseteq Y \subseteq V.$$

Since Y is solid we have $p_k(y_k - y_0) \in Y \subseteq V$. Thus

$$\left\{ r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(y_k - x_0 \right) \notin W \right\} \right| < \delta \right\} \in F(I)$$

Hence $S^{I}_{(\bar{N},\theta)}(\tau) - \lim y = x_0$. This completes the proof of the theorem.

Theorem 3.8. Let (X, τ) be a LSRS and $\theta = (k_r)$ be a lacunary sequence. If $\liminf_r Q_r > 1$ then $S^I_{(\bar{N})}(\tau) \subseteq S^I_{(\bar{N},\theta)}(\tau)$.

$$\Box$$

Proof. Suppose that $\liminf_{r} Q_r > 1$, then there exists $\lambda > 0$ such that $Q_r \ge 1 + \lambda$ for sufficiently large values of r which implies that $\frac{H_r}{P_{k_r}} = 1 - \frac{P_{k_r}}{P_{k_{r-1}}} = 1 - \frac{1}{Q_r} \ge \frac{\lambda}{1+\lambda}$. Let $S^I_{(\bar{N})}(\tau) - \lim x = x_0$ and V be an arbitrary τ -neighbourhood of zero. Since $S^I_{(\bar{N})}(\tau) - \lim x = x_0$, we have

$$\left\{r \in \mathbb{N} : \frac{1}{P_{k_r}} \left| \{k \in P_{k_r} : p_k \left(x_k - x_0 \right) \notin V \} \right| < \delta \right\}.$$

Then for all $r > r_0$ we have

$$\begin{split} & \frac{1}{P_{k_r}} \left| \left\{ k \in P_{k_r} : p_k \left(x_k - x_0 \right) \notin V \right\} \right| \\ & \geq \frac{1}{P_{k_r}} \left| \left\{ k_{r-1} < k \leq k_r : p_k \left(x_k - x_0 \right) \notin V \right\} \right| \\ & = \frac{H_r}{P_{k_r}} \left(\frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin V \right\} \right| \right) \\ & \geq \frac{\lambda}{\lambda + 1} \left(\frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin V \right\} \right| \right) \end{split}$$

i.e., for any $\delta > 0$

$$\left\{ r \in \mathbb{N} : \frac{\lambda}{\lambda+1} \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin V \right\} \right| < \delta \right\}$$
$$\subseteq \left\{ r \in \mathbb{N} : \frac{1}{P_{k_r}} \left| \left\{ k \le P_{k_r} : p_k \left(x_k - x_0 \right) \notin V \right\} \right| < \delta \right\}.$$

Since $S^{I}_{(\bar{N})}(\tau) - \lim x = x_0$, then the left side of inequality belongs to F(I). Consequently $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = x_0$. Hence $S^{I}_{(\bar{N})}(\tau) \subseteq S^{I}_{(\bar{N},\theta)}(\tau)$.

Theorem 3.9. Let (X, τ) be a LSRS and a sequence $x = (x_k)$ in X. For any lacunary sequence $\theta = (k_r)$, the following statements are true:

- (1) If $p_k \leq 1$ for all $k \in N$ then $S^I_{(\theta)}(\tau) \subseteq S^I_{(\bar{N},\theta)}(\tau)$ and $S^I_{(\theta)}(\tau) \lim x = S^I_{(\bar{N},\theta)}(\tau) \lim x = x_0$.
- (2) If $1 \le p_k$ for all $k \in N$ and $\frac{H_r}{h_r}$ is upper bounded then $S^I_{(\bar{N},\theta)}(\tau) \subseteq S^I_{(\theta)}(\tau)$ and $S^I_{(\bar{N},\theta)}(\tau) - \lim x = S^I_{(\theta)}(\tau) - \lim x = x_0.$
- Proof. (1) If $p_k \leq 1$ for all $k \in \mathbb{N}$ then $H_r \leq h_r$ for all $r \in \mathbb{N}$. So there exists M constant such that $0 < M \leq \frac{H_r}{h_r} < 1$ for all $r \in \mathbb{N}$. Let a sequence $x = (x_k)$ in a LSRS (X, τ) and assume that $S^I_{(\theta)}(\tau) \lim x = x_0$. For an arbitrary τ -neighborhood V of zero, then we have

$$\frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin V \right\} \right|$$

$$= \frac{1}{H_r} \left| \left\{ P_{k_{r-1}} < k \le P_{k_r} : p_k \left(x_k - x_0 \right) \notin V \right\} \right|$$

$$\le \frac{1}{M} \frac{1}{h_r} \left| \left\{ k_{r-1} < k \le k_r : \left(x_k - x_0 \right) \notin V \right\} \right|$$

$$= \frac{1}{M} \frac{1}{h_r} \left| \left\{ k \in I_r : \left(x_k - x_0 \right) \notin V \right\} \right|.$$

i.e.,

$$\frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin V \right\} \right| \le \frac{1}{M} \frac{1}{h_r} \left| \left\{ k \in I_r : \left(x_k - x_0 \right) \notin V \right\} \right|.$$

For any $\delta > 0$

$$\left\{ r \in \mathbb{N} : \frac{1}{H_r} \left| \left\{ k \in I'_r : p_k \left(x_k - x_0 \right) \notin V \right\} \right| \ge \delta \right\}$$
$$\subseteq \left\{ r \in \mathbb{N} : \frac{1}{M h_r} \left| \left\{ k \in I_r : \left(x_k - x_0 \right) \notin V \right\} \right| \ge \delta \right\}.$$

Since $S_{(\theta)}^{I}(\tau) - \lim x = x_0$, on the right side of inequality belongs to I. In this case, on the left side of inequality belongs I. This shows that $S_{(\bar{N},\theta)}^{I}(\tau) - \lim x = x_0$.

