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Implication for Research and Practice: As test length increases, the Bifactor theory can better 
tolerate the orthogonality violation in estimation of person parameters. The practitioners who 
want to use this theory are recommended to work with large item pools. At all correlation 
levels, the accuracy of the parameter estimations was approximately the same. New studies 
can be repeated with intermediate correlation levels. Among all the parameters, the 
parameters whose estimation reliability is the lowest were found to be person parameters.  
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Introduction 

Bifactor item response theory model was developed by Holzinger and Swineford 

(1937) as an extension of Spearman's Bifactor theory, as can be understood from his 

name. Bifactor theory assumes that there are more than one specific factor and a 

general factor explained by these factors, and that these specific effects also have an 

effect on the general factor (Spearman, 1904). As in all item response theory models, 

the Bifactor Model has its own assumptions. One of the assumptions of the Bifactor 

Model is that the data include both general and specific factors. The other assumption 

that the factors are orthogonal is not possible to be met in practice. In other words, test 

developers should write only the primary factor and also the items that measure a 

subdomain. The main problem is that writing such items in practice is very difficult.  

According to Canivez (2016), the main advantages of the Bifactor Model are 

generally these: (a) the effect of the overall factor on each item and groups of items can 

be easily interpreted. This is not achievable with second-order models, correlated trait 

models, and uni-dimensional models (Chen, West & Sousa, 2006; Immekus & Imbrie, 

2008);  (b) the effects of both general and specific factors on the items can be estimated 

simultaneously (Reise, 2012; Reise, Moore & Haviland, 2010); (c) the psychometric 

properties that are required to score and interpret general and specific factors are 

obtainable through the Bifactor Model (DeMars, 2013); (d) the specific effects of 

general and specific traits in describing other variables are obtained more accurately; 

and (e) the Bifactor Model provides more accurate and reliable estimations than testlet-

effect model in estimating item and person parameters.  

Bifactor Model is very common in scaling the psychological properties, and 

differentiates the specific contributions of the facets on the general factor very well. 

Therefore, the Bifactor Model is quite suitable for scale development. While 

developing or evaluating a new multifaceted scale that aims to assess the general 

structure and specific facets, the power of factor loadings at general and specific factors 

will be a guide in choosing and evaluating items. The items will ideally have a higher 

loading at the general factor or at least a greater loading than the specific factor.  If the 

items have a higher loading than the facets in the general structure, these items will be 

selected, however, if specific factors have larger loadings than the general factor, these 

items will be removed from the scale. The reason for this is that these items do not 

contribute significantly to the general structure. Moreover, the Bifactor Model is also 

used to create a uni-dimensional scale or a short uni-dimensional scale from a 

multidimensional scale (Stucky & Edelen, 2014; Stucky, Edelen, Vaughan, Tucker & 

Butler, 2014; Stucky, Thissen & Edelen, 2013). The applications of the Bifactor Model 

in education indicate that this model is useful in terms of scoring the subscales and 

assessing the reliability when subscale scores need to be used (Cucina & Byle, 2017; 

DeMars ,2013; Golay & Lecerf, 2011; Watkins & Beaujea, 2014).  

In addition to these advantages, the Bifactor Model has also some limitations. The 

biggest limitation is the difficulty of meeting the orthogonality assumption of the 

Bifactor model (Chen, West & Sousa, 2006; Simms, Grös, Watson & O’Hara., 2008).  As 

in the structural equation model, the Bifactor model needs a considerably larger 
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sample when compared to the total score and individual score approach. Additionally, 

the Bifactor model interpretations become quite complicated when correlations are 

allowed among specific factors (Rindskopf & Rose, 1988), and the model can often not 

be identified. In addition to these, it also gives a weak model adaptation in weak or 

small factor loadings as in other factorial models (Jennrich & Bentler, 2012; 

MacCallum, Widaman, Zhang & Hong, 1999). 

When the literature about Bifactor Models is reviewed, it has been seen that the 

focus has always been on the determination of dimensionality and the examination of 

item performance in the field of education and psychology, algorithm of the Bifactor 

Model, and comparison of different item response theory models with Bifactor model 

(Brouwer, Meijer, Weekers & Baneke, 2008; Brown, Finney & France, 2011; Chen, West 

& Sousa, 2006; Chen, Hayes, Carver, Laurenceau & Zhang, 2012; Demars, 2006; 

Fukuhara, 2009; Garn, 2017; Gibbons et al., 2007; Hyland, Boduszek, Dhingra, Shevlin 

& Egan, 2014; Lafond, 2014; Martel, Von Eye & Nigg, 2010; Reise, Ventura et.al, 2011; 

Rijmen, 2009; Rodriguez, Reise & Haviland, 2016; Thomas, 2012;Yang, Song & Xu, 

2002).  

