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A generalized operational method for solving
integro–partial differential equations based on
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Abstract

In this paper, a numerical method is developed for solving linear and
nonlinear integro-partial differential equations in terms of the two vari-
ables Jacobi polynomials. First, some properties of these polynomials
and several theorems are presented then a generalized approach im-
plementing a collocation method in combination with two dimensional
operational matrices of Jacobi polynomials is introduced to approxi-
mate the solution of some integro–partial differential equations with
initial or boundary conditions. Also, it is shown that the resulted ap-
proximate solution is the best approximation for the considered prob-
lem. The main advantage is to derive the Jacobi operational matrices
of integration and product to achieve the best approximation of the
two dimensional integro–differential equations. Numerical results are
given to confirm the reliability of the proposed method for solving these
equations.
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1. Introduction
Finding the analytical solutions of functional equations has been devoted attention of

mathematicians’s interest in recent years. Several methods are proposed to achieve this
purpose, such as [7, 8, 9, 10, 11, 13]. Many problems in theoretical physics and other
sciences lead to integro–partial differential equations. In order to solve these equations,
several numerical methods have been proposed such as [21, 22, 25, 26, 28, 29]. The
solutions of this kind of equations are often quite complicated. For this reason in many
cases, it is required to obtain the approximate solutions. For example the Jacobi collo-
cation method has been applied to solve various differential equations, [3, 14, 15, 17, 18,
19, 20, 23]. Also, Bhrawy and et al have presented a new Legendre spectral collocation
method for fractional Burgers equations, [6]. In [16], authors have used Jacobi–Gauss–
Lobatto collocation method for the numerical solution of 1 + 1 nonlinear Schrödinger
equation. Also, Bhrawy in [1] has presented an pseudospectral approximation based on
Jacobi polynomials for generalized Zakharov system. Two spectral tau algorithms based
on Jacobi polynomials have been applied to solve multi–term time–space fractional par-
tial differential equations and time fractional diffusion–Wave equations, [4, 5]. Bhrawy
and et al have been presented two different collocation scheme for both temporal and
spatial discriminations of mobile–immobile advection–dispersion model (TVFO–MIAD
model), [2]. Borhanifar and Sadri have utilized a Jacobi operational collocation method
for systems of two dimensional integral equations, [12].

In this paper, the Jacobi polynomials are used as a basis function for solving linear
and nonlinear integro–partial differential equations, the numerical solution, u(x, y), is
approximated in terms of two variables Jacobi polynomials as x, y ∈ [0, 1]. In order
to realize this aim, the shifted Jacobi polynomials together the collocation technique are
used. The Jacobi operational matrices of the integration and product are constructed on
the interval [0, 1]. The main aim is to improve Jacobi operational matrices to the spec-
tral solution of partial integro-differential equations. For solving the resulted algebraic
system, the (N + 1) roots of one variable Jacobi polynomials P (α,β)

N+ 1(x) and P
(α,β)
N+ 1(y)

are considered in the x, y−directions. The domain of two dimensional is represented by a
tensor product points {xi}Ni= 0 and {yj}Nj= 0 which are roots of P (α,β)

N+ 1(x) and P (α,β)
N+ 1(y).

Each the equations of the algebraic system is collocated in the resulted tensor points
{(xi, yj)}Ni,j= 0 and is given linear or nonlinear systems of algebraic equations which can
be solved using the well–known Newtons iterative method. Thus, the Jacobi coefficients
are obtained and the approximate solution is determined.

The remainder of this paper is organized as follows: The Jacobi polynomials, some of
their properties and one dimensional operational matrix of integration are introduced in
Section 2. Afterwards, some properties of two variables Jacobi polynomials are stated and
the operational matrices of integration and product will be extended to two dimensional
case in Section 3. In Section 4, the existence and uniqueness of the best approxima-
tion are studied and an error estimator is introduced. Section 5 is devoted to applying
two dimensional Jacobi operational matrices for solving the partial integro–differential
equations. For this purpose, four examples are presented. A conclusion is presented in
Section 6.

2. Jacobi polynomials and their operational matrix of integration
The well–known Jacobi polynomials are defined on the interval z ∈ [−1, 1], constitute

an orthogonal system with respect to the weight function w(α,β)(z) = (1− z)α (1 + z)β ,
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and can be determined with the following recurrence formula:

(2.1)
P

(α,β)
i+ 1 (z) = A(α, β, i) P

(α,β)
i (z) + z B(α, β, i) P

(α,β)
i (z)−D(α, β, i) P

(α,β)
i− 1 (z),

i = 1, 2, ...,

where

A(α, β, i) =
(2 i+ α+ β + 1)(α2 − β2)

2(i+ 1)(i+ α+ β + 1)(2 i+ α+ β)
,

B(α, β, i) =
(2 i+ α+ β + 2)(2 i+ α+ β + 1)

2(i+ 1)(i+ α+ β + 1)
,

D(α, β, i) =
(i+ α)(i+ β)(2 i+ α+ β + 2)

(i+ 1)(i+ α+ β + 1)(2 i+ α+ β)
,

and

P
(α,β)
0 (z) = 1, P

(α,β)
1 (z) =

α+ β + 2

2
z +

α− β
2

.

The orthogonality condition of Jacobi polynomials is∫ 1

−1

P
(α,β)
j (z) P

(α,β)
k (z) w(α,β)(z) dz = hk δjk,

where

hk =
2α+β+1Γ(k + α+ 1)Γ(k + β + 1)

(2k + α+ β + 1)k! Γ(k + α+ β + 1)
.

The analytic form of Jacobi polynomials is given by, [27],

P
(α,β)
i (z) =

i∑
k=0

(−1)(i−k)Γ(i+ β + 1)Γ(i+ k + α+ β + 1)

Γ(k + β + 1)Γ(i+ α+ β + 1) (i− k)! k!
(
1 + z

2
)k,

i = 0, 1, ... .

For practical use of Jacobi polynomials on the interval x ∈ [0, 1], it is necessary to
shift the defining domain by means of the following change variable:

z = 2 x− 1, x ∈ [0, 1]

The shifted Jacobi polynomials are generated from the three-term recurrence relation

(2.2)

P
(α,β)
i+1 (x) = A(α, β, i) P

(α,β)
i (x) + (2 x− 1) B(α, β, i) P

(α,β)
i (x)

−D(α, β, i) P
(α,β)
i−1 (x), i = 1, 2, ...,

P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

(α+ β + 2)(2 x− 1)

2
+
α− β

2
.

The orthogonality condition and weight function are respectively,∫ 1

0

P
(α,β)
i (x) P

(α,β)
j (x) w(α,β)(x) dx = θi δij ,

where

θi =
Γ(i+ α+ 1)Γ(i+ β + 1)

(2i+ α+ β + 1) i! Γ(i+ α+ β + 1)
,

and

w(α,β)(x) = (1− x)α xβ , x ∈ [0, 1].
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Also, the analytic form of shifted Jacobi polynomials will be as follows, [27],

(2.3)
P

(α,β)
i (x) =

i∑
k=0

(−1)(i−k)Γ(i+ β + 1)Γ(i+ k + α+ β + 1) xk

Γ(k + β + 1) Γ(i+ α+ β + 1) (i− k)! k!
,

i = 0, 1, ... .

A continuous function u(x), square integrable in [0, 1], can be expressed in terms of
shifted Jacobi polynomials as

(2.4) u(x) =

∞∑
j=0

Cj P
(α,β)
j (x),

where the coefficients Cj are given by

Cj =
1

θj

∫ 1

0

u(x) P
(α,β)
j (x) w(α,β)(x) dx, j = 0, 1, ... .

