IKONION JOURNAL OF MATHEMATICS

Year: 2019 VOLUME: 1 ISSUE: 1

SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS

Yaşar Nacaroğlu*
*Kahramanmaras Sutcu Imam University, Department of Mathematics, 46100, Kahramanmaras, Turkey, E-mail: yasarnacaroglu @ ksu.edu.tr (Received: 19.12.2018, Accepted: 21.01.2019,Published Online: 30.01.2019)

Abstract

The harmonic index of a graph G is defined as the sum $H(G)=\sum_{i j \in E(G)} \frac{2}{d_{G}(i)+d_{G}(j)}$, where $d_{G}(i)$ is the degree of a vertex i in G. In this paper, we examined eccentric version of harmonic index of graphs. Keywords: Topological index; Graph Parameters; Harmonic Index.

1. Introduction

Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. The degree of a vertex u in a graph G is number of incident edges to the vertex. The degree of a vertex i is denoted by $d_{G}(i)$. The maximum degree is denoted by Δ. The minimum degree is denoted by δ.

The distance between i and j vertices, denoted $d_{G}(i, j)$ is the length of a shortest path between them. The eccentricity $\varepsilon_{G}(i)$ of a vertex i in a connected graph is its distance to a vertex fatrhest from i. The radius of a connected graph, denoted $r(G)$ is its minimum eccentricity. The diameter of a connected graph, denoted $D(G)$ is maximum eccentricity. For other undefined notations and terminology from graph theory, the readers are referred to [5].

One of the oldest topological indices, the first and second Zagreb indices were defined by $[7,8]$. The first and second Zagreb indices are defined as

$$
M_{1}(G)=\sum_{i \in V(G)} d_{G}^{2}(i) \quad \text { and } \quad M_{2}(G)=\sum_{i j \in E(G)} d_{G}(i) d_{G}(j)
$$

An alternative expression for the first Zagreb index is [1]

$$
M_{1}(G)=\sum_{i j \in E(G)}\left(d_{G}(i)+d_{G}(j)\right)
$$

The harmonic index was defined in [3] as

$$
H(G)=\sum_{i j \in E(G)} \frac{2}{d_{G}(i)+d_{G}(j)}
$$

Ghorbani et al. [4] and Vukičević et al. [12] defined the first and the second Zagreb eccentricity indices by

$$
E_{1}(G)=\sum_{i \in V(G)} \varepsilon_{G}^{2}(i) \quad \text { and } \quad E_{2}(G)=\sum_{i j \in E(G)} \varepsilon_{G}(i) \varepsilon_{G}(j)
$$

In 1997, The eccentricity connectivity index of a graph G was introduced by Sharma et al. [11]. The eccentric connectivity index is defined as

$$
\xi^{c}(G)=\sum_{i \in V(G)} d_{G}(i) \varepsilon_{G}(i)=\sum_{i j \in E(G)}\left(\varepsilon_{G}(i)+\varepsilon_{G}(j)\right)
$$

In 2000, Gupta et al. [6] introduced the connective eccentricity index, which is defined to be

$$
\xi^{c e}(G)=\sum_{i \in V(G)} \frac{d_{G}(i)}{\varepsilon_{G}(i)}
$$

The eccentric version of the harmonic index have been defined in [2] as follows.

$$
H_{4}(G)=\sum_{i j \in E(G)} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)}
$$

In this paper, we are concerned with the upper and lower bounds of $H_{4}(G)$ which depend on some of the parameters n, m, r, D etc.

2. Main Results

In this section, we give some upper and lower bounds for the eccentric harmonic index.
Theorem 2.1. Let G be a simple connected graph with n vertices, m edges, r radius and D diameter. Then

$$
\begin{equation*}
\frac{m}{D} \leq H_{4}(G) \leq \frac{m}{r} \tag{1}
\end{equation*}
$$

Equality holds on both sides if and only if G is self centered graph.
Proof. We know that $2 r \leq \varepsilon_{(G)}(i)+\varepsilon_{G}(j) \leq 2 D$ for all $i j \in E(G)$. Then we have

$$
\begin{aligned}
H_{4}(G) & =\sum_{i j \in E(G)} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \\
& \leq \sum_{i j \in E(G)} \frac{2}{2 r}=\frac{m}{r}
\end{aligned}
$$

In an analogous manner,

$$
\begin{aligned}
H_{4}(G) & =\sum_{i j \in E(G)} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \\
& \geq \sum_{i j \in E(G)} \frac{2}{2 D}=\frac{m}{D}
\end{aligned}
$$

Now suppose that equality holds in (1). Then all the above inequalities must become equalities. Thus we get $\varepsilon_{(G)}(i)=\varepsilon_{G}(j)$ for all of $i j \in E(G)$. So we conclude that G is self centered graph.

