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Abstract: In this paper numerical studies for the variable-ordertfoaal delay differential equations are presented. Ad&ashforth-
Moulton algorithm has been extended to study this problehgres the derivative is defined in the Caputo variable-ordastibnal
sense. Numerical test examples are presented to demenstitdy of the method. Chaotic behaviors are observed nmalte-order
one dimensional delayed systems.
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1 Introduction

Variable-order fractional calculus i.e., the fractionéfetentiation and integration of variable order is the gelization

of classical calculus and fractional calculus, which weneented by Newton and Leibnitz hundreds of years ago. Now
the study on it becomes a hotpot in recent ten years. It hageduout that many problems in physics, biology,
engineering, and finance can be described excellently byelsading mathematical tools from variable-order fracion
calculus.

In real world systems, delay is very often encountered inyr@mactical systems, such as control systems [1], lasers,
traffic models [2], metal cutting, epidemiology, neuro scie, population dynamics [3], chemical kinetics [4] etc.
Delayed fractional differential equations FDEs are cqroeslingly used to describe such dynamical systems. In tecen
years, delayed FDEs begin to arouse the attention of maegmasers [5,2]. Simulating these equations is an important
technique in the research; accordingly, finding effectiumarical methods for the delayed FDESs is a necessary process
The effective methods and their development for numesicsdilving fractional differential equations (FDEs) have
received increasing attention over the last few years. r@exeethods based on Caputo or Riemann-Liouville defingion
[9] have been proposed and analyzed. For instance, basdw gmedictor-corrector scheme, Diethelm et al. introduced
Adams-Bashforth-Moulton algorithm [6,7], and mean whitere error analysis presented to improve the numerical
accuracy. In recent years, the application of the methogteneled to more concrete physical and mathematical models
[11]. Variable order differential equations, i.e., di#etial equations where the order of the derivative changéds w
respect to either the dependent or the independent vasiaiidaee not received as much attention as fractional order
systems, despite of the ability of variable order formwlas to model continuous spectral behavior in complex
dynamics. Many authors have introduced different defingiof variable order differential operators, each of theik w

a specific meaning to suit desired goals. These definitiomt s Riemann-Liouville, Grunwald, Caputo, Riesz
([91,[20]), and some notes as Coimbra definition [8]. The maim of this paper is to study numerically the
variable-order fractional delay differential equatioR®DES) by using the Adams- Bashforth-Moulton method.
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This paper is organized as follows. In Section 1, we give sdefaitions and mathematical tools of variable-order
fractional calculus. In Section 2, we introduce the knownaid- Bashforth-Moulton method; moreover, the
effectiveness of the Adams-Bashforth-Moulton method folvieg variable-order fractional differential equatios i
illustrated. In Section 3, we give an introduction of S| Mbded we present the Existence and Uniqueness of SI Model.
In section 5 we present solution of SI Model by using AdamskBarth-Moulton method , the conclusion is given in
Section 6.

2 Some mathematical tools
In this part, we give some definitions of fractional derivatand variable-order derivative ([12],[13]).

Definition 1. let f € C, anda > 0 then the (left-sided) Riemann-Liouville integral of orgeru > Ois given by

IHf(t) = ﬁ

t
/(tfr)f(r)dr, t>0.
0

Definition 2. The (left sided) Caputo fractional derivative afffe C™;, me NU {0}, is defined as

dnﬂ]?f(t)a H=m
DEf (t) = {Idr% pd™f ()
t

Note thatform-1< pu<m, me N,

m— ldkf()
HH
l¢ Dy f(t Z T
F(u+v+d)

Definition 3. Leta (t) be a positive real number, & C™[0,T], t < Tand m= [max<i<7T {a (t)}]+ 1. Then

DIOF (1) = fim — ) ki(l)k(aT(t)) f (t — khN). @)

hN=0p% t

With hy = (t — 0) /N being called the Grunwald-Letnikov variable-order fiactal derivative of order (t) of the function
f.

Definition 4. The Riemann-Liouville variable order derivative is defirmesdollows:

t
a(t) _ 1 dm m-1-a(t
Dt‘f(t)m<m—m>0/(tr) L-a() ¢ (1)dr )

Wherem = [max<i<t{a (t) }] + 1,m € N provided the right side is point wise definedtan 0.
Leta(t) > 0, be a continuous and bounded functiéfr,) € CM[0,t], and0 < T <t. then

t
—d -1<a()<
Df'<”f<t>={ | ettt molsa<m @

anf (t), at)=m.

Is called the Caputo variable-order fractional derivatié f (t)wherem = [max<i<t{a(t)}]+ 1,m e N andl () is the
Gamma function.
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3 The Adams-Bash forth-Moulton Method [16]

In the following we apply the Adams-Bash forth-Moulton pictdr-corrector method to implement the numerical solutio
of variable-order nonlinear FDDEs. Let us consider theofeihg variable-order fractional system:

Df Yy (t) = f(y(t),y(t-1)),t € [0.T|,0 <a(t) < 1, (4)

y(t) = g(t)vt € [—T,O] (5)

wheref is in general a nonlinear function.