In practice, only the first (N + 1)−terms shifted Jacobi polynomials are considered.
Therefore, one has

(2.5) uN (x) =

N∑
j=0

Cj P
(α,β)
j (x) = ΦT (x) C = CT Φ(x),

where the vectors C and Φ(x) are given by

(2.6) C = [C0, C1, ..., CN ]T , Φ(x) = [P
(α,β)
0 (x), P

(α,β)
1 (x), ..., P

(α,β)
N (x)]T .

Some other properties of the shifted Jacobi polynomials are presented as follows.

(1) P
(α,β)
i (0) = (−1)i

(
i+ α
i

)
,

(2)
di

dxi
P (α,β)
n (x) =

Γ(n+ α+ β + i+ 1)

Γ(n+ α+ β + 1)
P

(α+i,β+i)
n−i (x).

2.1. Lemma. The shifted Jacobi polynomial P (α,β)
i (x) can be obtained in the form of:

P
(α,β)
i (x) =

i∑
k=0

γ
(i)
k xk,

where γ(i)
k are

γ
(i)
k = (−1)i−k

(
i+ k + α+ β

k

)(
i+ α
i− k

)
.

Proof. γ(i)
k can be obtained as,

γ
(i)
k =

1

k!

dk

dxk
P

(α,β)
i (x) |x=0 .

Now, using properties (1) and (2), the lemma can be proved. �

2.2. Lemma. If p > β − 1, then∫ 1

0

xp−β P (α,β)
n (x) w(α,β)(x) dx =

n∑
l=0

(−1)n−lΓ(n+ β + 1) Γ(n+ l + α+ β + 1) Γ(p+ l + 1) Γ(α+ 1)

Γ(l + β + 1) Γ(n+ α+ β + 1) Γ(p+ l + α+ 2) (n− l)! l! .
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Proof. For p− β < n one has∫ 1

0

xp−β P (α,β)
n (x) w(α,β)(x) dx = 0.

Hence, we suppose p − β ≥ n. From analytic form of shifted Jacobi polynomials, (2.3),
one has∫ 1

0

xp−β P (α,β)
n (x) w(α,β)(x) dx =

n∑
l=0

(−1)n−lΓ(n+ β + 1) Γ(n+ l + α+ β + 1)

Γ(l + β + 1) Γ(n+ α+ β + 1) (n− l)! l! B(p+ l + 1, α+ 1)

=

n∑
l=0

(−1)n−lΓ(n+ β + 1) Γ(n+ l + α+ β + 1) Γ(p+ l + 1) Γ(α+ 1)

Γ(l + β + 1) Γ(n+ α+ β + 1) Γ(p+ l + α+ 2) (n− l)! l! ,

where B(s, t) is the Beta function and is defined as

B(s, t) =

∫ 1

0

vs−1(1− v)t−1dv =
Γ(s) Γ(t)

Γ(s+ t)
.

�

2.3. Lemma. If P (α,β)
j (x) and P (α,β)

k (x) are j−th and k−th shifted Jacobi polynomials,
respectively, then the product of P (α,β)

j (x) and P (α,β)
k (x) can be written as

Q
(α,β)
j+k (x) =

j+k∑
r=0

λ(j,k)
r xr.

Proof. Defining the Q(α,β)
j+k (x) = P

(α,β)
j (x) P

(α,β)
k (x) as a polynomial of degree j+k that

can be written as

Q
(α,β)
j+k (x) = (

j∑
m=0

γ(j)
m xm) (

k∑
n=0

γ(k)
n xn) =

j+k∑
r=0

λ(j,k)
r xr.

The relation between coefficients λ(j,k)
n with coefficients γ(j)

m and γ(k)
m will be as follows.

If j ≥ k :

(2.7)

r = 0, 1, ..., j + k,
if r > j then

λ
(j,k)
r =

∑k
l=r−j γ

(j)
r−l γ

(k)
l ,

else
r1 = min{r, k},
λ

(j,k)
r =

∑r1
l=0 γ

(j)
r−l γ

(k)
l ,

end.

If j < k :

(2.8)

r = 0, 1, ..., j + k,
if r ≤ j then

r1 = min{r, j},
λ

(j,k)
r =

∑r1
l=0 γ

(j)
r−l γ

(k)
l ,

else
r2 = min{r, k},
λ

(j,k)
r =

∑r2
l=r−j γ

(j)
r−l γ

(k)
l ,

end.
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Thus, the coefficients λ(j,k)
r is determined. �

2.4. Lemma. If P (α,β)
i (x), P (α,β)

j (x) and P (α,β)
k (x) are i−, j− and k−th shifted Jacobi

polynomials, respectively, then∫ 1

0

P
(α,β)
i (x) P

(α,β)
j (x) P

(α,β)
k (x) w(α,β)(x) dx =

j+k∑
n=0

i∑
l=0

(−1)i−lλ
(j,k)
n Γ(i+ β + 1) Γ(i+ l + α+ β + 1) Γ(n+ l + β + 1) Γ(α+ 1)

Γ(l + β + 1) Γ(i+ α+ β + 1) Γ(n+ l + α+ β + 2) (i− l)! l! ,

where λ(j,k)
n has been introduced in Lemma 2.3.

Proof. Assuming that P (α,β)
j (x) P

(α,β)
k (x) = Q

(α,β)
j+k (x). Using of (2.3), Lemmas 2.2 and

2.3 leads to∫ 1

0

P
(α,β)
i (x) P

(α,β)
j (x) P

(α,β)
k (x) w(α,β)(x) dx =∫ 1

0

P
(α,β)
i (x) Q

(α,β)
j+k (x) w(α,β)(x) dx

=

j+k∑
n=0

λ(j,k)
n

∫ 1

0

xn P
(α,β)
i (x) w(α,β)(x) dx

=

j+k∑
n=0

i∑
l=0

(−1)i−lΓ(i+ β + 1) Γ(i+ l + α+ β + 1)

Γ(l + β + 1) Γ(i+ α+ β + 1) (i− l)! l! B(n+ l + β + 1, α+ 1),

Thus, desirable result is obtained. �

In performing arithmetic and other operations on the Jacobi bases, we frequently
encounter the integration of the vector Φ(x) defined in (2.6) which is called the operational
matrix of the integration. Hence, the matrix relations must be obtained. In this section,
this operational matrix will be derived, then it will be extended to two dimensional case
in next section. To this end, some useful lemmas and theorems are stated.

2.5. Theorem. Let Φ(x) be shifted Jacobi vector in (2.6). Then∫ x

0

Φ(t) dt ' P Φ(x),

where P is the (N + 1)× (N + 1) operational matrix of the integration and is defined by:

P =


Ω(0, 0) Ω(0, 1) . . . Ω(0, N)
Ω(1, 0) Ω(1, 1) . . . Ω(1, N)

...
...

. . .
...

Ω(N, 0) Ω(N, 1) . . . Ω(N,N)

 ,
where

(2.9) Ω(i, j) =

i∑
l=0

ωijl, i, j = 0, 1, ..., N,
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and ωijl are given by

ωijl =
(−1)i−l Γ(i+ β + 1) Γ(i+ l + α+ β + 1)

Γ(l + β + 1) Γ(i+ α+ β + 1) (l + 1)! (i− l)!

×
j∑

k=0

(−1)j−k Γ(j + k + α+ β + 1) Γ(j + β + 1) Γ(k + l + β + 2) Γ(α+ 1)

θj Γ(k + β + 1) Γ(j + α+ β + 1) Γ(k + l + α+ β + 3) k! (j − k)!
,

i, j = 0, 1, ..., N, l = 0, 1, ..., i.

Proof. Integrating the analytical form of P (α,β)
i (x), i.e. (2.3), from 0 to x leads to

(2.10)
∫ x

0

P
(α,β)
i (t) dt =

i∑
l=0

(−1)i−l Γ(i+ β + 1) Γ(i+ l + α+ β + 1) xl+1

Γ(l + β + 1) Γ(i+ α+ β + 1) (l + 1)! (i− l)! .