Conversely, if G is self centered graph, it is easy to see that equalities (1) hold.
Proposition 2.2. [13] Let G be a connected graph with $n \geq 3$ vertices. Then for all $i \in V(G)$ we have

$$
\begin{equation*}
\varepsilon_{G}(i) \leq n-d_{G}(i), \tag{2}
\end{equation*}
$$

with equality if and only if $K_{n}-k e$, for $k=0,1,2, \ldots,\left|\frac{n}{2}\right|$, or $G=P_{4}$.
Theorem 2.3. Let G be connected graph of order n with maximum degree Δ. Then

$$
\begin{equation*}
H_{4}(G) \geq \frac{m}{n-\Delta} . \tag{3}
\end{equation*}
$$

The equality holds if and only if G is regular self centered graph.
Proof. By applying Proposition 2.2 , we get

$$
\begin{aligned}
H_{4}(G) & =\sum_{i j \in E(G)} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \\
& \geq \sum_{i j \in E(G)} \frac{2}{2 n-\left(d_{G}(i)+d_{G}(j)\right)} \\
& \geq \sum_{i j \in E(G)} \frac{2}{2 n-2 \Delta}=\frac{m}{n-\Delta} .
\end{aligned}
$$

Suppose that equality holds in the above inequality. Then $\varepsilon_{G}(i)=n-d_{G}(i)$ ve $d_{G}(i)=\Delta$ for all $i \in$ $V(G)$. So by Proposition 2.2 we conclude that $G \cong K_{n}$ or $G \cong C_{4}$.

Conversely, if $G \cong K_{n}$ or $G \cong C_{4}$, it is easy see that equality (3) holds.
Theorem 2.4. Let G be a connected graph with n vertices and m edges. Let k be the number of vertices with eccentricity 1 in graph G. Then

$$
H_{4}(G)=\frac{6 m+k(2 n+k-3)}{12} .
$$

Proof. $K=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ be the set of vertices with eccentricity 1 . Then we have $e(i)=2$ for any $i \in$ $V(G) \backslash K$. From the definition eccentric-harmonic index, we get

$$
\begin{aligned}
H_{4}(G) & =\sum_{\substack{i j \in E(G) \\
i, j \in K}} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)}+\sum_{\substack{i j \in E(G) \\
i \in K, j \in V(G) \backslash K}} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)}+\sum_{\substack{i j \in E(G) \backslash K \\
i, j \in V(G) \backslash K}} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \\
& =\sum_{\substack{i j \in E(G) \\
i, j \in K}} 1+\sum_{\substack{i j \in E(G) \\
i \in K, j \in V(G) \backslash K}} \frac{2}{3}+\sum_{\substack{i j \in E(G) \\
i, j \in V(G) \backslash K}} \frac{1}{2} \\
& =\frac{6 m+k(2 n+k-3)}{12} .
\end{aligned}
$$

So as desired.

Lemma 2.5. (Radon Inequality)[10] For every real numbers $p>0, x_{k} \geq 0, a_{k}>0$, for $1 \leq k \leq n$, the following inequality holds true:

$$
\sum_{k=1}^{n} \frac{x_{k}^{p+1}}{a_{k}^{p}} \geq \frac{\left(\sum_{k=1}^{n} x_{k}\right)^{p+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}}
$$

The equality holds if and only if $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\cdots=\frac{x_{n}}{a_{n}}$.
Theorem 2.6. For any graph G we have

$$
\begin{equation*}
H_{4}(G) \geq \frac{2 m^{2}}{\xi^{c}(G)^{\prime}} \tag{4}
\end{equation*}
$$

with equality holds if and only if $\varepsilon_{G}(i)+\varepsilon_{G}(j)$ is constant for all $i j \in E(G)$.
Proof. Using Lemma 2.5 we get

$$
\begin{aligned}
H_{4}(G) & =\sum_{i j \in E(G)} \frac{(\sqrt{2})^{2}}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \\
& \geq \sum_{i j \in E(G)} \frac{\left(\sum_{i j \in E(G)} \sqrt{2}\right)^{2}}{\sum_{i j \in E(G)}\left(\varepsilon_{G}(i)+\varepsilon_{G}(j)\right)} \\
& \geq \frac{2 m^{2}}{\xi^{c}(G)}
\end{aligned}
$$

Suppose that equality holds in the above inequality. In this case by Lemma 2.5, $\varepsilon_{G}(i)+\varepsilon_{G}(j)$ becomes constant for all $i j \in E(G)$.

Conversely, if $\varepsilon_{G}(i)+\varepsilon_{G}(j)$ is constant for all $i j \in E(G)$, we can easily see that equality hold in (4).