Also, consider a uniform grigt,.=nh:n= —k,—k+1,..,—1,0,1,...,N} wherek andN are integers such that= t/k.
Let
Yn(tj)=9(tj),j=—-k —k+1,..,-1,0. (6)

And note that
Yn(tj—T) =Yn(in—Kn) =Yn(t—«),j =0,1,2,...,N. (7)
Applying ItrH”*1 on both sides of (4) and using (5), we claim to:

thy1

T [ o= OO (8 (€ - 1) ®

Yh(tat1) = g(0)+m
0

Further the integral in equation (8) is evaluated using pebttapezoidal quadrature formula. Then we have the fatigw
corrector formula:

¢ 0 ha (tht1) ¢ ¢ ¢ h (th+1) n ¢ '[
= = ) —T + a 9 )
Yn(th1) = 9(0) F (0 (trr) + 2) (Y (the1),Y((the1) — 1)) a (1) + 2) JZ) insf (6, Yn (), ¥n (tj — 1))
or
) =8O g ) Yot ) S Bt (G306 m () @
= + ) - + a, ? ’
Yh(tnr1) =0 a2 Y(thi1),Y (the1-k Al 1) 2 inef (8,0 (), Yn
where
no(tnya)+1 _ — (= (ths1)) (N+ 1)0'(tn+1) j=0,
ajni1=13 (N—] +2) tn+1)+l+ (n— j)a(tn+1) —2n—j+ 1)0(tn+1)+1 1<j>n, (10)
1 j=n+1,
_ N ) OYn—me2+ (1= 9) Yn-mt1, ifm>1
Yh (t-K) = Vnp1 = { SYP 1+ (1— 8)yn, e 1 (11)

0 < 6< 1 and the unknown termnyt,1) appears on both sides of (9). Due to nonlinearityf afquation (9) can't be
solved explicitly for y(tn1), SO we replace the ternhftn1) on the right hand side by an approximatidtity.1) which
called predictor [15]. The product rectangle rule is use@jrto evaluate predictor term

YE(t0:2) = 0000+ gy D B OB (6~ 1),
n i=
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or
1 n
yP(tht1) 29(0)+m .Z)b i F () Yt 7)) (12)
j=
where o)
. _ h 1 ; a(tni1) i\ (thi1)
binss = gy (= 1+ D = (0= ). (13)

Now we apply the mentioned method to determine the numesaation of variable-order fractional system. Consider
the following variable-order fractional system:

DUx= f1(xy,2),
DaZ(t)X = f2 (X7 Y, Z) ) (14)
Das(t)x = f3 (Xv Y, Z) ’

With 0 <ai(t) < land initial conditionxg,yo,20)According to the previous method, the system (14) can beetiged as
follows:

hal(tn+1) hal(tn+1)yj nel
Xni1 =Xo+ (ail(th)JrZ)f 1 (Xps1Ynens Znst) +zm f1(x,Yi:2)),
ho2(ths+1) hoz(tni)y,: g
= +—f ) ) + ). Xi,Yi,Zj), 15
Ynt1=Yo I (02 (the1) + 2) (CSIPRVSI ) Z,— (@2 (trr1) + 2) f2(Xj,Yi,2) (15)
hoa(tnia) hastnitlys; 0y
T =0 gy ) +8) © U ) 3 F gy 4 2) O
where
Bi n1
X1 = X0+2mfl(xjvysz)
Bej
p _ ,n+1 . . .
yn+1 - YO + z ,— (az (tn+1)) f2 (Xj 7yJ ) ZJ) (16)
Bai ns1
i1 —ot) I (a3 (ths1)) fa.09.%1,2))
4 4- S| model

The SI Model is the simplest one among the epidemic models. Thahisitvs also called the Simple Model. We divide
the population just in the susceptible compartn&(h} and the infectious compartmé(it). We do assume the disease to
be highly infectious but not serious, which means that teféttive remain in contact with susceptible for all tinxe0.

We also assume that the ineffective continue to spread geasé till the end of the epidemic, the population size to
be constantS(t) +1 (t) = N) and homogeneous mixing of population. Infection rate igpprtéonal to the number of
infective, i.e. =rAl We have a pair of ordinary differential equations for thisdab

dst)

= SO

dit) _

—5 =AM (1) (17)
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where
N =S(t)+1(t)
S(t)=N-—1(t) (18)
and therefore we get
% =rA({t)[N=I(t)]. (19)

What is known as the logistic growth equation.

