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Abstract: Existence of fixed points for a particular cyclic type of mappings on
a finite product of topological spaces is discussed. Existence of fixed points of a
particular cyclic type of set valued mappings on a finite product of metric spaces is
derived. Fixed points of shift type mappings are studied.

1. Introduction

There are many articles [4, 5, 7] for fixed points of mappings on product spaces. They focus on difficult
parts in establishment of existence of fixed points. Simple set theoritic arguments also give some fruitful re-

sults which are recorded in the present article. Functions of the type F :
n
∏
i=1

Xi →
n
∏
i=1

Xi, F((x1,x2, . . . ,xn)) =

( fn(xn), f1(x1), f2(x2), . . . , fn−1(xn−1)) corresponding to given functions f1 : X1 → X2, f2 : X2 → X3,. . . , fn−1 :
Xn−1→ Xn and fn : Xn→ X1 are considered in this article for fixed points. The next section 2 is for such single
valued mappings and section 3 is for set valued mappings.
If there is a bijective mapping Λ from an index set I into I itself, then for given i1 ∈ I; (i) Λ(i1) = i1; or
(ii) there are distinct i2, i3, . . . , in ∈ I such that Λ(i1) = i2,Λ(i2) = i3, . . . ,Λ(in−1) = in,Λ(in) = i1; or (iii) there
are distinct i2, i3, . . . , i0, i−1, i−2, . . . in I such that Λ(i j) = i j+1 for every integer j. So, for given mappings

fi : Xi→ Xi+1, i = 0,±1,±2, . . . , fixed points of F :
+∞

∏
i=−∞

Xi→
+∞

∏
i=−∞

Xi are discussed in section 4. Fixed points of a

special type of mappings on sets of the form
∞

∏
i=1

Xi are also discussed in section 4.

2. Cyclic Single Valued Mappings

Proposition 2.1. Let F :
n
∏
i=1

Xi→
n
∏
i=1

Xi be a mapping defined by the given mappings f1 : X1→ X2, f2 : X2→ X3,. . . ,

fn−1 : Xn−1→ Xn, fn : Xn→ X1 and by the relation
F((x1,x2, . . . ,xn)) = ( fn(xn), f1(x1), f2(x2), . . . , fn−1(xn−1)). Let gi : Xi→ Xi be a mapping defined by gi = fi−1 ◦
fi−2 ◦ · · · ◦ f1 ◦ fn ◦ fn−1 ◦ · · · ◦ fi for i = 2,3, . . . ,n and by g1 = fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1 for i = 1. Let Gi = {xi ∈ Xi :
gi(xi) = xi} be the fixed point set of gi and G be the fixed point set of F. If G1 6= /0, then Gi 6= /0 for i = 2,3, . . . ,n,
G 6= /0 and f1(G1) = G2, f2(G2) = G3, . . . , fn−1(Gn−1) = Gn, fn(Gn) = G1. If (y1,y2, . . . ,yn) ∈ G 6= /0, then
y1 ∈ G1 6= /0.

Proof. Suppose G1 6= /0. Let x1 ∈ G1. Then g1(x1) = x1, f1 ◦ fn ◦ · · · ◦ f2 ◦ f1(x1) = f1(x1), g2( f1(x1)) = f1(x1),
g3( f2 ◦ f1(x1)) = f2 ◦ f1(x1), . . . , gn( fn−1 ◦ fn−2 ◦· · ·◦ f1(x1)) = fn−1 ◦ fn−2 ◦· · ·◦ f1(x1) and g1(g1(x1)) = g1(x1) =
x1. Thus Gi 6= /0 for i = 2,3, . . . ,n. Also, if xi = fi−1 ◦ fi−2 ◦· · ·◦ f1(x1) for i = 2,3, . . . ,n, then fi(xi) = fi ◦ fi−1 ◦· · ·◦
f1(x1) = xi+1 for i = 1,2, . . . ,n, with xn+1 = x1 and hence F((x1,x2, . . . ,xn)) = ( fn(xn), f1(x1), . . . , fn−1(xn−1)) =
(x1,x2, . . . ,xn). So, G 6= /0. By cyclic symmetry, the relations f1(G1) = G2, . . . , fn−1(Gn−1) = Gn and fn(Gn) = G1
are also obtained.
Suppose (y1,y2, . . . ,yn) ∈ G. Then f1(y1) = y2, f2(y2) = y3,. . . , fn−1(yn−1) = yn and fn(yn) = y1. Then fn ◦ fn−1 ◦
· · · ◦ f1(y1) = y1 so that g1(y1) = y1 and hence G1 6= /0. �
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Corollary 2.2. The following are equivalent under the assumptions of the previous proposition 2.1:
1. G 6= /0;
2. Gi 6= /0 for some i = 1,2, . . . ,n;
3. Gi 6= /0 for all i = 1,2, . . . ,n.
The following are also equivalent:
1. G is a singleton set;
2. Gi is a singleton set for some i = 1,2, . . . ,n;
3. Gi is a singleton set for all i = 1,2, . . . ,n.