Although the situation that limits the use of the Bifactor Model is the orthogonality 

assumption, there has been only one study (Zheng, 2013) carried out in the field about 

testing of the orthogonality assumption under different conditions. This work (Zheng, 

2013) has also been carried out under limited conditions in such a way in every 

simulation study. Contrary to Zheng’s (2013) study, in this study, simulation 

conditions (test length and correlation levels) were changed. Moreover, item and 

person parameters were estimated according to Bayesian approach (by Quasi Monte-

Carlo estimation). In addition to Zengh’s (2013) study, Rindskopf and Rose (1988) 

found that the interpretation of model parameters gets complicated as correlations 

among specific factors are allowed in the Bifactor Model. Since cross loadings between 

factors will also allow correlations between factors, this can be considered as a kind of 

correlation between factors. Rindskopf and Rose (1988) could not reach any 

information about level of these cross loadings.  

Purpose  

The Bifactor Model is a theory that is limited in its use due to the orthogonality 

assumption that it requires. In addition to this limitation, this model is frequently used 

in studies of modeling psychological and educational constructs, and developing 

scales by ignoring the assumption. In cases where the orthogonality assumption is not 

met, it is not going to be possible to model psychological and educational constructs 

accurately for the developed scale to reach a correct factorial structure and to have 

correct parameter estimations. Besides, it is almost impossible to develop 

measurement instruments in which the correlation between factors in the fields of 

education and psychology is zero. Forcing the correlated factors to be orthogonal will 

cause loss of information regarding the measured structure, and will result in 

unreliable parameter estimations. The precision and the accuracy of parameter 

estimations, on the other hand, are important in every measurement because 

parameter estimations are an important element in determining item performance and 
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respondents’ ability level. Resulting from all these reasons, it is necessary to examine 

the Bifactor model by allowing different correlations among specific factors, in other 

words, to determine if stable, precise and accurate estimations can be done despite 

orthogonality violation by which levels of violation are tolerated by the theory itself. 

It is thought that via this research, the results that are going to be obtained through 

examining and evaluating the orthogonality assumption that restricts the bifactor 

model usage under certain criteria will highly contribute to the field.  

 

Method 

Research Design 

This research is based on the basic research model since it is carried out through 

the data obtained by Monte Carlo simulation in order to investigate the effect of the 

violation of the orthogonality assumption at different levels and test lengths on the 

item and person parameter estimation. 

Simulation Study  

The data for this study were generated according to two Bifactor two-parameter 

models with a simulation according to two models (Model 1 and Model 2). Model 1 

was the model which showed the violation of orthogonality due to the cross loadings. 

In this model, the focus was on the effect of orthogonality violation between two 

specific factors on parameter estimations in all factors. On the other hand, Model 2 

showed the correlations among all the specific factors.  

The variables that were manipulated in specific models were the correlation levels 

between factors and the test lengths. The correlation acceptance levels for the models 

that were set up (Model 1 and Model 2) were as 0.10 (very low), 0.40 (medium), 0.70 

(high) (Cohen, 1988). In the framework of this research, it was decided that the 

minimum test length to be 12 items with reference to the fact that a factor should have 

at least three items in order to be called as a factor (Kline, 1994). Different from the 

literature on the field, other test lengths were taken as 40 and 100, taking into 

consideration that the number of items in each factor was equal.  

The variable to be kept constant, namely not to be manipulated, during the 

research was the sample size. In order to prevent bias that would arise from sample 

size, the largest sample size (5000) that were used in the current studies was set as a 

simulation sample. The summary of the research design is given in Table 1. 
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Table 1 

The Summary of the Research Design 

 Correlation Levels Test Length Sample Size 

Model 1 
 

  

Model 1.1 𝑟3.4=0.10 12-40-100 5000 

Model 1.2 𝑟3.4=0.40 12-40-100 5000 

Model 1.3 𝑟3.4=0.70 12-40-100 5000 

    Model 2    

Model 2.1  
𝑟2:4≤0.10 

12-40-100 5000 

Model 2.2 
0.10 < 𝑟2:4 ≤0.40 

12-40-100 5000 

Model 2.3 
0.40 < 𝑟2:4≤0.70 

12-40-100 5000 

 

As a result of the literature review, it has been seen that the replication numbers 

used in the Bifactor Models are generally 100 (Demars, 2006; Zhang, 2008), 200 (Zheng, 

2013) and 500 (Cai, Yang & Hansen, 2011). In this study, number of replications was 

determined as 200 to be practical. 

In order to generate the two-parameter Bifactor model data set with the 

determined number of replications, the distribution of the discrimination parameter 

(a), the difficulty parameter (b) and the person parameter (θ) should be determined. A 

simulation model in which the discrimination parameter (a) was uniformly distributed 

between a range of 0.2 to 2.0 ratios, the difficulty parameter (b) and the person 

parameter (θ) that were randomly distributed were set. The mathematical expression 

of the Bifactor two-parameter model was as follows: 

p(y=1|𝜃𝑔, 𝜃𝑠)=
1

1+  𝑒𝑥𝑝{−(𝑑+𝑎𝑔𝜃𝑔+𝑎𝑠𝜃𝑠  ) }              
 

The distribution characteristics of the discrimination, difficulty and person 

parameters were the same for the 18 (2x3x3) condition given in Table 1. A random seed 

was assigned to the true parameters, which were generated for the first condition and 

in other conditions, and via this seed, invariance of true parameters between models 

was provided. The difficulty coefficient that had been produced was transformed into 

a multidimensional difficulty coefficient by the following formula: 