Theorem 2.7. For any graph G we have

$$
\begin{equation*}
H_{4}(G) \leq \frac{\xi^{c e}(G)}{2}, \tag{5}
\end{equation*}
$$

with equality holds if and only if G is self centered graph.
Proof. From arithmetic harmonic mean inequality we have

$$
\begin{aligned}
H_{4}(G) & =\sum_{i j \in E(G)} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \\
& \leq \frac{1}{2} \sum_{i j \in E(G)}\left(\frac{1}{\varepsilon_{G}(i)}+\frac{1}{\varepsilon_{G}(j)}\right) \\
& =\frac{1}{2} \sum_{i \in V(G)} \frac{d_{G}(i)}{\varepsilon_{G}(i)}=\frac{\xi^{c e}(G)}{2} .
\end{aligned}
$$

Suppose that equality holds in the above inequality. Then for every $i j \in E(G), \varepsilon_{G}(i)=\varepsilon_{G}(j)$. Thus one can easily see that the equality holds in (5) if and only if G is self centered graph.

Conversely let G be self centered graph. Then by applying $\varepsilon_{G}(i)=\varepsilon_{G}(j)=r$ for all $i j \in E(G)$ we get

$$
H_{4}(G)=\sum_{i j \in E(G)} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)}=\frac{m}{r}
$$

and

$$
\frac{\xi^{c e}(G)}{2}=\frac{1}{2} \sum_{i \in V(G)} \frac{d_{G}(i)}{\varepsilon_{G}(i)}=\frac{1}{2} \sum_{i \in V(G)} \frac{d_{G}(i)}{r}=\frac{m}{r}
$$

This completes the theorem.
Theorem 2.8. For any graph G we have

$$
\begin{equation*}
H_{4}(G) \geq \frac{2 m^{2} r}{E_{2}(G)+m r^{2}} \tag{6}
\end{equation*}
$$

with equality holds if and only if $\varepsilon_{G}(i)+\varepsilon_{G}(j)$ is constant for all $i j \in E(G)$.

Proof. Since $\varepsilon_{G}(i), \varepsilon_{G}(j) \geq r$, we have $\left(\varepsilon_{G}(i)-r\right)\left(\varepsilon_{G}(j)-r\right) \geq 0$. Then we get

$$
\frac{\varepsilon_{G}(i) \varepsilon_{G}(j)+r^{2}}{r} \geq \varepsilon_{G}(i)+\varepsilon_{G}(j)
$$

The equality holds $\varepsilon_{G}(i)=r$ or $\varepsilon_{G}(j)=r$ or $\varepsilon_{G}(i)=\varepsilon_{G}(j)=r$ for all $i j \in E(G)$. By applying Lemma 2.5 we get

$$
\begin{aligned}
H_{4}(G) & =\sum_{i j \in E(G)} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \\
& \geq \sum_{i j \in E(G)} \frac{2 r}{\varepsilon_{G}(i) \varepsilon_{G}(j)+r^{2}}=\sum_{i j \in E(G)} \frac{(\sqrt{2 r})^{2}}{\varepsilon_{G}(i) \varepsilon_{G}(j)+r^{2}} \\
& \geq \frac{\left(\sum_{i j \in E(G)} \sqrt{2 r}\right)^{2}}{\sum_{i j \in E(G)} \varepsilon_{G}(i) \varepsilon_{G}(j)+r^{2}}=\frac{2 m^{2} r}{E_{2}(G)+m r^{2}}
\end{aligned}
$$

Now suppose that equality holds in (6). Then all the inequalities in the above argument must be equalities. By Lemma 2.5 we have $\varepsilon_{G}(i)+\varepsilon_{G}(j)$ is constant for all $i j \in E(G)$.

Conversely if $\varepsilon_{G}(i)+\varepsilon_{G}(j)$ is constant for all $i j \in E(G)$, it is easy to see that equality (6) holds.
Theorem 2.9. For any graph G we have

$$
\begin{equation*}
H_{4}(G) \leq \frac{\sqrt{(m-1)\left(m r^{2}+1\right)+1}}{r} \tag{7}
\end{equation*}
$$

with equality holds if and only if $G \cong K_{n}$.
Proof. From definition of the eccentric harmonic index and the relation $\frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \leq 1$, we get the following conclusion.