Now, one can approximate xl+1 in terms of shifted Jacobi polynomials as

xl+1 =

N∑
k=0

al,j P
(α,β)
j (x),

where

al,j =
1

θj

∫ 1

0

xl+1 P
(α,β)
j (x) w(α,β)(x) dx.

But according to Lemma 2.2 one has,∫ 1

0

xl+1 P
(α,β)
j (x) w(α,β)(x) dx =

j∑
k=0

(−1)(j−k) Γ(j + k + α+ β + 1) Γ(j + β + 1) Γ(k + l + β + 2) Γ(α+ 1)

Γ(k + β + 1) Γ(j + α+ β + 1) Γ(k + l + α+ β + 3) k! (j − k)!
.

Therefore, (2.10) will be as follows:

(2.11)

∫ x

0

P
(α,β)
i (t) dt =

N∑
j=0

{ i∑
l=0

(−1)i−l Γ(i+ β + 1) Γ(i+ l + α+ β + 1)

Γ(l + β + 1) Γ(i+ α+ β + 1) (l + 1)! (i− l)!

×
j∑

k=0

(−1)j−k Γ(j + k + α+ β + 1) Γ(j + β + 1) Γ(k + l + β + 2)

θj Γ(k + β + 1) Γ(j + α+ β + 1) Γ(k + l + α+ β + 3) (j − k)! (k)!

}
× P

(α,β)
j (x)

=

N∑
j=0

Ω(i, j) P
(α,β)
j (x).

where Ω(i, j) are given in (2.9). Accordingly, rewriting (2.11) as a vector form gives∫ x

0

P
(α,β)
i (t) dt = [Ω(i, 0),Ω(i, 1), ...,Ω(i,N)] Φ(x), i = 0, 1, .., N.

This leads to the desired result. �

3. Two variables Jacobi polynomials and their operational matri-
ces
Now in this section, two variables Jacobi polynomials can be defined by means of one

variable Jacobi polynomials as follows:
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3.1. Definition. Let {P (α,β)
n (x)}∞n=0 be the sequence of one variable shifted Jacobi

polynomials on D = [0, 1]. Two variables Jacobi polynomials, {P (α,β)
m,n (x, y)}∞m,n=0 are

defined on D2 = [0, 1]× [0, 1] as:

(3.1) P (α,β)
m,n (x, y) = P (α,β)

m (x) P (α,β)
n (y), (x, y) ∈ D2.

The family {P (α,β)
m,n (x, y)}∞m,n=0 is orthogonal with weighted function

w(α,β)(x, y) = w(α,β)(x) w(α,β)(y) on D2 and forms a basis for L2(D2).

3.2. Theorem. The basis {P (α,β)
m,n (x, y)}∞m,n=0 is orthogonal on D2.

Proof. One has∫ 1

0

∫ 1

0

P (α,β)
m,n (x, y) P

(α,β)
k,l (x, y) w(α,β)(x, y) dxdy =∫ 1

0

P (α,β)
m (x)P

(α,β)
k (x)w(α,β)(x) dx

×
∫ 1

0

P (α,β)
n (y)P

(α,β)
l (y) w(α,β)(y) dy

=

{
θm θn, (m,n) = (k, l),
0, (m,n) 6= (k, l) or m 6= k or n 6= l.

�

Similar to one variable case, a two variables continuous function u(x, y) defined over
D2 may be expanded by the two variables Jacobi polynomials as:

(3.2) u(x, y) =

∞∑
i=0

∞∑
j=0

Cij P
(α,β)
i,j (x, y),

where the Jacobi coefficients, Cij , are obtained as:

Cij =
1

θiθj

∫ 1

0

∫ 1

0

P
(α,β)
i,j (x, y) u(x, y) w(α,β)(x, y) dxdy.

If the infinite series in (3.2) is truncated up to their (N + 1)−terms in terms of both two
variables x and y then it can be written as:

(3.3) u(x, y) ' uN (x, y) =

N∑
i=0

N∑
j=0

Cij P
(α,β)
i,j (x, y) = ΦT (x, y) C,

where C and Φ(x, y) are Jacobi coefficients and Jacobi polynomials vectors, respectively:

(3.4)

C = [C00, C01, ..., C0N , C10, ..., C1N , ..., CN1, ..., CNN ]T ,

Φ(x, y) = [P
(α,β)
0,0 (x, y), P

(α,β)
0,1 (x, y), ..., P

(α,β)
0,N (x, y), P

(α,β)
1,0 (x, y),

..., P
(α,β)
1,N (x, y), ..., P

(α,β)
N,0 (x, y), ..., P

(α,β)
N,N (x, y)]T .

A function of four variables, k(x, y, t, s), on D4 may be approximated based on Jacobi
operational matrix as:

k(x, y, t, s) ' ΦT (x, y) K Φ(t, s),

where Φ(x, y) is two variables Jacobi vector defined by (3.4) andK is a (N+1)2×(N+1)2

known matrix. Before proceeding, let us represent the partial series (3.3) as following
form:

(3.5) SN (x, y) =

M∑
i=0

di Q
(α,β)
i (x, y),



319

where

di = Crs, Qi(x, y) = P (α,β)
r,s (x, y),

r = b i

N + 1
c, s = i− r(N + 1), M = (N + 1)2 − 1.

Hence, one has∫ 1

0

∫ 1

0

Q
(α,β)
k (x, y) Q

(α,β)
l (x, y) w(α,β)(x, y) dxdy =∫ 1

0

P
(α,β)

b k
N+1

c
(x) P

(α,β)

b l
N+1

c
(x) w(α,β)(x) dx

×
∫ 1

0

P
(α,β)

k−b k
N+1

c(N+1)
(y) P

(α,β)

l−b l
N+1

c(N+1)
(y) w(α,β)(y) dy

= θb k
N+1

c θk−b k
N+1

c(N+1) = θr θs, r = b k

N + 1
c, s = k − r(N + 1).

3.3. Remark. The relation (3.5) can be rewritten as:

(3.6) SN (x, y) =

M∑
i=0

ωi R
(α,β)
i (x, y),

where

ωi = di
√
θrθs, R

(α,β)
i (x, y) =

Q
(α,β)
i (x, y)√
θrθs

, r = b i

N + 1
c, s = i− r(N + 1).

This shows the sequence {R(α,β)
i (x, y)}Mi=0 is orthonormal. That is∫ 1

0

∫ 1

0

R
(α,β)
k (x, y) R

(α,β)
l (x, y) w(α,β)(x, y) dxdy =

{
1, k = l,
0, otherwise

Now, the two dimensional operational matrices of integration in x and y−direction
are defined by following theorem:

3.4. Theorem. If P is the operational matrix in one dimensional case then the opera-
tional matrices of integration in x and y−direction are defined as follows.

a)

∫ x

0

Φ(t, y) dt ' Px Φ(x, y) = (P ⊗ I) Φ(x, y),

b)

∫ y

0

Φ(x, s) ds ' Py Φ(x, y) = (I ⊗ P ) Φ(x, y),

where Px and Py are (N + 1)2 × (N + 1)2 operational matrices of integration in the
directions x and y, respectively, I is (N + 1)× (N + 1) identity matrix and ⊗ denotes the
Kronecker product and is defined for two arbitrary matrices A and B as A⊗B = (aijB).

Proof. a) Suppose rj be jth row of matrix P . One has∫ x

0

P
(α,β)
j (t) dt = rTj Φ(x).

