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Keywords Abstract: The wave equation with fading memory, in bounded domain, has been
Weak-viscoelastic deeply studied by several authors. Here, we establish a decay results for a class
Fourier transform of weak-viscoelastic wave system in R”. We are going to construct an appropriate
Decay rates Lyapunov function associate with our main system by taking the Fourier transform.
wave equation The main question here is: If the dissipation given by the weak-viscoelasticity is

strong enough to drag a rate of decay for the whole system, what type of rate of
decay can we expect?

1. Introduction and Related Results

In recent years, Fourier transform method have become central to the study of theoretical and applied mathematical
problems in any space dimension. An advantage of such an approach is its generality and its potential unifying
effect of particular results and techniques.

In this article, we consider a linear evolution problem in the weak-viscoelastic as follows

u! _A(u+u/ - (t)fég(t—s)u(s’x)ds> =0,

" A(vHV - Vh(t — ,X)ds ) +yu=0,
1% (V Vi— o (1) foh(t —s)v(s,x) s) Yu 0

u(0,x) = up(x) € H'(R"),u'(0,x) = u; (x) € L*(R"),

V(va) = V()()C) cH! (]Rn)vvl(ovx) =V ()C) € Lz(Rn)a

where x e R" t e R ,n>2,7#0.

It is well known that, as in one equation, the coupled system with the presence of a viscoelastic terms with and
without the functions o, o does not preclude the question of existence, but its effects are on the stability of the
existing solution, we refer the reader to works in [9, 11-13, 17-19].

The energy of (u,v) at time 7 is given by

B0 = (W3 IVIE)+ 5 (1o [ sras) IVul} + jnt)(go v

1 4 1
+ 3 <1 —ag(t)/o h(s)ds> HVVH%"‘E(XQ([)(}IOVV)—"'}//R" uvdx. )
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and
/ 1 / 1 2 1 / 1 /! 2
E'(r) < Eal(t)(g oVu)—Eal(t)g(t)IIWIIerEal(t)(goVu)—Eal(t)/g(S)dSIqullz
0
! h’Vl thl’hV]’lthZ 3
+ 5062(!)( o V)—5a2<t) @l V\|z+§%(t)( o V>—§%(t)/ (s)ds||Vv][3. 3)
0
Noting by
(fow) :/O £t —7) [[¥(r) —¥(7)|2d, for any W € L2(0, T; L2 (R")) @)

This type of problems is usually encountered in viscoelasticity in various areas of mathematical physics. For the
literature, in R” we quote the results of [1, 2, 5-8, 10, 18, 19].
In [1], the authors considered the following Petrowsky-Petrowsky system

4+ ¢ (x) (A%u— [* pu(t—s)Au(s)ds) +av=0 inR"xRT
Vi + ¢ (x)A%v+ o =0 inR" x RT ®)

(uo,v0) € D**(R"),  (u1,v1) € LE(R")

This research described a polynomial decay rate of solution for a coupled system of Petrowsky equations in R” with
infinite memory acting in the first equation. The main contributions was to show that the infinite memory lets the
problem (5) still dissipative and that the system is not exponentially stable in spite of the kernel in the memory term
is sub-exponential.

In [18], in order to compensate the lack of Poincare’s inequality in R” and for wider class of relaxation functions,
the author looked into a following linear equation

t
p(x) (|u/|‘172u')/ —M(||qu||%)Axu+/ g(t—s)Au(s)ds=0,xeR" 1 >0 (6)
0

where g,n > 2 and M is a positive C! function satisfying for s > 0,mo > 0,m; > 0,7 > 1, M(s) = mg +ms?. The
author used weighted spaces to establish a very general decay rate of solutions of (6). The same results obtained
later by [19], where a semi-linear viscoelastic wave equation in any spaces dimension was considered in

U —(x) (Axu _ /O’g(; —S)Axu(s)ds> i = ululP! o

Our main contribution here is to establish a new decay results for a class of coupled system of weak-viscoelastic
wave equations in R", by introducing a suitable Lyapunov function.

2. Assumptions

We need the following assumption on the relaxation functions:
g,h, 01,00 : RY — RT are non-increasing differentiable functions of class C' satisfying:

t .
1—a (t)/o g(s)ds >k >0, g(0)=go>0,00> /g(t)du ®)
0
t ;
- (xz(t)/ h(s)ds > ka >0, h(0)=hy > 0,00 > /h(t)dt, )
0 0

In addition, there exists two positive nonincreasing differentiable functions f, 3, satisfying

/ o)
g0 +Pi(Ng(t) <0, V=0, lim= m =0. (10)
W (t)+Ba(t)h(t) <0, Vt>0, lim= _ol) 0. (11)

1= Bo(t)an(t)
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There are many functions satisfying (8)-(11), for example

a
hi(t) = ,v> 1,
(1) s’
h(t) = aExp[—b(1+1)7),0 < g < 1,
M) =y 1.

