Harmonic Mappings Related to the λ - Spirallike Function With Bounded Radius Rotation

Yaşar POLATOG̃LU ${ }^{* 1}$, H. Esra ÖZKAN ${ }^{\dagger 2}$, Canan AKKOYUNLU ${ }^{\ddagger 3}$
${ }^{1,2,3}$ Department of Mathematics and Computer Sciences, İstanbul Kültür University, Istanbul, Turkey

Keywords

Bounded radius rotation, growth theorem, distortion theorem.

Abstract: In the present paper, we will give some properties of the class of harmonic mappings related λ - spirallike functions with bounded radius rotation.

1. Introduction

Let Ω be the family of functions $\phi(z)$ which are regular in the open unit disc $\mathbb{D}=\{z| | z \mid<1\}$ and satisfying the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$. Denote by \mathscr{P} the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ which are regular in \mathbb{D}. It is well-know that $p(z)$ in P if and only if

$$
\begin{equation*}
p(z)=\frac{1+\phi(z)}{1-\phi(z)} \Leftrightarrow p(z) \prec \frac{1+z}{1-z} \tag{1}
\end{equation*}
$$

for some $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$.
Next, let A be the class of functions f in the open unit disc \mathbb{D}, that are normalized with $f(0)=0, f^{\prime}(0)=1$. A function $f(z) \in A$ is called λ - spirallike function, if there is a real number $\lambda\left(|\lambda|<\frac{\pi}{2}\right)$, such that

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \lambda} z \frac{f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{D} \tag{2}
\end{equation*}
$$

The class of such functions is denoted by S_{λ}^{*}, and this class was introduced by Spacek [6].
Let $h(z), g(z) \in A$ then we say that $h(z)$ is subordinate to $g(z)$ and we write $h(z) \prec g(z)$, if there exists a function $\phi(z) \in \Omega$ such that $h(z)=g(\phi(z))$ for all $z \in \mathbb{D}$. Specially if $g(z)$ is univalent in \mathbb{D}, then $h(z) \prec g(z)$ if and only if $h(0)=g(0), h(\mathbb{D}) \subset g(\mathbb{D})$, implies $h\left(\mathbb{D}_{r}\right) \subset g\left(\mathbb{D}_{r}\right)$, where $\mathbb{D}_{r}=\{z| | z \mid<r, 0<r<1\}$.(Subordination principle [2]). Moreover, an analytic function $p(z) \in P(k), k \geq 4$ if and only if there exists $p_{1}(z), p_{2}(z) \in P$ such that

$$
\begin{gather*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) \tag{3}\\
h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, g(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \tag{4}
\end{gather*}
$$

where $a_{n}, b_{n} \in C, n=1,2,3, \ldots$. As usual we call $h(z)$ is analytic part of f and $g(z)$ is co-analytic part of f. An elegant and complete account of the theory of harmonic mappings are given Duren's monograph [1]. Lewy proved that in 1936 that the harmonic mapping f is locally univalent in \mathbb{D} if and only if its Jacobian $J_{f}=\left(\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}\right)$ is different from zero in \mathbb{D}. In view of this result locally univalent harmonic mapping in the open unit disc are either sense-preserving if $\left|g^{\prime}(z)\right|<\left|h^{\prime}(z)\right|$ in \mathbb{D} or sense-reversing if $\left|g^{\prime}(z)\right|>\left|h^{\prime}(z)\right|$ in \mathbb{D}. Throughout this paper, we will restricted ourselves to the study of sense-preserving harmonic mappings. We also note that $f=h(z)+\overline{g(z)}$ is sense-preserving in \mathbb{D} if and only if $h^{\prime}(z)$ does not vanish in \mathbb{D} and the second dilatation $w(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}$ has the property $|w(z)|<1$ for all $z \in \mathbb{D}$. Therefore the class of all sense-preserving harmonic mapping in the open unit disc

[^0]\mathbb{D} with $a_{0}=0, b_{0}=0, a_{1}=1$ will be denoted by S_{H}. Thus S_{H} contain the standart class S of univalent functions. The family of all mappings $f \in S_{H}$ with the additional property $g^{\prime}(0)=0$, i.e., $b_{1}=0$ is denoted by S_{H}^{0}. Hence $S \subset S_{H}^{0} \subset S_{H}[1]$.
In the present paper we will examine the class
\[

$$
\begin{align*}
S_{H}^{*}(\alpha, k) & =\left\{f=h(z)+\overline{g(z)} \mid h(z) \in S_{\alpha}^{*}(k)\right. \\
& \left.\Leftrightarrow e^{i \alpha} z \frac{h^{\prime}(z)}{h(z)}=\cos \alpha p(z)+i \sin \alpha, p(z) \in P(k)\right\} \tag{1.5}
\end{align*}
$$
\]