𝑑 = −𝑏√𝑎𝑔
2 + 𝑎𝑠

2 

This study was carried out based on Monte Carlo method using R 3.4.0 GUI 

software with syntax (Zheng, 2013), which was written to simulate the data according 

to the determined conditions and to produce Bifactor model parameters. For the 

accuracy of the generated syntax and the generated data files, the average bias was 

calculated on a model that did not contain orthogonality violation, and it was observed 

that the bias average was close to zero.  
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The Data Analysis of Simulation  

Bifactor model predictions were made with the data that were generated in the 

simulation, and 200 for each condition with a total of 3600 (18x200) data files were 

obtained. Bifactor model estimations were made with "mirt" (Chalmers, 2016) package 

in R 3.4.0 GUI software, and descriptive statistics were generated with "psych" 

(Revelle, 2017) package.   

The evaluation of the accuracy of parameter estimations throughout the 

replications was carried out via mean bias, root mean square error (RMSE), and 

standard error of estimates (SE).  

Average Bias ( �̂�) =
∑ (  �̂�𝑟−𝛽)𝑅

𝑟=1

𝑅
 

          RMSE( �̂�)= √        
1

𝑅
∑ (  �̂�𝑟 − 𝛽)2𝑅

𝑟=1  

SE( 𝛽)̂=  √      
1

𝑅
∑ (  �̂�𝑟 −

∑  �̂�𝑟
𝑅
𝑟=1

𝑅
)2𝑅

𝑟=1  

Given in the above formulas; 

β: true individual parameter or item parameter 

β ̂: the individual and substance parameters predicted at the rth replication (Li & Rupp, 

2011). 

 

Results 

Parameter Estimation Bias 

The average bias values calculated from the files that were obtained from 200 

replications for the models (Model 1 and Model 2), which were set up, are given in 

Table 2.  In order to examine the recovery in the item parameter estimations, the bias 

was calculated by taking the average of the difference between the true parameters 

and the estimated parameters.  

When the parameter estimation bias given in Table 2 was examined, the pattern 

seen for Model 1 and Model 2 was the same in all test lengths for discrimination 

parameters. When the test length increased from 40 items to 100 items, a decrease in 

the average bias was observed. Contrary to this, as the test length increaseds, the 

standard deviation of the bias scores got larger and the range widened. To put it in 

other words, the increase in the number of items led to a decrease in the reliability of 

the estimations. This can be explained by the increase in the amount of biased items. 

That is, the more correlated item was added to the model, the greater the variability 

got. When the models were examined among within themselves, the standard 

deviation values increased as the correlation between the factors increased with regard 

that the mean deviation did not change significantly. The average bias of the item and 

person parameters is given in Table 2. 
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Table 2 

Mean Bias of Items and Person Parameters 

 

As it can be seen in Table 2, when the estimation bias of the intercept coefficients 

was examined, as the test length increased for Model 1, the average bias scores 

decreased. The increase in the test length for Model 1 affected the parameter estimate 

recovery. This was not observed evidently when the test length for Model 2 was 

increased from 40 to 100 items. The standard deviation values increased as the test 

length increased, in other words the variability increased.  The fact that the variability 

increased the reliability of estimations were reduced. At test lengths of 40 and 100 

items, the greatest standard deviation values were observed on the difficulty 

coefficients. When the models were examined within themselves, although there was 

not much change in the average of bias, the standard deviations were almost the same. 

When all test lengths (12, 40, 100) for both Model 1 and Model 2 were examined all 

together, when the estimation of person parameters were examined, the distorted 

parameters were found to be at the test length of 12 items. Generally, the variability of 

bias scores was high at all test lengths.  When Model 1 and Model 2 were compared, it 

was observed that the standard deviations were quite similar. It was observed that as 

the test length increased, the variability decreased for both Model 1 and Model 2. It 

can be said that the test length has an effect on the recovery in parameter estimations. 

   Mean Bias 

   12 items 

(𝑋, 𝜎) 

40 items 

(𝑋, 𝜎) 

100 items 

(𝑋, 𝜎) 

D
is

cr
im

in
a

ti
o

n
 

p
a

ra
m

et
er

 

 Model 1.1 0.010(0.050) -0.040(0.650) 0.004(0.690) 

 Model 1.2 0.002(0.120) -0.030(0.650) -0.009(0.690) 

Model 1 Model 1.3 -0.020(0.310) -0.030(0.650) 0.002 (0.700) 

 Model 2.1 0.020(0.070) -0.050(0.650) 0.010(0.690) 

Model 2 Model 2.2 0.000(0.180) -0.030(0.650) 0.000(0.690) 

 Model 2.3 -0.001(0.370) -0.100(0.680) -0.005(0.720) 

D
if

fi
cu

lt
y

 

p
a

ra
m

et
er

 

 

 Model 1.1. 0.260(0.330) 0.049(1.780) -0.008(1.830) 

Model 1 Model 1.2 0.240(0.340) 0.083(1.780) -0.066(1.830) 