(1+8)[In(14+01)]v

We give some notations to be used below. Let F denote the Fourier transform in L?(R") defined as follows:
FIAE) = 7&) = 2m) " [ exp(-ix&) (. (12)

Here & is the variable associated with the Fourier transform, where i = v/—1, x.& =Y" ,x;& and denote its
inverse transform by F~!. The operator —A is defined by

—Av(x) = F~! (\§|2F(V)(§)) (x),ve H?*(R"),x € R".

For 1 < p < oo, we denote by L?(R") the usual Lebesgue space on R”" with the norm ||.||». For a nonnegative
integer m, H™(R") denotes the Sobolev space of L?(R") functions on R”, equipped with the norm ||.||z.

Lemma 2.1. ([17], Lemma 2.1) For any two functions g € C'(R),v € W12(0,T), it holds that

t

Red alt) [gli—spis)asv() p = —3agl) + 3 a(0)(g ov)()
0
- SN+ La) [WahoPr

£ 300 Eon)0)— 50 ) [gldshP
0

and

t

[ et =s)0t)—vo)sP < [ le)las [ Tel(e =5)Iv(0) = v(5) s

0
Finally, we give the definition of weak solutions for the problem (1).

Definition 2.2. A weak solution of (1) is (u,v) such that

s (e e (clorrm @) W) e (CHo.rr2e)’

e For all wi,w, € C3([0,T] xR"), (u,v) satisfies the generalized formula:

T
0 = /(u w1 des—i—/ Vquldxds—F/ Vquldxds
Rn
— //Ocl /gsf T)Vu(t)dtVw (s dxder}///vwldxds
T
0 = /(v W) des—i—/ / Vvaylxds—&—/ Vv Vwadxds
Rn Rn

//OZQ /hs— T)Vv(T)dTVwy(s dxds—i—y/ / uwydxds, (14)

* (u,v) satisfies the initial conditions
2 2
(o), vo(x)) € (H'(®)",  (m(x)m(x) € (LP®RY)

We can now state and prove the asymptotic behavior of the solution of (1). Throughout this paper, let us set

w(t,§) = F(u(t,))(§), v(t,§) =F(v(t,.))(&).



Kh. Zennir, K. L. Lakhdar, A. Guesmia and S. Boulaaras 71

3. Main Result

We shall show that our solution decays time asymptotically to zero and the decay rate of solution is fast and similar
to both o and g, h, where o(t) = min{a (¢), 00(7)}

Theorem 3.1. Assume (u,v) is the solution of (1), then the next general exponential estimate satisfies in the Fourier
space

E(E,1) <Wexp —a)/a(s)ﬁ(s)ds E(E,0), Vi>0. (15)

Sor some positive constants W, ®, where 3(t) = min{B;(¢), B2(¢) }.

Proof. We take the Fourier transform of both sides of (1). Then one has the reduced equation for & € R",t € R}

@(1,) + 1P (a0,) — 1) fy 8t — 5)als, E)ds +7 (1,)) +17(1,€) = 0

7(,8) +EP (7(0,8) — an(0) [y hle — )P0, E)ds +7(1,€) ) +¥7(1,€) =0 (16)
(@(0,€),7(0,8)) = (@(&),7ol&)) € (H' (R"))?,

(@(0,£).7(0,€)) = (@ (8), 1 (£)) € (L2(RM)2.

We apply the multiplier techniques in Fourier transform, for this purpose, we shall also need to proceed in three
steps. First, to derive the equality for the physical energy, we multiply the first equation of (16) by i’ and the second
by V. Then, summing ant taking the real part of the resulting identities, we obtain

B = S (1@P+7)+ 3ER(0 - ) [ g+ an(son)
+ S1EP((1—aan) [ W)l + a0 hom) ) +viar

and
1 2 ~2 RS ~12 / ~ / / ~2
at) = 5IEP(aOsli - on(r)( 0@) 1)+ 2@ P+ o (1) (g0 (1) — i (1) [ gls)aslal)
0
2 1eP (@h)aP — o)k o)1) + 20 P+ ah0) (ho ) 1) — o (1) / h(s)ds[al
2 2 2 2 %5} / .
Then,
d
EEl(t)‘f'el(t):O- (17