Also, noting the definition of the vector Φ(x, y) one has

(3.7)
Φ(x, y) = [P

(α,β)
0 (x)P

(α,β)
0 (y), ..., P

(α,β)
0 (x)P

(α,β)
N (y),

..., P
(α,β)
N (x)P

(α,β)
0 (y), ..., P

(α,β)
N (x)P

(α,β)
N (y)]T .
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Integrating of (3.7) from 0 to x yields∫ x

0

Φ(t, y)dt = [P
(α,β)
0 (y)

∫ x

0

P
(α,β)
0 (t)dt, ..., P

(α,β)
N (y)

∫ x

0

P
(α,β)
0 (t)dt,

..., P
(α,β)
N (y)

∫ x

0

P
(α,β)
N (t)dt]T

= [r0.Φ(x) P
(α,β)
0 (y), ..., r0.Φ(x) P

(α,β)
N (y), ..., rN .Φ(x) P

(α,β)
0 (y),

..., rN .Φ(x) P
(α,β)
N (y)]T

= [r0 [P
(α,β)
0 (x) P

(α,β)
0 (y), ..., P

(α,β)
N (x) P

(α,β)
0 (y)],

..., rN [P
(α,β)
0 (x) P

(α,β)
N (y), ..., P

(α,β)
N (x) P

(α,β)
N (y)]]T

=



P00 0 . . . 0 P01 0 . . . 0 . . . P0N 0 . . . 0
0 P00 . . . 0 0 P01 . . . 0 . . . 0 P0N . . . 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . . 0
0 0 . . . P00 0 0 . . . P01 . . . 0 0 . . . P0N

...
...

...
PN0 0 . . . 0 PN1 0 . . . 0 . . . PNN 0 . . . 0

0 PN0 . . . 0 0 PN1 . . . 0 . . . 0 PNN . . . 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

0 0 . . . PN0 0 0 . . . PN1 . . . 0 0 . . . PNN



×



P
(α,β)
0 (x) P

(α,β)
0 (y)

P
(α,β)
0 (x) P

(α,β)
1 (y)

...
P

(α,β)
0 (x) P

(α,β)
N (y)

...
P

(α,β)
N (x) P

(α,β)
0 (y)

P
(α,β)
N (x) P

(α,β)
1 (y)

...
P

(α,β)
N (x) P

(α,β)
N (y)



=


P00I P01I . . . P0NI
P10I P11I . . . P1NI
...

...
. . .

...
PN0I PN1I . . . PNNI



P

(α,β)
0 (x) Φ(y)

P
(α,β)
1 (x) Φ(y)

...
P

(α,β)
N (x) Φ(y)


= (P ⊗ I)Φ(x, y).

Where Pij denotes (i, j)−th entry of the matrix P . The case (b) is proven similarly. �

The following property of the product of two vectors Φ(x, y) and ΦT (x, y) will also be
used.

(3.8) Φ(x, y) ΦT (x, y) C ' C̃ Φ(x, y),

where C and C̃ are a (N + 1)2 × 1 vector and a (N + 1)2 × (N + 1)2 operational matrix
of product, respectively.
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3.5. Theorem. The entries of the matrix C̃, in (3.8), are computed as:

C̃m(N+1)+n,k(N+1)+l =
1

θkθl

N∑
r=0

N∑
s=0

Crs qmrk qnsl, m, n, k, l = 0, 1, ..., N.

Proof. The left side of equality (3.8) is as follows:

Φ(x, y) ΦT (x, y) C =


∑N
r=0

∑N
s=0 Crs P

(α,β)
0,0 (x, y) P

(α,β)
r,s (x, y)∑N

r=0

∑N
s=0 Crs P

(α,β)
0,1 (x, y) P

(α,β)
r,s (x, y)

...∑N
r=0

∑N
s=0 Crs P

(α,β)
N,N (x, y) P

(α,β)
r,s (x, y)

 .
Consider the (p+ 1)th row of above vector. One puts

(3.9) P
(α,β)
i,j (x, y) P (α,β)

r,s (x, y) =

N∑
k=0

N∑
l=0

ukl P
(α,β)
k,l (x, y),

Multiplying both sides of (3.9) by P
(α,β)
m,n (x, y), m, n = 0, 1, ..., N, and integrating the

result from 0 to 1 yields:∫ 1

0

∫ 1

0

P
(α,β)
i,j (x, y) P (α,β)

r,s (x, y) P (α,β)
m,n (x, y) w(α,β)(x, y) dxdy =

N∑
k=0

N∑
l=0

ukl

∫ 1

0

∫ 1

0

P
(α,β)
k,l (x, y) P (α,β)

m,n (x, y) w(α,β)(x, y) dxdy

= umn θm θn.

Therefore,

umn =
1

θm θn

∫ 1

0

P
(α,β)
i (x) P (α,β)

r (x) P (α,β)
m (x) w(α,β)(x)dx

×
∫ 1

0

P
(α,β)
j (y) P (α,β)

s (y) P (α,β)
n (y) w(α,β)(y) dy.

Now suppose
∫ 1

0
P

(α,β)
i (x) P

(α,β)
r (x) P

(α,β)
m (x) w(α,β)(x) dx = qirm. one gets

umn =
qirm qjsn
θm θn

.

Substituting umn into (3.9) one has:

P
(α,β)
i,j (x, y) P (α,β)

r,s (x, y) =

N∑
k=0

N∑
l=0

qirm qjsn
θm θn

P
(α,β)
k,l (x, y),

Hence each component in the left side of relation (3.8) will be as follows:
N∑
k=0

N∑
l=0

{ N∑
r=0

N∑
s=0

Crs qmrk qnsl
θkθl

}
P

(α,β)
k,l (x, y)

=

N∑
k=0

N∑
l=0

C̃m(N+1)+n,k(N+1)+l P
(α,β)
k,l (x, y),

m, n = 0, 1, .., N.

Thus, the desirable result is obtained. �

The Next theorem presents the general formula approximating the nonlinear term
vr(x, y) us(x, y) which may appear in nonlinear equations.
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3.6. Theorem. If c and υ are the (N + 1)2 vectors, c̃ and υ̃ are the (N + 1)2 × (N + 1)
operational matrices of the product such that

u(x, y) ' ΦT (x, y) c = cT Φ(x, y), v(x, y) ' ΦT (x, y) υ = υT Φ(x, y),

Φ(x, y) ΦT (x, y) c ' c̃ Φ(x, y)

and Φ(x, y) ΦT (x, y) υ ' υ̃ Φ(x, y), then the following proposition is hold:

vr(x, y) us(x, y) ' υT (υ̃)r−1 B̃s−1 Φ(x, y), Bs−1 = (c̃T )s−1 c,

r, s = 1, 2, ... .

Proof. One has

u2(x, y) ' (ΦT (x, y) c)2 = cT Φ(x, y) ΦT (x, y) c ' cT c̃ Φ(x, y),

So, by use of induction, us(x, y) will be approximated as

us(x, y) ' cT (c̃)s−1 Φ(x, y), s = 1, 2, ... .

To similar way, vr(x, y) is approximated as

vr(x, y) ' υT (υ̃)r−1 Φ(x, y), r = 1, 2, ... .

By using the expressed relations and induction is easily seen,

vr(x, y) us(x, y) ' υT (υ̃)r−1 B̃s−1 Φ(x, y), Bs−1 = (c̃T )s−1 c,

r, s = 1, 2, ... .

�

4. Best approximation and Convergence analysis
In this section, the theorems on existence and uniqueness of best approximation,

convergence analysis and error estimation of the proposed method are provided. For this
reason, first the space PM is considered as follows:

4.1. Definition. The set of all the linear combinations of R(α,β)
0 (x, y), R

(α,β)
1 (x, y),

..., R
(α,β)
M (x, y), which M = (N + 1)2 − 1, is represented by PM . On the other hand,

(4.1) PM = span {R(α,β)
0 (x, y), R

(α,β)
1 (x, y), ..., R

(α,β)
M (x, y)},

where two variables orthonormal polynomials R(α,β)
i (x, y) are introduced by (3.6).

The following lemma is useful to prove the convexity and completeness properties of
space PM .

4.2. Lemma. There is a number η > 0 such that for every choice of scalars α0, α1, ..., αM
one has

‖ α0 R
(α,β)
0 (x, y) + α1 R

(α,β)
1 (x, y) + ...+ αM R

(α,β)
M (x, y) ‖ ≥

η (| α0 | + | α1 | +...+ | αM |).