 Model 1.3 0.260(0.330) 0.058(1.780) -0.027(1.830) 

 Model 2.1 0.250(0.330) 0.020(1.780) -0.040(1.830) 

Model 2 Model 2.2 0.250(0.340) 0.050(1.780) -0.060(1.830) 

 Model 2.3 0.250(0.340) 0.040(1.780) -0.060(1.830) 

P
er

so
n

 p
a

ra
m

et
er

 

 

 Model 1.1 -0.010(0.670) 0.000(0.410) 0.010 (0.320) 

Model 1 Model 1.2 0.000(0.690) -0.010(0.440) 0.010 (0.340) 

 Model 1.3 -0.010(0.710) 0.000(0.470) -0.010(0.360) 

 Model 2.1 0.000(0.690) 0.010(0.410) 0.000 (0.280) 

Model 2 Model 2.2 -0.001(0.720) 0.000(0.460) 0.000 (0.320) 

 Model 2.3 0.000(0.800) 0.000(0.560) 0.020 (0.410) 
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Increasing the test length reduced the variability. This finding is consistent with 

Zheng’s (2013) study. Estimation accuracy was higher at the test lengths of 40 and 100 

items when compared to the test length of 12 items. Directly proportional to the test 

length, the fact that the variability decreased indicated that the test length might have 

an effect on the recovery of parameters.  However, the variability was high at all test 

lengths, and this reduced the reliability of the parameter estimation.  

The Accuracy and Stability of Parameter Estimation 

Estimation accuracy and stability of discrimination parameters. Table 3 shows the 

standard error values and average RMSE values of the discrimination parameters for 

Model 1 and Model 2. These values are first interpreted by model type, and then by 

the test length.  

As it can be seen in Table 3, when the standard errors on the model basis were 

examined, it was observed that the table values (average value and standard 

deviation) were the same for both models (except the 12 item )  ( 𝑋SE &Model 1
= 0.083 

, 𝑋SE&Model 2
= 

 0.086).  When the RMSE averages were examined, it was observed 

that the table values for Model 1 and Model 2 were very close ( 𝑋RMSE &Model 1
= 

0.410 , 𝑋RMSE &Model 2
= 

 0.435) 

According to these findings; it can be said that the fact that the two factors were 

correlated (Model-1) and all factors were correlated (Model-2) had almost the same 

effect in estimating the discrimination parameters. Consequently, there was no 

difference in the accuracy of parameter estimations for both models (Model 1 and 

Model 2). It can be concluded from this that the model parameter dis not have an 

influence on the accuracy of the parameter estimation. 

Table 3 

Discrimination Coefficients, Standard Error and Mean RMSE Values for Model 1 and 

Model 2 

  Test Length 

 Model  12 items 40 items 100 items 

SE 

Model 1.1 0.120(0.090) 0.060(0.020) 0.050(0.010) 

Model 1.2 0.140(0.120) 0.060(0.020) 0.050(0.010) 

Model 1.3 0.160(0.150) 0.060(0.020) 0.050(0.010) 

Model 2.1 0.130(0.110) 0.060(0.020) 0.050(0.010) 

Model 2.2 0.140(0.130) 0.060(0.020) 0.050(0.010) 

Model 2.3 0.180(0.160) 0.060(0.020) 0.050(0.010) 

 Model  12 items 40 items 100 items 

RMSE 

Model 1.1 0.140(0.120) 0.480(0.440) 0.540(0.430) 

Model 1.2 0.180(0.120) 0.480(0.440) 0.540(0.430) 

Model 1.3 0.290(0.230) 0.490(0.450) 0.550(0.430) 

Model 2.1 0.150(0.110) 0.480(0.440) 0.540(0.430) 

Model 2.2 0.220(0.140) 0.490(0.430) 0.540(0.440) 

Model 2.3 0.390(0.180) 0.540(0.430) 0.570(0.440) 
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When the RMSE values were examined according to the test length, it was 

considered that the test length might have an influence on the accuracy of the 

parameter estimation. The average RMSE values increased as the test length increased 

( 𝑋RMSE&12
= 0.228, 𝑋RMSE&40

= 0.493, 𝑋RMSE&100
= 0.546). Namely, as the 

number of items increased, the accuracy of the discrimination parameters decreased. 

When the standard errors were examined, it was observed that the standard error 

decreased as the test length increased (𝑋SE&12
= 0.145, 𝑋SE&40

= 0.060, 𝑋SE&100
= 

0.050).  The standard error is the standard deviation of the simulation samples, in other 

words, a distance measure.  Because of this, the standard error is actually a measure 

of precision (Walther &Moore, 2005). In this case, it can be said that as the test length 

increased, the estimations of the discrimination parameters were more reliable, that is, 

the test lengths might influence the estimation accuracy of the discrimination 

parameters. 

Estimation accuracy and stability of difficulty parameters. Table 4 shows the standard 

error averages and the average RMSE values for Model 1 and Model 2 of the difficulty 

parameters in an order. When the standard errors of the models were analyzed, it was 

observed that there was not much difference between the table values (average and 

standard deviation) (𝑋SE&Model 1
= 0.046 , 𝑋SE&Model 2

= 0.047). When the RMSE 

averages were studied, it was concluded that the condition for the standard error was 

also observed here. Table values were the same for Model 1 and Model 2 ( 

𝑋RMSE&Model 1
= 1.056 , 𝑋RMSE&Model 2

= 
 1.056). 