Fig. 1

4.1 Procedure solution of SI model by using Adams-Bash-tddhlton method

At Now, we define the equations (17) at differential ordét) , o (t)then this model can be taking the following form:

DUMS= —rAS(t)I (t)
D2US=rAS(t)I (t). (20)

With initial conditions $0) = 1,1(0) = 1 where

f1(S1)=—-rAS(t)1(t)
f2(S1) =rAS(t)l (t). (21)

By applying the Adams-Bash forth-Moulton Method on S| Model see the following result

aq(t, ax(t,
h1n+1yjn+l h2n+ly21n+l

— St L g Py y T VAL g gy
1= I (a1 (thi1) +2) (e tnea) zr (az2(thy1) +2) 2(5:h)
ho1(tnia) Vini1 ho2(th+1) Yoi nt1
Inp1=lo+ ——"= £ (L IP V+ S ——— 2 £,(Si,14), 22
nr1=lo HCCE) (S0 18) zl—(az(tn+1)+2) 2(S,1j) (22)
So
hal(tn+1)y. el ho2(tns1) Y2inet
=14 —— i +Y =AM (1Sl
S‘l+1 r (al (tn+l)+2) ( S‘H»l n+l z ,— 0!2 (tn+1)+2)( ) J)
ho1(th+1) Yjnt1 hoa(tns1) Yoin+1
[ -1 HEEA DRy Gy rasli). 23
n+1 +I'(O!1(tn+1)+2)( Sn+1 n+1 ‘*’Z,— (a2 (the1) +2)( ilj) (23)

Figs. 1 and 2 show the solutios$t)andl (t)of system (17) foir= 1,h = 0.1anda= 0.5,h =0.1.
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The behasiour of numencal solution for s model
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Fig. 2: The numerical behavior os system (17pat 1 andh = 0.1.

The behawour of numencal solution for s modsl
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Fig. 3: The numerical behavior os system (17pat 0.5 andh = 0.1.

4.2 Convergent of SI model

Using equation (17), put = a = a and use

n

DUS(t) = gk _;wf“) [Shjo1— S

and
n

DS(t) = agx S 0 [In_jr1—In il
a ,;) ALSTER ]
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in [14]. Then by using the latest equations. So we have got
(@)
Oa k ;wj [Sn—jJrl*SFj} +rA&Ih=0 Fi
j=
n
Oak Z)w}‘” [Inj1—In_j] —rASHIn=0 Fo. (24)
j=

We substituting for value ai=1,2,3, ..., atn = 1 equation (24) become

Oak (mi"’ S1— So]) FrASL =0

Ok (mi"’ lly— |0]) ~rASI1=0. (25)
By using Jacobin matrix
o R
- (8 5). 20
dln 9ln

Use (25) and (26) to evaluate

Il = Z_Fsllg_;z _ O'a,kwia)-i-r/“l —rAly
=\ o7 o5 | = (AS, Oa k@ +1AS,

o al
So the determinant of Jacobin matrix equal to

(ar)
Og k@, ' +TrAly —rAlg (@) - -
= ’ = (Og k) +TAl (o] —rA +r2A2s|
- rAS Ga,kwia)—i—r)\sl ( ak™1 1) ( ak@y Sl) Sy
=02, + og ™ (1AL~ TASy) — rPAZS)11 + 1222511y = 02, @ @ + g™ (rAlL—TASY) (i),

a,

At n= 2 equation (24) become

oax (@ (51— So] + 7 [S~ 1) + 1Al =0

Ok (w}") 11— o] + @ [|2—|1]) —IAS)y =0. 27)
By using Jacobin matrix
- g_g g_g . O'a’kwéa)-f—r/“z —rAly
(R)=| 38 & | = (a) : (28)
o, o NS Oa k@,  +rAS

So the determinant of Jacobin matrix equal to

(a)
Og k@, ' +rAl —rAly (@) ” -
92| AS, Ga,kwéa)ﬁLr)\lz ( a ks 2)( a kW ) )
- Gf.szzm + gk (T 12— 1AS) — 12A2S)l5 + 122 %Syl = Gfk‘*‘zz(a) + Og k@ (1Al —1ASy) (i),
and so on
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At n equation (24) become

Ok (@ [S1 S+ o+ @ [S1= Sy -a)) + 1A =0

Ok (@ 11~ 1g] + .+ @ [ln = In-]) + 1A Sl = 0. (29)
By using Jacobin matrix
Z—g Z—g Ok + 1Al —rAl,
Gn)=1{ 5 a8 | = ' (a) : (30)
o I rAS Ogkn ~ +TAS,

So the determinant of Jacobin matrix equal to

|9n| =

(a) _
Oq kh +rAl, rAln ‘ (O'g,k(qsa)Jrr/“n) (Ua,kmga)*r)\&)ﬁLrZ)\ZSﬂn

rAS, O-a,kwfsa) +rAly
= 02, @V + O™ (TAln—rAS) = 2A%Siln + 12225l = 02, @5 ¥ + Og ™ (rAl—rASy) ().