2. Main Results

Theorem 2.1. [1, 4] Let $h(z)$ be an element of $S_{\alpha}^{*}(k)$ then

$$
\begin{gather*}
\frac{r}{(1-r)^{A_{1}}(1+r)^{B_{1}}} \leq|h(z)| \leq \frac{r}{(1-r)^{B_{1}}(1+r)^{A_{1}}} \tag{5}\\
\frac{\sqrt{1+2 r^{2} \cos 2 \alpha+r^{4}}-(k \cos \alpha) r}{(1-r)^{A_{1}}(1+r)^{B_{1}}} \leq\left|h^{\prime}(z)\right| \leq \frac{\sqrt{1+2 r^{2} \cos 2 \alpha+r^{4}}+(k \cos \alpha) r}{(1-r)^{1+B_{1}}(1+r)^{1+A_{1}}} \tag{6}
\end{gather*}
$$

where

$$
A_{1}=\frac{1}{2}(1-k \cos \alpha+\cos 2 \alpha), B_{1}=\frac{1}{2}(1+k \cos \alpha+\cos 2 \alpha) .
$$

Theorem 2.2. Let $f=h(z)+\overline{g(z)}$ be an element of $S_{H}^{*}(\alpha, k)$, then $f=h(z)+\overline{b_{1} p(z) h(z)}$ is the solution of non-linear partial differential equation $w(z)=\frac{\overline{F_{\bar{z}}}}{f_{z}}$ under the condition $|w(z)|<1, w(z)=\frac{\overline{F_{z}}}{f_{z}} \prec b_{1} p(z)$ and $p(z) \in \mathscr{P}_{k}$.
Proof. Since $w(z) \prec b_{1} p(z)$, then the variability of $\left(\frac{\overline{F_{z}}}{f_{z}}\right)$ is the closed disc. Using subordination principle

$$
\begin{equation*}
\left|\frac{\overline{f_{\bar{z}}}}{f_{z}}-\frac{b_{1}\left(1+r^{2}\right)}{1-r^{2}}\right| \leq \frac{\left|b_{1}\right| k r}{1-r^{2}} \tag{7}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
w\left(\mathbb{D}_{r}\right)=\left\{\left.\frac{g^{\prime}(z)}{h^{\prime}(z)}| | \frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{b_{1}\left(1+r^{2}\right)}{1-r^{2}} \right\rvert\, \leq \frac{\left|b_{1}\right| k r}{1-r^{2}}, 0<r<1\right\} . \tag{8}
\end{equation*}
$$

Now we define the function $\phi(z)$ by the relation

$$
\begin{equation*}
\frac{g(z)}{h(z)}=b_{1}\left[\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+\phi(z)}{1-\phi(z)}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-\phi(z)}{1+\phi(z)}\right], \tag{9}
\end{equation*}
$$

then $\phi(z)$ is analytic in \mathbb{D} and $\phi(0)=0$. On the other hand, if we take derivative from (9) and after simple calculations, we get

$$
\begin{align*}
\frac{g^{\prime}(z)}{h^{\prime}(z)} & =b_{1}\left\{\left[\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+\phi(z)}{1-\phi(z)}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-\phi(z)}{1+\phi(z)}\right]\right. \\
& \left.+\left[\left(\frac{k}{4}+\frac{1}{2}\right) \frac{2 z \phi^{\prime}(z)}{(1-\phi(z))^{2}}+\left(\frac{k}{4}-\frac{1}{2}\right) \frac{2 z \phi^{\prime}(z)}{(1+\phi(z))^{2}}\right] \frac{h(z)}{z h^{\prime}(z)}\right\} . \tag{2.6}
\end{align*}
$$

One can easily conclude that the subordination

$$
\frac{\overline{f_{\bar{z}}}}{f_{z}} \prec b_{1} p(z), \quad p(z) \in \mathscr{P}_{k}
$$

is equivalent to $|\phi(z)|<1$ for all $z \in \mathbb{D}$. Since $h(z) \in S_{\alpha}^{*}(k)$ then the boundary value of $\left(z \frac{h^{\prime}(z)}{h(z)}\right)$ is $\frac{1+(k \cos \alpha) r+e^{-2 i \alpha} r^{2}}{1-r^{2}}$ and I.S. Jack Lemma says that "Let $\phi(z)$ be analytic in \mathbb{D} with $\phi(0)=0$. If $|\phi(z)|$ attains its maximum value on the circle $|z|=r$ at a point z, then we have