According to these findings, it can be said that in the estimation of the difficulty 

parameter, the fact that two specific factors were related and that all specific factors 

were related had almost the same influence. To put it in other words, it can be said 

that model type did not affect the difficulty of parameter estimation. Table 4 presents 

the standard error and the average RMSE values with difficulty coefficients for Model 

1 and Model 2. 

As it can be seen in Table 4, it was observed that the standard error averages of 

Model 1.1, Model 1.2, and Model 1.3 did not differ too much when the models were 

examined within themselves (according to the degree of the orthogonality violation) ( 

𝑋SE&Model1.1
= 0.043 , 𝑋SE&Model 1.2

= 
 0.046,  𝑋SE&Model1.3

= 0.050).  The same was 

observed for RMSE averages, too ( 𝑋RMSE&Model1.1
= 1.053 , 𝑋RMSE&Model 1.2

= 
 

1.060,  𝑋RMSE&Model1.3
= 1.056). When the model was examined for sub-models, it 

was observed that the standard error averages of Model 2.1, Model 2.2, Model 2.3 did 

not vary much ( 𝑋SE&Model 2.1
= 0.046 , 𝑋SE&Model 2.2

= 
 0.046,  𝑋SE&Model 2.3

= 

0.050). The same was observed for RMSE averages, too ( 𝑋RMSE&Model 2.1
= 1.053 , 

𝑋RMS&EModel 2.2
= 

 1.060,  𝑋RMSE&Model 2.3
= 1.056). The level of the orthogonality 

violation did not affect the estimation of the difficulty parameters. This finding 

overlaps with the study of Zheng (2013). 
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Table 4 

Difficulty Coefficients Standard Error and Mean RMSE Values for Model 1 and Model 2  

  Test Lengths 

 Model 12 items 40 items 100 items 

SE 

Model 1.1 0.050(0.030) 0.040(0.010) 0.040(0.010) 

Model 1.2 0.060(0.040) 0.040(0.010) 0.040(0.010) 

Model 1.3 0.070(0.050) 0.040(0.010) 0.040(0.010) 

Model 2.1 0.060(0.040) 0.040(0.010) 0.040(0.010) 

Model 2.2 0.060(0.050) 0.040(0.010) 0.040(0.010) 

Model 2.3 0.070(0.050) 0.040(0.010) 0.040(0.010) 

 Model 12 items 40 items 100 items 

 Model 1.1 0.330(0.260) 1.400(1.060) 1.430(1.130) 

 Model 1.2 0.330(0.260) 1.420(1.060) 1.430(1.140) 

RMSE Model 1.3 0.330(0.270) 1.410(1.060) 1.430(1.140) 

 Model 2.1 0.330(0.250) 1.400(1.070) 1.430(1.130) 

 Model 2.2 0.340(0.260) 1.410(1.060) 1.430(1.130) 

 Model 2.3 0.330(0.260) 1.410(1.060) 1.430(1.140) 

 

When the RMSE values  were examined according to the test length, it was 

observed that when the test length increased from 12 to 40, the estimation accuracy 

decreased, but when it increased from 40 to 100, this situation did not vary much 

(𝑋RMSE&12
= 0.616, 𝑋RMSE&40

= 1.408, 𝑋RMSE&100
= 1.430). Contrary to study of 

Zheng (2013), when the accuracy of the estimations among the parameters in the 

framework of this study was taken into consideration, the difficulty parameters were 

the lowest parameters in terms of the test length and the model type. As Jennrich and 

Bentler (2012) pointed out in their research, when the correlation between factors was 

allowed, the results couldn’t be interpreted. As the test length increased, the standard 

error values increased ( 𝑋SE&12
= 0.310, 𝑋SE&40

= 0.493, 𝑋RMSE&100
= 0.546). The 

increase in the standard error indicated that the estimation accuracy decreased as the 

test length increased.  

The estimation accuracy and stability of person parameters. Table 5 shows the standard 

error and RMSE averages for Model 1 and Model 2 of person parameters in an order. 

When the standard error values of the models were studied, it was observed that the 

table values (average and standard deviations) were similar (𝑋SE&Model 1
= 0.464, 

𝑋SE&Model 2
= 

 0.400). Table 5 shows the standard error and RMSE values for Model 

1 and Model 2 of the person parameters.  
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Table 5 
Standard Error and RMSE Values for Model 1 and Model 2 of The Person Parameters 

  Test Length 

 Model 12 items 40 items 100 items 

 SE 

Model 1.1 0.450(0.080) 0.490(0.130) 0.490(0.170) 

Model 1.2 0.450(0.080) 0.480(0.130) 0.500(0.170) 
Model 1.3 0.450(0.080) 0.480(0.130) 0.490(0.170) 