Some Applications : (a) Let (X ,di) be nonempty metric spaces and αi be positive numbers for i = 1,2, . . . ,n.
Suppose (X1,d1) is complete. Assume that α1α2 · · ·αn < 1. Let fi : Xi→ Xi+1, i = 1,2, . . . ,n (with (Xn+1,dn+1) =

(X1,d1)) be mappings such that di+1( fi(x), fi(y))≤αidi(x,y), ∀x,y∈Xi. Define F :
n
∏
i=1

Xi→
n
∏
i=1

Xi by F((x1,x2, . . . ,xn))=

( fn(xn), f1(x1), . . . , fn−1(xn−1)). Since α1α2 · · ·αn < 1, by the Banach contraction principle (see p.2 in [6]),
fn ◦ fn−1 ◦ · · · ◦ f1 has a unique fixed point. Thus F has a unique fixed point. Some (Xi,di) may not be complete and
some αi may not be less than 1. So, this is a significant application of Proposition 2.1.
(b) Let Xi, i = 1,2, . . . ,n be nonempty weakly compact convex subsets of normed spaces with norms ||.||i, i =
1,2, . . . ,n. Let di be the metric induced by ||.||i, i = 1,2, . . . ,n. Let αi, i = 1,2, . . . ,n be positive numbers such that
α1α2 · · ·αn ≤ 1. Suppose X1 has normed structure (see [3]). Let fi and F be as in the previous application (a). A
Kirk’s theorem (see [3]) asserts that a nonexpansive mapping from a nonempty weakly compact convex subset
of a normed space with normal structure into itself has a fixed point. Since α1α2 · · ·αn ≤ 1, fn ◦ fn−1 ◦ · · · ◦ f1 is
nonexpansive and it has a fixed point in X1. Thus F has a fixed point. Here, some Xi may not have normal structure.
Weak compactness and convexity of X2,X3, . . . ,Xn may also be relaxed.
(c) R. Cauty [1] (see also [2]) proved that every continuous function from a nonempty compact convex sub-
set of a Hausdorff topological vector space into itself has a fixed point. Let X2,X3, . . . ,Xn be nonempty topo-
logical spaces. Let X1 be a nonempty compact convex subset of a Hausdorff topological vector space. Let
fi : Xi→ Xi+1, i = 1,2, . . . ,n (with the convention Xn+1 = X1) be continuous mappings. Since fn ◦ fn−1 ◦ · · · ◦ f1 is
continuous on X1, it has a fixed point in X1 and hence F has at least one fixed point.

These applications are illustrations for significance of Proposition 2.1.

3. Cyclic Set Valued Mappings

There are difficulties in generalizing Proposition 2.1 to set valued mappings. So, the following fixed point result for
contractive type set valued mappings is proposed.