By ((i), (i), (i )) SImodel convergent uniformly IfJ,| = O then weather ooa‘,kwéa) =0.

Oa k@ (Aln—1AS) =0
O'a,kmgla) =rA (Ih—%).

In this section, we study the numerical solution of the nioedr fractional S| model of the form:

DS= —rAS(t)1(t)

’ <1 1
D%2MS=rAS(t) (1), t>0, O<a, 025 (31)

The parametem (1), a (t) refers to the fractional order of the time derivative. Witlitial condition.

S(0) = S, 1 (0) = lo. (32)

4.3 Existence and uniqueness of SI model

LetJ=[0,1],T < and QJ) be the class of all continuous functions definedpwith the norm/| S| = sup.; [e N'S(t)],

1] =supey [e™ (t)|, N >0, which is equivalent to the sup-noris| = sup.; [s(t)|, ||l || = supe; [I (t)|. To study the
existence and the uniqueness of the initial value probleth@fractional S| model (30), we suppose that the solution
S(t),I(t) belongs to the spadg@= {S,| € O : |S/|| < b for any constanb The initial Value problem (32) has a unique
solutionS,1 € C(J).

Sihex={s1eL[0,1],]S]|=|e™Mst)| Lyl = [leNS(t)| L1}
Proof. Form properties of fractional calculus. The fractionafatiéntial equation (30) can be written as.
|Hd§—?) = —rAS(t)1 (t)

|1*<’d'.T(tt) =rAS(t)1(t). (33)

(© 2016 BISKA Bilisim Technology
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Operating with ¥ so we obtain

S(t) = 19 [—rAS(t)1 (1)]
(1) =19 [FAS(D)1 (1)). (34)

Now let us defined the operator F (I — C(J) by

FS(t) =19 [-rAS@)1 ()]
FI(t) =19 [rASH)1 (1)]. (35)

Then
1)

e M(FS —FS) =e M9 [—rAS (1)1 (1) +rAS (1)1 ()]
=e NIrAL () [S (1) — St (1)]

Uy oa-1
< 0/ (‘rf‘;) N9 (—12)191 (1)[Sy (1) — i (1)) Nodis

t
—rAS*-1gNs
< H'z—h”/TdS
0

There for we obtain

e M (FS-FS) < S-S

2)
e Nt (Fl1—Flp) = e Nfja [—rAlL(t)S(t) +rAlx(t) S(t)]

= e NYIrAS(t) [I2(t) —11(1))]
t o
< Of%eNH (~rA)19S(t) [l2(t) — I (] e Nds
t _ —1,—Ns

< llz=1a]| | A Fg—ds

There for we obtain
e NY(Fly—Flp) < [l — 4.

And operator F given by (35) has a unique fixed point. Consetiju¢he integral equation (32) has a unique
solutionS 1 € C(J).

Now from equation (32), we formally have

1)
S(t) = ﬁ [SZEIRLIEEE

and

ds(t) _ ta-1 [(7MS)|)+|0’ (—r/\gl)}

dt ra+1)
e Mg (1) eNt{ {(—r)\Sol)nLl" (r/\gl)H :

tafl
ra+1)
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From which we can deduce thdtSC(J)and $ € X Now from Eq.(35), we get

dst)  d 4

,dS(t) 4 4d d,

a-1 _l-a X _ Y l-aja_
0= = 1R [rAS] = I [rAsI,

DIS(t) = %I [—rASI = —rASl|,

and
S(0) = 19[~rASl,_o = 0.
)
ta o
0= F 7D [(~rAsk)+17 (~rasl)]
and
a-1
)

e =e [ L [(-nast) 1o (-nast)] .

From which we can deduce thatd C(J)and | € X now from Eq. (35), we get

di(t) d 4
ot~ rAs
_1dl(1) _qd d
a-1 —1l-a _Y1-aa
I at I dt[r/\Sl] dtl 1Y[rASI],

d
a = — =
DI (t) = 1[rAS =rASI,

and
1 (0) =19[rASl|,_o =0.

Then the integral equation (32) is equivalent to the initellie problem (31) and theorem is proved.

5 Conclusions

Variable-order fractional calculus has been highly neglésince it was proposed. Nevertheless, the scientific aamityn

has found a large variety of applications which can be matlated more clearly understood by using this branch of
mathematics. By using the Adams-Bash forth-Moulton metlweel obtain the numerical solution of the variable-order

fractional SI Model We present a convergent of SI Model irtisec4, also we prove that the Existence and Uniqueness
of SI Model. Moreover, we hope our work about variable-orfdactional calculus would generate interest from related

scholars in the future and also hope that their work may t@sslignificant contributions to this field.
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