Model 2.1 0.420(0.080) 0.420(0.080) 0.360(0.070) 
Model 2.2 0.410(0.070) 0.420(0.090) 0.370(0.070) 
Model 2.3 0.380(0.070) 0.420(0.100) 0.390(0.100) 

 Model 12 items 40 items 100 items 

 Model 1.1 0.750(0.320) 0.620(0.210) 0.580(0.200) 
 Model 1.2 0.760(0.340) 0.630(0.220) 0.590(0.200) 
RMSE Model 1.3 0.770(0.350) 0.640(0.230) 0.600(0.210) 

 Model 2.1 0.740(0.340) 0.560(0.200) 0.450(0.140) 
 Model 2.2 0.750(0.360) 0.590(0.220) 0.470(0.160) 
 Model 2.3 0.790(0.410) 0.650(0.270) 0.540(0.210) 

 

As it can be seen in Table 5, when the RMSE averages were to be examined, the 

situation for the standard error also appeared here. Table values for Model 1 and 

Model 2 were almost the same ( 𝑋RMSE&Model 1
= 0.660 , 𝑋RMSE&Model 2

= 
 0.615). 

As a result, it can be said that the fact that two factors were correlated and that all 

specific factors were correlated had almost the same effect in parameter estimations.   

When the models were analyzed within themselves (according to the degree of the 

orthogonality violation), it was observed that the standard error averages of Model 

1.1, Model 1.2, Model 1.3 did not vary much ( 𝑋SE&Model1.1
= 0.477 , 𝑋SE&Model 1.2

= 
 

0.477,  𝑋SE&Model1.3
= 0.473). The same was also observed for RMSE averages ( 

𝑋RMSE&Model1.1
= 0.650 , 𝑋RMSE&Model 1.2

= 
 0.660,  𝑋RMSE&Model1.3

= 0.670). 

When the model 2 was examined for sub-models, it was seen that the standard error 

averages of Model 2.1, Model 2.2, Model 2.3 did not vary much ( 𝑋SE&Model 2.1
= 0.400 

, 𝑋SE&Model 2.2
= 

 0.400,  𝑋SE&Model 2.3
= 0.397). The same was also observed for 

RMSE averages ( 𝑋RMSE&Model 2.1
= 0.583 , 𝑋RMSE&Model 2.2

= 
 0.603,  

𝑋RMSE&Model 2.3
= 0.660).  

 

Discussion, Conclusion and Recommendations 

This research aims to analyze the effect of the Bifactor item response theory on the 

item and person parameter estimation under various conditions of the orthogonality 

assumption violation. As a result of the analyses made for this purpose, the estimation 

bias of the discrimination parameters for Model 1 increased as the orthogonality 

violation increased. The increase in test length caused a decrease in the accuracy of the 
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discrimination and difficulty parameters, in other words the reliability. This can be 

explained by the increase in the number of correlated items in specific factors. In the 

estimations of the discrimination parameters, an improvement in parameter 

estimations was observed with regard to the test length when two factors were related 

(Model 1), whereas this improvement was not observed when all specific factors were 

related (Model 2). The parameters whose estimation accuracy was the lowest were the 

difficulty parameters. It was observed that the model did not have an effect on the 

estimation accuracy of discrimination, difficulty, and person parameters. To put it in 

a different way, the case that two factors were correlated (Model 1) and that all specific 

factors were correlated (Model 2) had the same effect on the accuracy of both the 

person and item parameters.  

Increasing the number of items increased the reliability of the estimations of person 

parameters. This situation observed in the person parameters was a consequence of 

the better explanation of the latent trait of individuals as the number of items 

increased. In estimations of person parameters, the least reliable parameter estimations 

were at the smallest test length for both models (Model 1 and Model 2). As the test 

length increased, the reliability of the estimations increased, too. Despite this, among 

the other parameters, the person parameters whose estimation reliability was the 

lowest at the all test lengths and the orthogonality violation levels. 

The estimation of item and person parameters is an important factor in 

psychological and educational evaluations. The use of the Bifactor model in correlated 

structures will lead to biased parameter estimations, and this bias in parameter 

estimations will lead to bias in evaluation. The researches in the literature suggest that 

the Bifactor model is a very robust model that is well adapted even to the correlated 

structures. However, in this research when the parameter bias was examined, this 

robust structure could not be seen at all.  

Based on the results of this study, some suggestions can be made for the 

practitioners or the researchers in the application of the Bifactor model. As test length 

increases, the Bifactor theory can better tolerate the orthogonality violation in 

estimation of person parameters. The practitioners who want to use this theory are 

recommended to work with large item pools. At all correlation levels, the accuracy of 

the parameter estimations was approximately the same. New studies can be repeated 

with intermediate correlation levels (0.25, 0.35, etc.). It is stated in the literature that 

there must be at least 20 items for multidimensional item response theory models. The 

minimum test length in this study was determined as 12 items. To obtain more 

unbiased results in the estimation of item parameters, determining the minimum test 

length as 20 items in future studies can retry the same conditions. Among all the 

parameters, the parameters whose estimation reliability is the lowest (highest SE 

averages) were found to be person parameters. Future researches can be tested with 

different replication numbers and different sample sizes to increase the reliability. This 

is only a simulation study, and is valid for the specified conditions.  
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İki Faktör Madde Tepki Kuramında Diklik Varsayımının İncelenmesi 