Proposition 3.1. Let (Xi,di), i = 1,2, . . . ,n be nonempty complete metric spaces. Let Hi be the Hausdorff metric
corresponding to the metric di on the collection CB(Xi) of all closed bounded nonempty subsets of Xi, for i =
1,2, . . . ,n. Let α ∈ (0,1). Let fi : Xi→CB(Xi+1) be a mapping such that

Hi+1( fi(x), fi(y)) ≤ αdi(x,y) (1)

∀x,y ∈ Xi, i = 1,2, . . . ,n, with the conventions (Xn+1,dn+1) = (X1,d1) and (CB(Xn+1),Hn+1) = (CB(X1),H1). De-

fine F :
n
∏
i=1

Xi →
n
∏
i=1

CB(Xi) by F((x1,x2, . . . ,xn)) = ( fn(xn), f1(x1), . . . , fn−1(xn−1)). Then there is a fixed point

(x∗1,x
∗
2, . . . ,x

∗
n) of F in the sense that x∗1 ∈ fn(x∗n),x

∗
2 ∈ f1(x∗1),x

∗
3 ∈ f2(x∗2), . . . ,x

∗
n ∈ fn−1(x∗n−1).

Proof. Fix xn,0 ∈ Xn and fix x1,1 ∈ fn(xn,0),x2,1 ∈ f1(x1,1),x3,1 ∈ f2(x2,1), . . . , xn,1 ∈ fn−1(xn−1,1) successively. Find
x1, j+1 ∈ fn(xn, j), x2, j+1 ∈ f1(x1, j+1),x3, j+1 ∈ f2(x2, j+1), . . . ,xn, j+1 ∈ fn−1(xn−1, j+1) such that

d1(x1, j,x1, j+1) ≤ H1( fn(xn, j−1), fn(xn, j))+α
j,

d2(x2, j,x2, j+1) ≤ H2( f1(x1, j), f1(x1, j+1))+α
j,

d3(x3, j,x3, j+1) ≤ H3( f2(x2, j), f2(x2, j+1))+α
j,

· · ·
· · ·

dn(xn, j,xn, j+1) ≤ Hn( fn−1(xn−1, j), fn−1(xn−1, j+1))+α
j,
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for j = 1,2, . . . . Now

d1(x1,m,x1,m+1) ≤ H1( fn(xn,m−1), fn(xn,m))+α
m

≤ αdn(xn,m−1,xn,m)+α
m

≤ αHn( fn−1(xn−1,m−1), fn−1(xn−1,m))+2α
m

≤ α
2dn−1(xn−1,m−1,xn−1,m)+2α

m

· · ·
· · ·

This procedure of calculation and the inequalities of the type

d1(x1,m,x1,m+k) ≤ d1(x1,m,x1,m+1)+d1(x1,m+1,x1,m+2)

+ · · ·+d1(x1,m+k−1,x1,m+k)

imply that (x1, j)
∞
j=1,(x2, j)

∞
j=1,. . . , (xn, j)

∞
j=1 and ( fn(xn, j))

∞
j=1, ( fn−1(xn−1, j))

∞
j=1, . . . , ( f1(x1, j))

∞
j=1 are Cauchy se-

quences in their respective spaces, because n is fixed and 0 < α < 1. Also, if (xi, j)
∞
j=1 converges to x∗i , then

( fi(xi, j)
∞
j=1) converges to fi(x∗i ), by the inequality (1) and in this case x∗i+1 belongs to fi(x∗i ), because xi+1, j ∈ fi(xi, j)

(with the cyclic convention n+1 7→ 1). This completes the proof. �

Note that, if we consider ( fn(xn), f1(x1), . . . , fn−1(xn−1)) as the subset fn(xn)× f1(x1)×·· ·× fn−1(xn−1) of
n
∏
i=1

Xi,

then F in Proposition 3.1 becomes an usual set valued mapping.

4. Shift Type Mappings

Consider the mappings fi : Xi → Xi+1, i = 0,±1,±2, . . . between nonempty sets. Define F :
+∞

∏
i=−∞

Xi →
+∞

∏
i=−∞

Xi

by F((xi)
+∞

i=−∞
) = (( fi(xi))

+∞

i=−∞
). Then (xi)

+∞

i=−∞
is a fixed point of F if and only if xi+1 = fi(xi) for every

i = 0,±1,±2, . . . . So, F has a fixed point if and only if there is an integer m such that (or, for every integer
m we have)

⋂
n≤m

fm−1 ◦ fm−2 ◦ · · · ◦ fn+1 ◦ fn(Xn) 6= /0.