Proof. See [24]. �

4.3. Theorem. The space PM , defined by (4.1), is convex and complete.
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Proof. Suppose v1(x, y) and v2(x, y) ∈ PM . One has for 0 < λ < 1

λ v1(x, y) + (1− λ) v2(x, y) =

M∑
i=0

(λ ω1
i + (1− λ) ω2

i ) R
(α,β)
i (x, y) ∈ PM .

This shows that PM is convex.
For proving the completeness property, let us consider Cauchy sequence

{wn(x, y)}∞n=0 ∈ PM .

Then each wn(x, y) is a unique representation of the form

wn(x, y) =

M∑
i=0

λ
(n)
i R

(α,β)
i (x, y).

Since {wn(x, y)}∞n=0 is a Cauchy sequence, for every ε > 0 there is a N ′ such that
‖ wm(x, y) − wn(x, y) ‖< ε where m,n > N ′. From this and Lemma 4.2, one has for
η > 0

ε >‖ wm(x, y)− wn(x, y) ‖ = ‖
M∑
i=0

(λ
(m)
i − λ(n)

i ) R
(α,β)
i (x, y) ‖ ≥ η

M∑
i=0

| λ(m)
i − λ(n)

i | .

Division by η > 0 gives

| λ(m)
i − λ(n)

i | ≤
M∑
i=0

| λ(m)
i − λ(n)

i | < ε

η
,

This shows that each of the M + 1 sequences {λ(n)
i }

∞
n=0, i = 0, 1, ...,M, is Cauchy in R.

Hence it converges. Let λi denotes the limit. Using this M + 1 limits λ0, λ1, ..., λM , one
defines

w̄(x, y) =

M∑
i=0

λi R
(α,β)
i (x, y).

Clearly, w̄(x, y) ∈ PM . Furthermore,

‖ wn(x, y)− w̄(x, y) ‖ = ‖
M∑
i=0

(λ
(n)
i − λi) R(α,β)

i (x, y) ‖

≤
M∑
i=0

| λ(n)
i − λi | ‖ R(α,β)

i (x, y) ‖ .

On the right, λ(n)
i → λi. Hence ‖ wn(x, y) − w̄(x, y) ‖→ 0, that is, wn(x, y) → w̄(x, y).

This shows that {wn(x, y)}∞n=0 is convergent in PM , and the completeness of PM is
proven. �

4.4. Theorem. For every given continuous function u(x, y) there exists a unique uM (x, y) ∈
PM such that

δ = inf
ũ∈PM

‖ u(x, y)− ũ(x, y) ‖ = ‖ u(x, y)− uM (x, y) ‖ .

Proof. Existence. By the definition of an infimum, there is a sequence {wn(x, y)}∞n=0 in
PM such that δn → δ where δn = ‖ u(x, y)−wn(x, y) ‖. We show that {wn(x, y)}∞n=0 is
Cauchy. Writing vn(x, y) = u(x, y)− wn(x, y), one has ‖ vn(x, y) ‖ = δn and

‖ vm(x, y) + vn(x, y) ‖ = 2 ‖ 1

2
(wm(x, y) + wn(x, y))− u(x, y) ‖ ≥ 2 δ,
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because PM is convex, so that 1
2
(wm(x, y) + wn(x, y)) ∈ PM . Furthermore, one has

vm(x, y)− vn(x, y) = wn(x, y)− wm(x, y). Hence by the parallelogram equality

‖ wn(x, y)− wm(x, y) ‖2 =‖ vm(x, y)− vn(x, y) ‖2

= − ‖ vm(x, y) + vn(x, y) ‖2

+ 2 (‖ vm(x, y) ‖2 + ‖ vn(x, y) ‖2)

≤ −(2 δ)2 + 2(δ2
m + δ2

n) < ε2.

This implies that {wn(x, y)}∞n=0 is Cauchy. Since PM is complete, {wn(x, y)}∞n=0

converges, say, wn(x, y) → w̄(x, y) ∈ PM . Since w̄(x, y) ∈ PM , one has ‖ u(x, y) −
w̄(x, y) ‖≥ δ. Also,

‖ u(x, y)− w̄(x, y) ‖ ≤‖ u(x, y)− wn(x, y) ‖ + ‖ wn(x, y)− w̄(x, y) ‖
= δn+ ‖ wn(x, y)− w̄(x, y) ‖→ δ.

This shows that ‖ u(x, y)− w̄(x, y) ‖= δ.
Uniqueness. Let us assume that w̄(x, y) ∈ PM and w0(x, y) ∈ PM both satisfy

‖ u(x, y)− w̄(x, y) ‖= δ, ‖ u(x, y)− w0(x, y) ‖= δ.

By the parallelogram equality,

‖ w̄(x, y)− w0(x, y) ‖2 =‖ (w̄(x, y)− u(x, y))− (w0(x, y)− u(x, y)) ‖2

= 2 ‖ w̄(x, y)− u(x, y) ‖2 +2 ‖ w0(x, y)− u(x, y) ‖2

− ‖ w̄(x, y)− u(x, y)) + (w0(x, y)− u(x, y)) ‖2

= 4 δ2 − 4 ‖ 1

2
(w̄(x, y) + w0(x, y))− u(x, y) ‖2 ≤ 0,

because 1
2
(w̄(x, y) + w0(x, y)) ∈ PM . So that w̄(x, y) = w0(x, y).

Orthogonality. We assume there be a 0 6= w1(x, y) ∈ PM such that

(z(x, y), w1(x, y)) = γ 6= 0

where z(x, y) = u(x, y) − w̄(x, y) and (., .) denotes the inner product. Furthermore, for
any scalar η,

‖ z(x, y)− η w1(x, y) ‖2 = (z(x, y)− η w1(x, y), z(x, y)− η w1(x, y))

=‖ z(x, y) ‖2 −η̄ γ − η (γ̄ − η̄ ‖ w1(x, y) ‖2),

Choosing η̄ = γ̄
‖w1(x,y)‖2 yields

‖ z(x, y)− η w1(x, y) ‖2=‖ z(x, y) ‖2 − γ̄

‖ w1(x, y) ‖2 = δ2 − γ̄

‖ w1(x, y) ‖2 ≥ δ
2,

But this is impossible because one has ‖ z(x, y)− η w1(x, y) ‖ ≥ δ by the definition of δ.
Hence the assumption can not be hold. So (z(x, y), ũ(x, y)) = 0, ∀ ũ(x, y) ∈ PM .

Now it is shown that w̄(x, y) = uM (x, y). It was proven that w̄(x, y) is the best
approximation for u(x, y). So,

∀j, j = 0, 1, ..,M, (u(x, y)− w̄(x, y), Rj(x, y)) = 0,

where two variables polynomials R(α,β)
i (x, y) are introduced by (3.6). One has from this

point,
(w̄(x, y)− uM (x, y), Rj(x, y)) = (u(x, y)− (u(x, y)− w̄(x, y))− uM (x, y), Rj(x, y))

= (u(x, y), Rj(x, y))− (u(x, y)− w̄(x, y), Rj(x, y))

− (uM (x, y), Rj(x, y))

= ωj − ωj = 0, j = 0, 1, ...,M,
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Therefore w̄(x, y) − uM (x, y) = 0. This shows that uM (x, y) = w̄(x, y) and proof is
completed. �

Two following theorems state the decaying of the Jacobi coefficients and the conver-
gence of the best approximation.

4.5. Theorem. The Jacobi coefficients ωi, introduced by (3.6), decay when the number
of the terms of the partial sum of the series solution, N , increases.