(2) If $1 \leq p_k$ for all $k \in \mathbb{N}$, then $h_r \leq H_r$ for all $r \in \mathbb{N}$. Since $\frac{H_r}{h_r}$ is upper bounded, there exists N constant such that $1 \leq \frac{H_r}{h_r} \leq N$ for all $r \in \mathbb{N}$. Assume that $S^I_{(\bar{N},\theta)}(\tau) - \lim x = x_0$. For an arbitrary τ -neighborhood Vof zero we have

$$\begin{aligned} &\frac{1}{h_r} \left| \{ k \in I_r : (x_k - x_0) \notin V \} \right| \\ &= \frac{1}{h_r} \left| \{ k_{r-1} < k \le k_r : (x_k - x_0) \notin V \} \right| \\ &\le \frac{1}{N} \frac{1}{H_r} \left| \{ P_{k_{r-1}} < k \le P_{k_r} : p_k \left(x_k - x_0 \right) \notin V \} \right| \\ &= \frac{1}{N} \frac{1}{H_r} \left| \left\{ k \in I_r' : p_k \left(x_k - x_0 \right) \notin V \right\} \right|, \end{aligned}$$

that is,

$$\frac{1}{h_r} \left| \{ k \in I_r : (x_k - x_0) \notin V \} \right| \le \frac{1}{N} \frac{1}{H_r} \left| \left\{ k \in I_r' : p_k \left(x_k - x_0 \right) \notin V \right\} \right|.$$

Consequently, for any $\delta > 0$

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ k \in I_r : (x_k - x_0) \notin V \right\} \right| \ge \delta \right\}$$
$$\subseteq \left\{ r \in \mathbb{N} : \frac{1}{N} \frac{1}{H_r} \left| \left\{ k \in I_r' : p_k \left(x_k - x_0 \right) \notin V \right\} \right| \ge \delta \right\}$$

Since $S^{I}_{(\bar{N},\theta)}(\tau) - \lim x = x_0$, then the left side of inequality belongs to I. This shows that $S^{I}_{(\theta)}(\tau) - \lim x = x_0$.

References

- F. Riesz, Sur la decomposition des operations fonctionnelles lineaires. In Atti del Congresso Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, pp. 143-148 (1929).
- [2] H. Freudenthal, Teilweise geordnete Moduln, K. Akademie van Wetenschappen, Afdeeling Natuurkunde, Proceedings of the Section of Sciences 39, 647-657 (1936).
- [3] L. V. Kantorovich, Concerning the general theory of operations in partially ordered spaces, Dok. Akad. Nauk. SSSR 1, 271-274 (1936).
- [4] C. D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with applications to economics, American Mathematical Society. Second Edition. (2003).
- [5] L. V. Kantorovich, Lineare halbgeordnete Raume, Rec. Math. 2, 121-168 (1937).
- [6] W. A. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, (1971).
- [7] A. C. Zannen, Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, 1997.
- [8] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241-244 (1951).
- [9] H. Steinhaus, Sur la convergence ordinate et la convergence asymptotique, Colloq. Math. 2, 73-84 (1951).

30

- [10] M. Başarır and Ş. Konca, On some spaces of lacunary convergent sequences derived by Norlund-type mean and weighted lacunary statistical convergence, Arab J. Math. Sci. 20 (2), 250-263 (2014).
- [11] M. Mursaleen, V. Karakaya, M. Ertrk, F. Gürsoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, Applied Math. Comput. 218 (18), 9132-9137, (2012).
- [12] M. Küçükaslan, Weighted statistical convergence, Int. J. Sci. Tech. 2 (10), (2012).
- [13] M. Başarır and Ş. Konca, Weighted lacunary statistical convergence in locally solid Riesz spaces. Filomat. 28 (10), 2059-2067 (2014).
- [14] P. Kostyrko, T. Salat, and W. Wilczynski, I-convergence, Real Analysis Exchange, 26 (2), 669-686 (2000-2001).
- [15] B. Hazarika, Ideal convergence in locally solid Riesz spaces, Filomat. 28 (4), 797-809 (2014).
- [16] B. K. Lahiri and P. Das, I and I*convergence in topological space, Mathematica Bohemica, 130 (2), 153-160 (2005).
- [17] B. Hazarika, On ideal convergence in topological groups, Department of Mathematics Northwest University, 7 (4), 42-48 (2011).
- [18] Ş. Konca, E. Genç and S. Ekin, Ideal version of weighted lacunary statistical convergence of sequences of order α , J. Math. Analysis. 7 (6) (2016).
- [19] S. A. Mohiuddine, B. Hazarika and M. Mursaleen, Some inclusion results for lacunary statistical convergence in locally solid Riesz spaces, Iranian J. Sci. Tech. 38. A1 61 (2014).
- [20] H. Albayrak and S. Pehlivan, Statistical convergence and statistical continuity on locally solid Riesz spaces, Top. Appl. 159 (7), 1887-1893 (2012).
- [21] S. A. Mohiuddine and M. A. Alghamdi, Statistical summability through a lacunary sequence in locally solid Riesz spaces. J. Ineq. Appl. 2012 (1), 225 (2012).

(Şükran Konca) Bitlis Eren University, Mathematics Institute of Science, 13000, Bitlis, Turkey

E-mail address, Şükran Konca: skonca@beu.edu.tr

(Ergin Genç) Bitlis Eren University, Mathematics Institute of Science, 13000, Bitlis, Turkey

E-mail address, Ergin Genç: ergingenc4444@gmail.com