Some Applications : (a) If fn is surjective for all n≤ n0, for some integer n0, then F has a fixed point.
(b) If each Xn is compact and each fn is continuous for all n≤ n0, for some integer n0, then F has a fixed point.
(c) Suppose there is an integer n0 such that
1. (Xn0+1,dn0+1) is a complete metric space,
2. (Xn,dn) is a metric space for n≤ n0 and
3. there are positive numbers αn and Mn such that dn+1( fn(x), fn(y))≤ αndn(x,y) and d(x,y)≤Mn, for all x,y ∈ Xn
and for every n≤ n0 and such that Mn0αn0Mn0−1αn0−1 · · ·Mn0−kαn0−k→ 0 as k→+∞.
Then F has a fixed point, because diameter of fn0 ◦ fn0−1 ◦ · · · ◦ fn0−k(Xn0−k) tends to zero as k→+∞.

Consider a sequence of nonempty sets X1,X2, . . . and a sequence of mappings fi : Xi → Xi+1, i = 1,2, . . . . Let

f0 :
∞

∏
i=1

Xi→ X1 be a function. Define F((x1,x2, . . .)) = ( f0((x1,x2, . . .)), f1(x1), f2(x2), f3(x3), . . .). There are some

examples of this type functions without fixed points (see [3] and see p.16, p.36 in [6]). Now, this type functions with
fixed points are to be discussed. Define G : X1→ X1 by G(x1) = f0((x1, f1(x1), f2 ◦ f1(x1), f3 ◦ f2 ◦ f1(x1), . . .)).

Proposition 4.1. Suppose X1,X2, . . . , f0, f1, f2, . . . , F and G be as above. Then G has a fixed point x∗1 if and only if
F has a fixed point, which is, in this case, of the form (x∗1, f1(x∗1), f2 ◦ f1(x∗1), f3 ◦ f2 ◦ f1(x∗1), . . .).

Proof. If G has a fixed point x∗1, then x∗1 = f0((x∗1, f1(x∗1), f2 ◦ f1(x∗1), f3 ◦ f2 ◦ f1(x∗1), . . .)). Now
F((x∗1, f1(x∗1), f2 ◦ f1(x∗1), f3 ◦ f2 ◦ f1(x∗1), . . .))

= ( f0((x∗1, f1(x∗1), f2 ◦ f1(x∗1), . . .)), f1(x∗1), f2 ◦ f1(x∗1), f3 ◦ f2 ◦ f1(x∗1), . . .)

= (x∗1, f1(x∗1), f2 ◦ f1(x∗1), f3 ◦ f2 ◦ f1(x∗1), . . .).

Conversely, assume that (x∗1,x
∗
2, . . .) is a fixed point of F . Then x∗1 = f0((x∗1,x

∗
2, . . .)),x

∗
2 = f1(x∗1),x

∗
3 = f2(x∗2), . . . .

So, x∗1 = f0((x∗1, f1(x∗1), f2 ◦ f1(x∗1), . . .)) or x∗1 = G(x∗1). �
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Some Applications : (a) Suppose (X1,d1) is a complete metric space (or a compact metric space). Suppose further
that f1, f2, . . . are functions such that G : X1→ X1 satisfies the relation d1(G(x),G(y))≤ αd1(x,y), ∀x,y ∈ X1 and
for some α ∈ (0,1) (or d1(G(x),G(y))< d1(x,y) for x,y ∈ X1 satisfying x 6= y). Banach contraction principle (or
another known result (see p.38 in [6])) implies a unique fixed point x∗1 of G. Thus F has a unique fixed point
(x∗1, f1(x∗1), f2 ◦ f1(x∗1), . . .).
(b) Suppose X1 is a weakly compact convex subset of a normed space with normal structure and norm || ||. Suppose
f1, f2, . . . are functions such that G : X1→ X1 satisfies the relation ||G(x)−G(y)|| ≤ ||x− y||,∀x,y ∈ X1. Then G
has a fixed point and hence F has a fixed point.
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