Second, the existence of the memory terms forces us to make the first modification of the energy by multiplying

the first equation of (16) by (— 4(a ( 1(2) [ g(t —s)uls )ds)) and the second by ( ( 5 (1) Jo h(t — )V )ds)).
Summing and taking the real part, we have that

0 = —Re{uj ot /gt—s ()ds)}
— Re{ /hz—sﬁ ds}
- Re{azu"t(al(r) [ ete=s1itopas) + 2275 (o) [ nte-)7(0)as) |
+ %I&I2 (al /gt—s ) (Otz(t)/h(t—sﬁ(s)ds’z))
— 1grre{ar on(r)/g(r—sﬁ )74 (ent) [ 0105 |
+ yRe{v /gr—s di /ht—s } (18)
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Since, for a = o, 00, f =g,h

& (o) [ re-s1it0as)

/ft s)a(s)ds + a(t) ( s)a(s)

)\\/

The first two terms in (18) take the form
d ! =
_ Re{ﬁ”d 061 (1) /gt—s ﬁ(s)ds)}
d _
= —Re{ud Oq /gt s)u(s )ds)}
d? ! =
+ Re{ s (Ocl(t)/o g(t—s)u(s)ds)}

- —Re{uj oc1 /tgt—sﬁ( )d)}/Jral()gole

/

Similar to obtain

d
d i '
\75 h(t —s)v(s)ds )} + o (t)ho|V')?

+ Re{ (Otz 7 /h/t sﬁ /ht s)

<)\
H,_/

Denote by
B = 516 (|0 [ et-spaea] +]oat) [ -spisras] )
_ Re{ud i /Ogt sﬁ(s)ds)}
- Re{v 0 Oth(t $)7s )ds)}
and
et) = onl)gld P+ ahli
— 1Re{a (ol [ et s1t0)as) +7 5 (o) [ hte-)T(5)as) |
+ re{af) [ sle- 901+ 407 [ hie-)7(0)as
and

Rolt) = —|§|2Re{ ;(al(t) /Otg(t—s)ﬁ(s)ds)—&-\//\i(ag(t) /Olh(t—s)v(sms)}

+ Re{ﬁ’i(az(t) A h/(z—s)ﬁ(s)ds)
+ YRe aﬁt(al(t) Otg(tfs)ﬁ(s)ds) ﬁ%(ag(t) Oth(ts)ﬁ(s)ds)}

/ft $)als)ds + a(r) foi + ot /ft §)i(s)ds.

19)
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Then,

Ex(1) +er(t) 4 Rolr) = 0. (20)

Next, to make the second modification of the energy which corresponds to the strong damping, we multiply the first
equation of (16) by u, the second by v. Summing and taking the real part, we have

0 = (Re{@)) +(Re{TT)) — [} — 72+ |E Pl + |E 1P
~ 1Re{ant) [/ -0 | - PR 00() [ hr 57T
IR + S 8P + ¥+ a9),
using results in Lemma 2.1, we get
0 = (Re(@))' +(Re(¥7)) + 3IEP(aPY + 3|6 P(oTY
— @R TRER (1= [ gs)s) i+ 1ER (1 - aale) [ nsds) 7P

— g (Re{ a0 [ ete-5)@00) - 0)(5as | ~ Re{ () [ (0 —5)GT6) T Tohas | ).

Denote
Ex(1) = Re{@} + Re{#7} + 3 |& Plal + 3 & PIoT,
and
@) = [6R(1=an() [ gs)as) R+ e (1- () [ his)as)
Ry(t) = —|ﬁ’2_Re{al(t)/otg(t—s)(ﬁ(s)—ﬁ(t))ﬁ(s)ds}

— p- Re{az(t) /0 " —5)(5(s) a(t))a(s)ds}

+ (Vi +av)
Then,

B (1) +es(0) 4 Rs(1) =0, 1)

Let us define for some constants €, & > 0 to be chosen later
Eq(t) = E(t)+ea(t)Ex(t)+e0o(t)Es(t)
1 1 d g 1 ~
= (@R +FP) +516P — o) [ (s)as) @R + 51EPon (1) (o)

b EP( a0 [ Has)aP + 3[EPoa(e)noR) () + as

. ’31"‘“|¢|2(1 ()/O'go sits)as| -+ [oat) [ te—sysyas|
_ 810‘ { /gt s)i(s) }

_ 812 Re{vdr az(;)/oh(t—s)ﬁ(s)ds },

+ enalo)(Re(@) + RT3} + 5 P+ 5 6P
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and
64(Z) = e (t) +810£(l‘)€2(t) +€206(l‘)e3(t)