$$
\begin{aligned}
H_{4}^{2}(G) & =\left(\sum_{i j \in E(G)} \frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)}\right)^{2} \\
& =\sum_{i j \in E(G)} \frac{4}{\left(\varepsilon_{G}(i)+\varepsilon_{G}(j)\right)^{2}}+2 \sum_{\substack{i j \in E(G) \\
i j \neq k l}}\left(\frac{2}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \cdot \frac{2}{\varepsilon_{G}(k)+\varepsilon_{G}(l)}\right) \\
H_{4}^{2}(G) & \leq \sum_{i j \in E(G)} \frac{4}{\left(\varepsilon_{G}(i)+\varepsilon_{G}(j)\right)^{2}}+2 \sum_{\substack{i j \in E(G) \\
i j \neq k l}} 1 . \\
& \leq \frac{m}{r^{2}}+m(m-1) .
\end{aligned}
$$

So we achieve the desired result. Now suppose that equality holds in (7). Then all the inequalities in the above argument must be equalities. In this case, for all $i j \in E(G)$ should be $\varepsilon_{G}(i)=\varepsilon_{G}(j)=1$. Then the equality holds if and only if $G \cong K_{n}$.

Conversely, if $G \cong K_{n}$ then it is easy to see that equality (7) holds.
Lemma 2.10. (Schwetzers Inequality) Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers such that $1 \leq i \leq n$ holds $m \leq x_{i} \leq M$. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right) \leq \frac{n^{2}(m+M)^{2}}{4 n M} . \tag{8}
\end{equation*}
$$

Equality holds in the (8) only when n is even, and the if and only if $x_{1}=x_{2}=\cdots=x_{\frac{n}{2}}=m$ and $x_{\frac{n}{2}+1}=\cdots=x_{n}=M$.

Theorem 2.11. For any graph G we have

$$
\begin{equation*}
H_{4}(G) \leq \frac{m^{2}(D+r)^{2}}{2 \xi^{c}(G) D r} \tag{9}
\end{equation*}
$$

with equality holds if and only if G is self centered graph.
Proof. Since $2 r \leq \varepsilon_{G}(i)+\varepsilon_{G}(j) \leq 2 D$ for all $i j \in E(G)$, using (8) we have

$$
\begin{array}{r}
\sum_{i j \in E(G)}\left(\varepsilon_{G}(i)+\varepsilon_{G}(j)\right) \sum_{i j \in E(G)} \frac{1}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \leq \frac{m^{2}(2 r+2 D)^{2}}{4(2 r)(2 D)} \\
\sum_{i j \in E(G)} \frac{1}{\varepsilon_{G}(i)+\varepsilon_{G}(j)} \leq \frac{m^{2}(r+D)^{2}}{4 \xi^{c}(G) D r} \\
H_{4}(G)
\end{array} \begin{array}{r}
m^{2}(D+r)^{2} \\
2 \xi^{c}(G) D r
\end{array} .
$$

The equality holds if and only if G is self centered graph. We get the required result.

References

[1] Došlić, T. (2008) Vertex weighted Wiener polynomials for composite graphs. Ars Mathematica Contemporanea, 1; 66-80.
[2] Ediz, S., Farahani, M. R. and Imran, M. (2017) On novel harmonic indices of certain nanotubes. International Journal of Advanced Biotechnology and Research, 8(4); 277-282.
[3] Fajtlowicz, S. (1987) On conjectures of graffiti II. Congressus Numerantium, 60; 189-197.
[4] Ghorbani, M. and Hosseinzade, M.A. (2012) A new version of Zagreb indices. Filomat, 26; 93-100.
[5] Gross, J.L. and Yellen, J. (2004) Handbook of graph theory, Chapman Hall, CRC Press.
[6] Gupta, S., Singh, M. and Madan, A.K.(2000) Connective eccentricity index: a novel topological descriptor for predicting biological activity. Journal of Molecular Graphics and Modelling, 18; 18-25.
[7] Gutman, I. and Trinajstić, N. (1972) Graph Theory and Molecular Orbitals. Total pi-Electron Energy of Alternant Hydrocarbons. Chemical Physics Letters, 17: 535-538.
[8] Gutman, I., Ru`šci'c, B., Trinajsti'c, N. and Wilkox, C.F. (1975) Graph Theory and Molecular Orbitals. XII. Acyclic Polyenes. The Journal of Chemical Physics, 62(9):3399-3405.
[9] Mitrinovic, D.S. (1970) Analytic Inequalities, Springer.
[10] Radon, J. (1913) Uber die absolut additiven Mengenfunktionen. Wiener Sitzungsber, 122; 12951438.
[11] Sharma, V., Goswami, R. and Madan, A.K. (1997) Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure-activity studies. Journal of Chemical Information and Modeling, 37(2); 273-282.
[12] Vukicevic, D. and Graovac, A. (2010) Note on the comparison of the first and second normalized Zagreb eccentricity indices. Acta Chimica Slovenica, 57; 524-528.
[13] Zhou, B. and Du, Z. (2010) On Eccentric Connectivity Index.MATCH Communications in Mathematical and in Computer Chemistry, 63; 181-198.