Atıf: 

Baris Pekmezci, F., & Gulleroglu, D. (2019). Investigation of the orthogonality 

assumption in the bifactor item response theory. Eurasian Journal of 

Educational Research, 79, 69-86, DOI: 10.14689/ejer.2019.79.4 

 

Özet 

Problem Durumu: İki Faktör Modeli, çok boyutlu madde tepki kuramı 

(multidimensional item response theory) modellerinden biridir. İki faktör modeline 

göre birden fazla spesifik (özgül) faktör ve bu faktörler tarafından açıklanan bir genel 

faktör vardır ve ayrıca bu özgül etkilerin genel faktör üzerinde etkisinin olduğunu 

varsayılmaktadır. Tüm madde tepki kuramı modellerinde olduğu gibi İki Faktör 

modelinin de kendine özgü varsayımları vardır. İki Faktör Model’inin en önemli 

varsayımlarından biri verinin hem genel faktörü hem de spesifik faktörleri 

içermesidir. Bu varsayım karşılanması zor bir varsayım olmamakla birlikte çok 

boyutlu veriyi gerektirmektedir. Diğer varsayım olan faktörlerin dik (orthogonal) yani 

birbirinden bağımsız (ilişkisiz) olması ise pratikte karşılanması çok mümkün olmayan 

bir varsayımdır. İlişkili faktörleri dik olmaya zorlamak ise ölçülen yapı ile ilgili olarak 

bilgi kaybına neden olacak ve güvenilir olmayan parametre kestirimleri ile 

sonuçlanacaktır. Bu çalışma aracılığıyla İki Faktör Modelin kullanımını kısıtlayan 

varsayımın incelenmesi ve belirli kriterler ışığında değerlendirilmesi ile elde edilecek 

sonuçların alan yazına hem teorik anlamda hem de modelin daha doğru 

uygulanabilirliği açısından önemli katkılar sağlayacağı düşünülmektedir.  

Araştırmanın Amacı: İki Faktör Kuramı, gerektirdiği varsayımdan (diklik) dolayı 

kullanımı sınırlanan bir kuramdır. Bu sınırlılığının yanı sıra psikolojik ve eğitsel 

yapıların modellenmesinde ve ölçek geliştirme çalışmalarında bu varsayım göz ardı 

edilerek sıklıkla kullanılmaktadır. Diklik varsayımının sağlanmadığı koşullarda 

psikolojik ve eğitsel yapıların doğru modellenmesi, geliştirilen ölçeğin doğru faktör 

yapısına ulaşması ve parametre kestirimlerinin doğru olması mümkün olmayacaktır. 

Bunun yanı sıra eğitim ve psikoloji alanında faktörler arası korelasyonun sıfır olduğu 

ölçme araçları geliştirmek neredeyse imkansızdır. İlişkili faktörleri dik olmaya 

zorlamak ise ölçülen yapı ile ilgili olarak bilgi kaybına neden olacak ve güvenilir 

olmayan parametre kestirimleri ile sonuçlanacaktır. Parametre kestirimlerinin 

kesinliği ve doğruluğu ise yapılan her ölçme işleminde önemli bir durumdur. Çünkü 

parametre kestirimleri, madde performansı ve yanıtlayıcı yetenek düzeyinin 

belirlenmesinde önemli bir unsurdur. Belirtilen bu gerekçelerden kaynaklı, iki faktör 

kuramının, spesifik faktörler arası farklı ilişki düzeylerine olanak tanıyarak 

incelenmesi yani hangi diklik ihlal düzeylerinin kuram tarafından tolere edilip, diklik 

ihlaline rağmen kararlı, kesin ve doğru kestirimler yapılabildiğinin belirlenmesi bu 

araştırmanın amacıdır.  
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Araştırmanın Yöntemi: Bu araştırma için veriler simülatif yolla iki adet (Model-1 ve 

Model-2)  İki Faktör iki parametreli modele göre üretilmiştir. Model-1 iki spesifik 

faktör arasında çapraz yüklenmelerden dolayı oluşan diklik ihlalini gösteren 

modeldir. Burada incelenen nokta iki spesifik faktör arasındaki diklik ihlalinin tüm 

faktörlerdeki parametre kestirimlerine olan etkisidir. Model-2 ise, tüm spesifik 

faktörler arasındaki ilişkiyi göstermektedir. Spesifik modellerde manipüle edilen 

değişkenler faktörler arası korelasyon düzeyleri ve test uzunluklarıdır. Kurulan 

modeller için korelasyon kabul düzeyleri 0.10 (çok düşük), 0.40 (orta), 0.70 (yüksek) 

olarak ele alınmıştır. Spesifik faktörlerdeki madde sayılarına karar vermek amacıyla 

yapılan alan yazın incelemesi sonucunda test uzunlukları 12, 40 ve 100 madde olarak 

belirlenmiştir.  Araştırma boyunca sabit tutulacak (manipüle edilmeyecek) değişken 

ise örneklem (5000) büyüklüğüdür. Replikasyon sayısı ise 200 olarak belirlenmiştir. 