Proof. Employing the ωi and the properties of the orthogonality of Ri(x, y), we have∫ 1

0

∫ 1

0

SM (x, y) u(x, y) w(α,β)(x, y) dxdy =

M∑
i=0

ωi

∫ 1

0

∫ 1

0

Ri(x, y) u(x, y) w(α,β)(x, y) dxdy

=

M∑
i=0

ω2
i .

If u2(x, y) w(α,β)(x, y) as well as u(x, y) w(α,β)(x, y) is integrable, then∫ 1

0

∫ 1

0

[u(x, y)−SM (x, y)]2 w(α,β)(x, y) dxdy =∫ 1

0

∫ 1

0

u2(x, y) w(α,β)(x, y) dxdy

− 2

∫ 1

0

∫ 1

0

u(x, y) SM (x, y) w(α,β)(x, y) dxdy

+

∫ 1

0

∫ 1

0

S2
M (x, y) w(α,β)(x, y) dxdy

=

∫ 1

0

∫ 1

0

u2(x, y) w(α,β)(x, y) dxdy −
M∑
i=0

ω2
i .

Therefore,

M∑
i=0

ω2
i ≤

∫ 1

0

∫ 1

0

u2(x, y) w(α,β)(x, y) dxdy, ∀N ∈ N,

Consequently
∑∞
i=0 ω

2
i is convergent and limi→∞ ωi = 0. �

Theorem 4.5 states the given function u(x, y) may be approximated using only the
finite numbers of two variables Jacobi polynomials.

4.6. Theorem. The series solution (3.3) converges towards u(x, y) in (3.2).

Proof. Consider the relation (3.6) and define the sequence partial sums

{SM (x, y)}∞M=0

as follows,

SM (x, y) =

M∑
i=0

ωi Ri(x, y).
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Let suppose that the SM (x, y) and SL(x, y) are partial sums with M > L. It is going to
prove that {SM (x, y)}∞M=0 is a Cauchy sequence in PM . For this purpose, it is worked
out as follows:

‖
M∑

i=L+1

ωi Ri(x, y) ‖2 = (

M∑
i=L+1

ωi Ri(x, y),

M∑
j=L+1

ωj Rj(x, y))

=

M∑
i=L+1

M∑
j=L+1

ωi ω̄j(Ri(x, y), Rj(x, y))

=

M∑
i=L+1

| ωi |2 .

That is ‖ SM (x, y) − SL(x, y) ‖2=
∑M
i=L+1 | ωi |

2. From Bessel inequality
∑∞
i=0 | ωi |

2

is convergent and hence ‖ SM (x, y) − SL(x, y) ‖2 ≤ ε2. This shows {SM (x, y)}∞M=0 is a
Cauchy sequence. Since PM is complete one has SM (x, y) → S(x, y) ∈ PM . We show
S(x, y) = u(x, y):

(S(x, y)− u(x, y), Rj(x, y)) = (S(x, y), Rj(x, y))− (u(x, y), Rj(x, y))

= ( lim
M→∞

SM (x, y), Rj(x, y))− (u(x, y), Rj(x, y))

= lim
M→∞

(SM (x, y), Rj(x, y))− (u(x, y), Rj(x, y))

= ωj − ωj = 0,

⇒ S(x, y)− u(x, y) = 0, j = 0, 1, ...,M.

Hence,

S(x, y) =

∞∑
i=0

ωi Ri(x, y) =

∞∑
i=0

∞∑
j=0

Cij P
(α,β)
i (x) P

(α,β)
j (y) = u(x, y).

�

Whenever the solution of a problem is not known, specially in nonlinear phenomena,
an error estimator is needed as an essential component of the computational algorithm.
To this end, an error estimator for the proposed method is presented in this section.

For simplicity, discussed equations are written in the operator form

(4.2) Du(x, y) = f(x, y)

where D is a integro–partial differential operator. Define the error function as

eN (x, y) = u(x, y)− uN (x, y).

Substituting uN (x, y) into given equations yields

(4.3) DuN (x, y) = f(x, y) +HN (x, y),

where HN (x, y) is a perturbation term. Subtracting (4.3) from (4.2) gives

DeN (x, y) = −HN (x, y).

Now, it can be proceeded by the same way as the basic problem is solved to get the
estimation eN,M (x, y) to the error function eN (x, y). Note the stated approximations are
also substituted in the conditions of the given problem. Subsequently, the conditions of
new problem will be homogeneous.
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5. Numerical results
In this section, four examples are given to certify the efficiency and accuracy of the

proposed method where the maximum absolute and estimate errors are reported for dif-
ferent values of parameters α and β. Also, the absolute and estimate errors are computed
at some arbitrary selected points.

5.1. Example. Consider the following linear Volterra–Fredholm integro–partial differ-
ential equation.

(5.1) uxx(x, y) + sin(xy) u(x, y) = xy sin(xy)− 1

6
y3 +

∫ y

0

∫ 1

0

ts ut(t, s) dtds,

with the following conditions,

(5.2) ux(0, y) = y, u(0, y) = 0.

The exact solution of this problem is u(x, y) = xy. First, let us consider the following
approximation,

(5.3) uxx(x, y) ' ΦT (x, y) C.

Integrating (5.3) with respect to x from 0 to x, one gets the following approximation for
ux(x, y).

(5.4) ux(x, y) ' ΦT (x, y) PTx C + ux(0, y) ' ΦT (x, y) PTx C + ΦT (x, y) V,

where ux(0, y) is approximated by ΦT (x, y) V which V is a (N + 1) × 1 known vec-
tor. Again, integrating (5.4) with respect to x from 0 to x, one obtains the following
approximation for u(x, y),

(5.5) u(x, y) ' ΦT (x, y) (PTx )2 C + ΦT (x, y) PTx V.

In order to approximate the integral part in the (5.1), the kernel ts is approximated as
follows:

(5.6) ts ' ΦT (x, y) K Φ(t, s),

where K is a (N + 1)2 × (N + 1)2 known matrix and is determined by inner product.
Now, the integral part in (5.1) is approximated as:

(5.7)

∫ y

0

∫ 1

0

ts ut(t, s) dtds '
∫ y

0

∫ 1

0

ΦT (x, y) K Φ(t, s) {ΦT (t, s) PTx C

+ ΦT (t, s) V } dtds

' ΦT (x, y) K{Ṽ + B̃}Py A,

where Ṽ is operational matrix of product and its entries are determined in terms of the
components of the vector V , B̃ is operational matrix of product corresponding to vector
B = PTx C, and A =

∫ 1

0
Φ(t, y) dt. Substituting the approximations (5.3)-(5.7) into (5.1),

leads to the following linear algebraic equation.

(5.8)
ΦT (x, y) C + sin(xy) ΦT (x, y) {(PTx )2 C + PTx V }

− ΦT (x, y) K{Ṽ + B̃}Py A− xy sin(xy) +
1

6
y3 = 0.

Setting N = 3 and using the roots of P (α,β)
4 (x) and P (α,β)

4 (y) in the x and y−directions,
(5.8) is collocated in 16 inner tensor points for different values of parameters α and β.
Hereby, the (5.8) reduces the problem to solve a system of linear algebraic equations and
unknown coefficients are obtained for some values of parameters α and β. Table 1 shows
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the maximum absolute and estimate errors of the approximate solutions for different
values of α and β. Table 2 displays different values of the exact and approximate solutions
in points (x, y) = (0.1i, 0.1i), (i = 1, 2, ..., 10) for α = β = −1/4. As can be seen from
Tables the results of the solutions obtained by Jacobi polynomials method are almost
the same as the results of the exact solutions.