= SR (c (gl — r(6)( 07 (1) + 20 + o (1) g0 0) ~ o4 (1)

O\N O\N

+ 2EP (@RI — a0 08)(0)+ 207 P+ ()o@ 1) — ohr)
+ erale) (o (gl P+ aa(hof? )
- aa(rmzRe{ﬁj (o) sto = 97)as) +7 5 (o) [ - 5751a5)
+ galt { /gt s)i(s) }
+oeal) Re{oc tv/ht—sasds}
+ elELal 1—a1 /g |u|2 1—a2 /h ds |A])
and
Ri(t) = eadR(0) +e:x()Rs(0)
— —aatre{ gz (o) [ e-s)ios) |
- aalore{ 127 (anlo) [ o oi)as) |
+ ealnRe {u”jt () /0 - s)ils)ds)

b yera()Re {vjt (0 /0 ot — sYi(s)ds

— o) —ea(t)Re {ocl (1) /Ot gt —s)(u(s) — ﬁ(t))ﬁ(s)ds}

— o)V > —ea(t)Re {az(t) /Ot h(t —s)(v(s) — ﬁ(t))ﬁ(s)ds}

+  yeo(t)(Va+av)
At this point, we introduce the Lyapunov functions as

La() = { I P+ 172+ 1& 2 (K [l + a7+ () (g0 ) (1) + (o) (1)) }

and

La(t) = a(e) (g(r) i + h(e) P + () B(0) (g 0@ (1) + (hoD)(r) )
It is easy to verify that there exists positive constants cy,c, such that

1Ly (t) < Ei(t) < cpLy(2),Ve > 0.

Thanks to Holder, Young’s inequalities, one gets for some constant c3

|£1E2([) + 82E3(t)| <c3ly (t),

g(s)dsil?)

(s )ds|ﬁ|2).

(22)

(23)

(24)

(25)

(26)
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which means that L;(z) ~ E(z). Since [ > 2, using again (10) and (11), Holder and Young’s inequalities and
assumptions on g, & to obtain

R0l < aaore{EPag (o) [ s -si0s) |

d

+ oeal )Re{|§2A = (a(t) i h(t—s)v(s)ds)}

)
+ yeo(t Re{v /gt—sﬁ ds)

A% (a0 [ he-s)7t)as) |
+ el P+ exre{al) [ olr—5)@0s) - A0))as
+ e +eal)R { /ht—s ))v(s)ds}
+ yea(t) G+
< Me+e)al) (172 +17) +yer(er +e)|E L),

As in [8], there exists positive constants €1, &,A,c;,, ¥ such that

|R4(2)| < cea(t),c > 0. (27)
By (17), (20) and (21), we get
dE = dE dE dE "()E "(OE
E 4(I) = E 1(1‘)—1—8105([)5 2(I)—|—8206(I)E 3(t)+€106(l‘) 2(t)—|—820€ (t) 3(2‘).

We use tlim % =0, by (8)-(11) to choose #; > 0 and since e4(t) > cE4(t), then (27) gives for some positive
—yo0

constant N
%Em) < —Na(Es(r) +calr) ((go@) (1) + (ho¥)(r)). (28)
Multiplying (28) by B (¢) and using (10), (11), (25), we obtain
BO)SE) < ~NBO)a)E) +B0)al)((gom)0) + (hon)())
< —NBOa()Es(r) —calr)((g o))+ (W o7)(r))
< N —clEPa) [ g)asia’
— P () [ heasiTR 20 LB, 1> 29)

Since f'(r) <0, we set L(s) = (B(s) +2c¢)E4(s) which is equivalent to E4(¢), then

d

EL(f)

~NBO)a(E) —clgPol () [ gls)asia+ [ nis)asl7PR)
~Bs) |

IN

s) ]E4(t), vt > 1, (30)

where

By (10) and (11), we have
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then we can choose t, > t; such that

LI < —ep)aln)Ea)

dt
—cB(t)a(t)L(t), Vi>t. 31)

N

IN

Integrating (31) over [,#] using equivalence between Lyapunov function and the energy function, it yields that

E(E0) <Wexp(—0 [ als)B)ds)E(E.0).W.0> 0.
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