Parametre kestirimlerinin replikasyonlar boyunca doğruluğunun değerlendirilmesi; 

ortalama yanlılık (mean bias),  RMSE (hataların kareleri ortalamasının karekökü) ve 

kestirimlerin standart hatası (Standart Error) ile yapılmıştır.  

Araştırmanın Bulguları: Ayırt edicilik parametreleri için tüm test uzunluklarında 

Model 1 ve Model 2 için görülen örüntü aynı şekildedir. Madde sayısındaki artış ayırt 

edicilik parametrelerinin kestirim kesinliğinde yani güvenirliğinde düşüşe neden 

olmuştur. Bu durum yanlı madde miktarındaki artış ile açıklanabilir. Yani modele ne 

kadar ilişkili madde eklenirse değişkenlik o kadar artmıştır. İki faktörün ilişkili olması 

durumu (Model-1) ile tüm faktörlerin ilişkili olması durumunun (Model-2), ayırt 

edicilik parametrelerinin kestiriminde neredeyse aynı etkiye sahip olduğu 

söylenebilir. Sonuç olarak her iki model için de parametre kestirim doğruluğu arasında 

farklılık yoktur. Buradan yola çıkarak model türünün parametre kestirim 

doğruluğuna etkisi olmadığı söylenebilir. Güçlük parametresinin kestiriminde, iki 

spesifik faktörün ilişkili olma durumu (Model 1) ile tüm spesifik faktörlerin ilişkili 

olma durumunun (Model 2) neredeyse aynı etkiye sahip olduğu söylenebilir. Yani 

model türünün güçlük parametre kestirim doğruluğuna etkisi olmadığı söylenebilir. 

Birey parametreleri incelendiğinde,  test uzunluğu ile doğru orantılı şekilde 

değişkenliğin azalması test uzunluğunun parametre iyileşmesinde etkisi olabileceğine 

işaret etmektedir. Yine de değişkenlik tüm test uzunluklarında yüksektir. Bu durum 

parametre kestirim güvenirliklerini düşürmektedir. Birey parametrelerinin 

kestiriminde, iki spesifik faktörün ilişkili olma durumu ile tüm spesifik faktörlerin 

ilişkili olma durumunun neredeyse aynı etkiye sahip olduğu söylenebilir. 

Araştırmanın Sonuçları ve Önerileri: Kestirim doğruluğu en düşük parametrelerin 

güçlük parametreleri olduğu görülmüştür. Ayırt edicilik, güçlük ve birey 

parametrelerinin kestirim doğruluğunda ise modelin öneminin olmadığı görülmüştür. 

Yani iki spesifik faktörün ilişkili olma durumu (Model 1) ile tüm faktörlerin ilişkili 

olma durumu (Model 2) hem birey hem de madde parametrelerinin kestirim 

doğruluğunda aynı etkiye sahiptir. Madde sayısını arttırmak, birey parametrelerinin 

kestirim kesinliğini yani güvenirliğini arttırmıştır. Birey parametrelerinde gözlenen bu 

durum, madde sayısı arttıkça bireyin örtük özelliğinin daha iyi açıklandığının bir 

sonucudur. Birey parametrelerinin kestiriminde, güvenirliği en düşük parametre 

kestirimleri her iki model için de (Model 1ve Model 2) en küçük test uzunluğundadır. 
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Test uzunluğu arttıkça kestirim güvenirliği de artmıştır. Buna rağmen tüm test 

uzunluklarında ve diklik ihlal düzeylerinde kestirim güvenirliği en düşük 

parametreler birey parametreleridir.  Madde ve birey parametrelerinin kestirimi 

psikolojik ve eğitsel amaçlı değerlendirmelerde önemli bir unsurdur. İki faktör 

kuramının ilişkili yapılarda kullanılması yanlı parametre kestirimlerine, parametre 

kestirimlerindeki yanlılık ise değerlendirme sonuçlarında yanlılığı doğuracaktır. 

Literatürde varolan araştırmalar iki faktör kuramının ilişkili yapılarda bile çok iyi 

düzeyde uyum verdiği ve robust bir model olduğu belirtmektedir. Bu araştırmada ise 

parametre bazında yanlılık incelendiğinde bu robust yapı görülememiştir. İki faktör 

kuramı, birey parametrelerinin kestiriminde test uzunluğu arttıkça diklik varsayımı 

ihlalini daha iyi tolere edebilmektedir. Bu kuramı kullanmak isteyen uygulayıcıların 

büyük madde havuzları ile çalışmaları önerilir. Tüm korelasyon düzeylerinde 

parametre kestirim doğrulukları yaklaşık olarak aynı çıkmıştır. Yeni çalışmalar ara 

korelasyon (0.25, 0.35 vb.) düzeyleri ile tekrarlanabilir. 

Anahtar Kelimeler: Çok boyutlu madde tepki kuramı, İki faktör Madde Tepki Kuramı, 

diklik varsayımı, parametre kestirim yanlılığı, faktör analizi.  
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