Table 1. Maximum absolute and estimate errors of Example 5.1 for different values α and β
(α, β) ErrorAbs ErrorEst (α, β) ErrorAbs ErrorEst

(0, 0) 5.2715× 10−21 4.7132× 10−21 ( 1
4
, 1
4

) 4.9562× 10−20 3.8921× 10−21

(1, 1) 2.4802× 10−20 2.2000× 10−20 (− 1
4
,− 1

4
) 5.0940× 10−19 2.2476× 10−19

(2, 2) 5.3375× 10−20 3.8880× 10−21 ( 3
4
, 3
4

) 9.8549× 10−19 4.8000× 10−19

( 1
2
, 1
2

) 1.5140× 10−21 1.5829× 10−21 ( 1
10
, 1
10

) 1.3500× 10−19 3.8930× 10−21

Table 2. Maximum absolute and estimate errors of Example 5.1 for various values of α = β = − 1
4

(xi, yi) Exact value Approximate value ErrorAbs ErrorEst

(0.1, 0.1) 0.01 0.0099999999999999999918 8.20× 10−21 1.6649× 10−21

(0.2, 0.2 0.04 0.040000000000000000004 4.00× 10−21 4.7592× 10−21

(0.3, 0.3) 0.09 0.090000000000000000008 8.00× 10−21 6.7477× 10−21

(0.4, 0.4) 0.16 0.16000000000000000000 8.00× 10−21 5.2854× 10−21

(0.5, 0.5) 0.25 0.25000000000000000001 1.00× 10−20 61.9554× 10−21

(0.6, 0.6) 0.36 0.35999999999999999999 1.00× 10−20 1.7448× 10−20

(0.7, 0.7) 0.49 0.49000000000000000000 0.00 04.3963× 10−20

(0.8, 0.8) 0.64 0.64000000000000000000 0.00 8.4713× 10−20

(0.9, 0.9) 0.84 0.81000000000000000002 2.00× 10−20 1.4349× 10−19

(1, 1) 1.00 1.0000000000000000001 1.00× 10−19 2.2476× 10−19

5.2. Example. Consider the following linear Volterra integro–partial differential equa-
tion.

(5.9) ux(x, y) + uy(x, y) = −1 + exp(x) + exp(y) + exp(x+ y) +

∫ x

0

∫ y

0

u(t, s) ds dt,

with the conditions u(x, 0) = exp(x) and u(0, y) = exp(y). The exact solution of this
problem is u(x, y) = exp(x+ y). Let us consider the following approximation,

(5.10) uxy(x, y) ' ΦT (x, y) C.

Integrating (5.10) with respect to y from 0 to y, one obtains the following approximation
for ux(x, y).

(5.11) ux(x, y) ' ΦT (x, y) PTy C + ux(x, 0) ' ΦT (x, y) PTy C + ΦT (x, y) V1.

Now, integrating (5.10) with respect to x from 0 to x, one gets the following approxima-
tion for uy(x, y) as follows:

(5.12) uy(x, y) ' ΦT (x, y) PTx C + uy(0, y) ' ΦT (x, y) PTx C + ΦT (x, y) V2.

Also, by integrating the relation (5.11) with respect to x from 0 to x an approximation
yields for u(x, y) as follows:

(5.13)
u(x, y) ' ΦT (x, y) PTx PTy C + ΦT (x, y) PTx V1 + u(0, y)

' ΦT (x, y) PTx PTy C + ΦT (x, y) PTx V1 + ΦT (x, y) V1.

The kernel is approximated as follows:

(5.14) 1 ' ΦT (x, y) K Φ(t, s).
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Now, the integral part in (5.9) is approximated as:

(5.15)

∫ x

0

∫ y

0

u(t, s) dtds '
∫ y

0

∫ 1

0

ΦT (x, y) K Φ(t, s) ΦT (x, y)

{
PTx PTy C

+ PTx V1 + V1

}
dsdt

' ΦT (x, y) K Ã Py Px Φ(x, y),

where Ã is operational matrix of product corresponding to vector A = PTx PTy C+PTx V1+
V1. Substituting the approximations (5.11)-(5.15) into (5.9), leads to the following linear
algebraic equation.

(5.16)
ΦT (x, y) PTy C + ΦT (x, y) V1 + ΦT (x, y) PTx C + ΦT (x, y) V2

− ΦT (x, y) K Ã Py Px Φ(x, y) + 1− ex − ey − ex+y = 0.

Setting N = 7 and using the roots of P (α,β)
8 (x) and P (α,β)

8 (y) in the x and y−directions,
(5.16) is collocated in 64 inner tensor points for different values of parameters α and β.
Hereby, the (5.16) reduces the problem to solve a system of linear algebraic equations
and unknown coefficients are obtained for some values of parameters α and β. Table
3 displays the maximum absolute and estimate errors of the approximate solutions for
different values of α and β. Table 4 shows different values of the exact and approximate
solutions in points (x, y) = (0.2i, 0.2i), (i = 1, 2, ..., 5) for α = β = 1 and N = 4, 7, 8. It
can be observed from Table 4 that the errors decrease as N increases. Also,

Table 3. Maximum absolute and estimate errors of Example 5.2 for N = 7 and various values of α and β
(α, β) ErrorAbs ErrorEst

(0, 0) 1.7484× 10−8 8.5474× 10−9

( 1
2
, 1
2

) 3.1164× 10−8 1.4839× 10−8

(1, 1) 4.6983× 10−8 2.0999× 10−8

(− 1
4
,− 1

4
) 8.2454× 10−8 4.8751× 10−8

( 1
4
, 1
4

) 2.4007× 10−8 1.1603× 10−8

Table 4. Comparison of the exact and approximate solutions of Example 5.2 for N = 4, 7, 8 and α = β = 1
(xi, yi) uExact Error(u4) Error(u7) u8(x, y) Error(u8)

(0.2, 0.2) 1.49182469764 2.7289× 10−5 1.6429× 10−9 1.49182469766 2.2390× 10−11

(0.4, 0.4) 2.22554092849 3.3508× 10−5 4.1350× 10−10 2.22554092853 3.5908× 10−11

(0.6, 0.6) 3.32011692274 3.2674× 10−5 3.5768× 10−10 3.32011692270 3.8762× 10−11

(0.8, 0.8) 4.95303242440 5.6798× 10−5 3.0065× 10−9 4.95303242437 2.7025× 10−11

(1, 1) 7.38905609893 5.8038× 10−4 4.6983× 10−8 7.38905609744 1.4893× 10−9

5.3. Example. Consider the following nonlinear system of Fredholm integro–partial
differential equation.

(5.17)
{
u(x, y)− v(x, y) +

∫ 1

0
u(t, y) vt(t, y) dt = f1(x, y),

v(x, y) + 3u(x, y)−
∫ 1

0
ut(t, y) v(t, y) dt = f2(x, y),

where f1(x, y) = x2 cos(y) − y sin(x) − y cos(y) (sin(1) − 2 cos(1)) and f2(x, y) =
y sin(x) + 3 x2 cos(y)− 2 y cos(y) (sin(1)− cos(1)) with boundary conditions u(0, y) =
0 and v(0, y) = 0. The exact solutions of this problem are u(x, y) = x2 cos(y) and
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v(x, y) = y sin(x). The following approximations are used for N = 5,

ux(x, y) ' ΦT (x, y) C1, u(x, y) ' ΦT (x, y) PTx C1 vx(x, y) ' ΦT (x, y) C2,

v(x, y) ' ΦT (x, y) PTx C2 1 ' ΦT (x, y) K Φ(t, y),

u(t, y) vt(t, y) ' AT Φ(t, y) ΦT (t, y) C2 ' AT C̃2 Φ(t, y) = ΦT (t, y) C̃2
T
A,

ut(t, y) v(t, y) ' CT1 Φ(t, y) ΦT (t, y) B ' CT1 B̃ Φ(t, y) = ΦT (t, y) B̃T C1,∫ 1

0

u(t, y) vt(t, y) dt ' Φ(x, y) K E C̃2
T
A,∫ 1

0

ut(t, y) v(t, y) dt ' Φ(x, y) K E B̃T C1,

where A = PTx C1, B = PTx C2, C̃2 and B̃ are the operational matrices of product
corresponding to the vectors C2 and B, and E is the following matrix:

E =

∫ 1

0

Φ(t, y) ΦT (t, y) dt.