$$
z \phi^{\prime}(z)=m \phi(z), \quad m \geq 1 . "
$$

Considering Jack lemma, (10) and the boundary value of $\left(z \frac{h^{\prime}(z)}{h(z)}\right)$ together, then we get

$$
\begin{aligned}
\frac{g^{\prime}\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)} & =b_{1}\left\{\left[\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+\phi(z)}{1-\phi(z)}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-\phi(z)}{1+\phi(z)}\right]\right. \\
& \left.+\left[\left(\frac{k}{4}+\frac{1}{2}\right) \frac{2 z \phi^{\prime}(z)}{(1-\phi(z))^{2}}+\left(\frac{k}{4}-\frac{1}{2}\right) \frac{2 z \phi^{\prime}(z)}{(1+\phi(z))^{2}}\right] \frac{1-r^{2}}{1+(k \cos \alpha) r+e^{-2 i \alpha} r^{2}}\right\} .
\end{aligned}
$$

this shows that $\frac{g^{\prime}\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)} \notin w(\mathbb{D})$ which contradicts with $\frac{\overline{F_{7}}}{f_{z}} \prec b_{1} p(z)$, so $|\phi(z)|<1$ for all $z \in \mathbb{D}$.

Corollary 2.3. Let $f=(h(z)+G(z))$ be the solution of the non-linear partial differential equation $w(z)=\frac{\overline{f_{z}}}{f_{z}}$ under the condition $|w(z)|<1, w(z)=\frac{\overline{f_{\bar{z}}}}{f_{z}} \prec b_{1} p(z)$ and $p(z) \in \mathscr{P}_{k}$ where

$$
G(z)=\overline{b_{1} p(z) h(z)}
$$

then

$$
\frac{\left|b_{1}\right| r\left(1-k r+r^{2}\right)}{(1-r)^{1+A_{1}}(1+r)^{1+B_{1}}} \leq|G(z)| \leq \frac{\left|b_{1}\right| r\left(1+k r+r^{2}\right)}{(1-r)^{1+B_{1}}(1+r)^{1+A_{1}}}
$$

and

$$
\begin{aligned}
& \frac{\left|b_{1}\right|\left(1-k r+r^{2}\right)\left(\sqrt{1+2 r^{2} \cos 2 \alpha+r^{4}}-(k \cos \alpha r)\right)}{(1-r)^{2+A_{1}}(1+r)^{2+B_{1}}} \\
\leq & |G(z)| \\
\leq & \frac{\left|b_{1}\right|\left(1+k r+r^{2}\right)\left(\sqrt{1+2 r^{2} \cos 2 \alpha+r^{4}}-(k \cos \alpha r)\right)}{(1-r)^{2+B_{1}}(1+r)^{2+A_{1}}}
\end{aligned}
$$

Proof. The proof of this corollary is a simple consequence of Theorem 2.1 and Theorem 2.2.
Corollary 2.4. Using the Theorem 2.2 and following formulas [1]

$$
\begin{gathered}
\mathscr{J}_{f(z)}=|f(z)|^{2}-\left|\overline{f_{\bar{z}}}\right|^{2} \\
\left(\left|\overline{f_{\bar{z}}}\right|-|f(z)|\right)|d z| \leq|d f| \leq\left(\left|\overline{f_{\bar{z}}}\right|+|f(z)|\right)|d z|
\end{gathered}
$$

we obtain the estimates of $\mathscr{J}_{f(z)}$

$$
\mathscr{J}_{f(z)}=\int_{0}^{r}\left(\left|\overline{f_{\bar{\rho}}}\right|-|f(\rho)|\right)|d \rho| \leq|f|
$$

and $f=h(z)+\overline{b_{1} p(z) h(z)}$.

References

[1] Duren P. Harmonic mappings in the plane Vol 156 of Cambridge Tract in Mathematics. Cambridge University Press, 2004.
[2] Goodman A.W. Univalent functions Vol I and Vol II. Washington, Florida, USA: Mariner Publishing Company Inc., 1984.
[3] Lewy H. On the non-vanishing of the Jacobian in certain one-yo-one mappings, Bulletin Amer. Math. Soc. 1936 (42): 689-692.
[4] Kahramaner Y., Polatoglu Y., Yemisci Sen A. A certain class of harmonic mappings related to function bounded radius rotation. ICDDEA 2017 Proceedings(Portugal), Springer 2017(in press).
[5] Pinchuk B. Functions with bounded boundary rotation. Isr J. Math. 1971 (10): 7-16.
[6] Spacek L. Contribution 'a la theorie des functions univalestes. Casopis Pest Math. 1932 (62): 12-19.

[^0]: *The corresponding author: y.polatoglu@iku.edu.tr
 †esramath@hotmail.com
 †c.kaya@iku.edu.t