Note for approximating the nonlinear terms u(t, y) vt(t, y) and ut(t, y) v(t, y) has been
used the Theorem 3.6. Substituting above approximations into system (5.17), leads to
the following nonlinear system of algebraic equations.

(5.18)

{
ΦT (x, y) PTx C1 − ΦT (x, y) PTx C2 + Φ(x, y) K E C̃2

T
A = f1(x, y),

ΦT (x, y) PTx C2 + 3 ΦT (x, y) PTx C1 − Φ(x, y) K E B̃T C1 = f2(x, y),

Setting N = 5 and using the roots of P (α,β)
6 (x) and P (α,β)

6 (y) in the x and y−directions,
each equation of the system (5.18) is collocated in 36 inner tensor points for different
values of parameters α and β. Hereby, the system (5.18) reduces the problem to solve
a system of nonlinear algebraic equations and 72 unknown coefficients are obtained for
some values of parameters α and β by using Newton iterative method. Table 5 shows
different values of the exact and approximate solutions in points (x, y) = (0.1i, 0.1i), (i =
1, 2, ..., 10) for α = β = 1

2
. Also, in Figure 1 the exact and approximate solutions are

compared for the case α = β = 0. Also, the absolute errors functions obtained by the
proposed method are displayed in Figure 1 for α = β = 0.

Table 5. Comparison of the exact and approximate solutions of Example 5.3 for N = 5 and α = β = 1
2

(xi, yi) uExact u5(x, y) ErrorAbs vExact v5(x, y) ErrorAbs

(0.1, 0.1) 0.00995004 0.00995002 2.0419× 10−8 0.00998334 0.00998326e 7.8601× 10−8

(0.2, 0.2) 0.03920266e 0.03920263 2.6117× 10−8 0.03973387 0.03973376 1.0216× 10−7

(0.3, 0.3) 0.08598028e 0.08598027 1.2031× 10−8 0.08865606 0.08865595 1.14× 10−7

(0.4, 0.4) 0.14736975 0.14736970 5.6500× 10−8 0.15576734 0.15576711 2.2310× 10−7

(0.5, 0.5) 0.21939564 0.21939551 1.2727× 10−7 0.23971277 0.23971243 3.3863× 10−7

(0.6, 0.6) 0.29712082 0.29712075 7.1500× 10−8 0.33878548 0.33878517 3.1259× 10−7

(0.7, 0.7) 0.37477267 0.37477277 9.8920× 10−8 0.45095238 0.45095218 2.0102× 10−7

(0.8, 0.8) 0.44589229 0.445892296 2.2183× 10−9 0.57388487 0.57388456 3.1067× 10−7

(0.9, 0.9) .50350407 0.50350365 4.1437× 10−7 0.70499422 0.70499360 6.1633× 10−7

(1, 1) 0.54030231 0.54030426 1.9550× 10−6 0.84147098 0.84147191 9.2444× 10−7

5.4. Example. Consider the following nonlinear system Volterra integro–partial differ-
ential equation.

(5.19)


uy(x, y) + v(x, y)−

∫ y
0

∫ x
0
t sin(s) (u2(t, s)− v2(t, s)) dtds = f1(x, y),

uy(x, y) + vy(x, y) + u(x, y)−
∫ y

0

∫ x
0
t cos(s) (u(t, s)− vs(t, s)) dtds =

f2(x, y),
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Figure 1. Comparison of the exact and approximate solutions and
their error functions for α = β = 0 in Example 5.3: Plots of (a) u5(x, y),
(b) v5(x, y), (c) error function of u(x, y), (d) error function of v(x, y)

where f1(x, y) = 1
12

(1 + 2 cos3(y) − 3 cos(y)) x4 and f2(x, y) = x (2 cos(y) − sin(y))
with the conditions u(x, 0) = x and v(x, 0) = 0. The exact solutions of this problem are
u(x, y) = x cos(y) and v(x, y) = x sin(y). The following approximations are used for
N = 5,

uy(x, y) ' ΦT (x, y) C1, vy(x, y) ' ΦT (x, y) C2,

u(x, y) ' ΦT (x, y) PTy C1 + u(x, 0) ' ΦT (x, y) PTy C1 + ΦT (x, y) V,

v(x, y) ' ΦT (x, y) PTy C2, t sin(s) ' ΦT (x, y) K1 ΦT (t, s),

t cos(s) ' ΦT (x, y) K2 ΦT (t, s),

u2(x, y) ' AT1 Φ(x, y) ΦT (x, y) A1 ' AT1 Ã1 Φ(x, y) = ΦT (x, y) B1,

v2(x, y) ' AT2 Φ(x, y) ΦT (x, y) A2 ' AT2 Ã2 Φ(x, y) = ΦT (x, y) B2,∫ y

0

∫ x

0

t sin(s) (u2(t, s)− v2(t, s)) dtds ' ΦT (x, y) K1 (B̃1 − B̃2) Px Py Φ(x, y),∫ y

0

∫ x

0

t cos(s) (u(t, s)− vs(t, s)) dtds ' ΦT (x, y) K2 (Ã1 − C̃2) Px Py Φ(x, y),
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Figure 2. Comparison of the exact and approximate solutions and
their error functions for α = β = 0 in Example 5.4: Plots of (a) u5(x, y),
(b) v5(x, y), (c) error function of u(x, y), (d) error function of v(x, y)

where K1 and K2 are known matrices, A1 = PTy C1 + V, A2 = PTy C2, B1 = AT1 Ã1

and B2 = AT2 Ã2. Substituting above approximations into system (5.19), leads to the
following nonlinear system of the algebraic equations.

(5.20)


ΦT (x, y) C1 + ΦT (x, y) PTy C2 − ΦT (x, y) K1 (B̃1 − B̃2)
Px Py Φ(x, y) = f1(x, y),

ΦT (x, y) C1 + ΦT (x, y) C2 + ΦT (x, y) (PTy C1 + V )− ΦT (x, y) PTy C2

−ΦT (x, y) K2 (Ã1 − C̃2) Px Py Φ(x, y) = f2(x, y).

Setting N = 5 and using the roots of P (α,β)
6 (x) and P (α,β)

6 (y) in the x and y−directions,
each equation of the system (5.20) is collocated in 36 inner tensor points for different
values of parameters α and β. Hereby, the system (5.20) reduces the problem to solve
a system of nonlinear algebraic equations and 72 unknown coefficients are obtained for
α = β = 0 by using Newton iterative method. In Figure 2 the exact and approximate
solutions are compared for the case α = β = 0 and the absolute and estimate errors
functions obtained by the proposed method are also displayed in Figure 2 for α = β = 0.
The exact and approximate solutions and their error functions are seen in Figure 3 for
various values of y = 0.2, 0.4, 0.5, 0.7, 0.9.
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Figure 3. (a) Comparison of the u(x, y) and u6(x, y), (b) Com-
parison of the v(x, y) and v6(x, y), (c) Plots of absolute error func-
tion u(x, y), (d) Plots of absolute error function v(x, y) for y =
0.2, 0.4, 0.5, 0.7, 0.9 of Example 5.4.

6. Conclusion
In this paper, a computational method based on the generalized collocation method

was presented for solving some of linear and nonlinear integro-partial differential equa-
tions in terms of two variable Jacobi polynomials, by converting them to a linear or
nonlinear system of algebraic equations. The illustrative examples with the satisfactory
results were achieved to demonstrate the application of this method. The results indicate
the proposed approach can be regarded as the simple approach and those are applica-
ble to the numerical solution of these type of equations. It is predicted that the Jacobi
collocation method will be a powerful tools for investigating approximate solutions and
even analytic to linear and nonlinear functional equations. For numerical purposes the
computer programmes have been written in Maple 13.
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