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Existence of symmetric positive solutions for a
semipositone problem on time scales

S. Gulsan Topal and Arzu Denk *

Abstract

This paper studies the existence of symmetric positive solutions for a
second order nonlinear semipositone boundary value problem with in-
tegral boundary conditions by applying the Krasnoselskii fixed point
theorem. Emphasis is put on the fact that the nonlinear term f may
take negative value. An example is presented to demonstrate the ap-
plication of our main result.
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1. Introduction

We will be concerned with proving the existence of at least one symmetric posi-
tive solution to the semipositone second order nonlinear boundary value problem on a
symmetric time scale T given by

(L) [g®u” )Y + Af(tu() =0, t € (a,0),
b
(1.2)  au(a) — ﬁtgrgr gt)u”(t) = [ hi(s)u(s)Vs,

b
(13)  auly)+ 5 Jim g(Ou(0) = [ ha(o)u(s)Vs,

where A > 0 is a parameter, o, 8 > 0, V-differentiable function g € C([a, ], (0,0))
is symmetric on [a,b], h1,ha € L'([a,b]) is nonnegative, symmetric on [a,b] and the
continuous function f : [a,b] X [0,00) — R satisfies f(b+a —t,u) = f(t,u).
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A class of boundary value problems with integral boundary conditions arise naturally
in thermal condition problems [4], semiconductor problems [7], and hydrodynamic prob-
lems [5]. Such problems include two, three and multi-point boundary conditions and
have recently been investigated by many authors [3,6,8,9].

The present work is motivated by recent paper [3]. In this paper, Boucherif considered
the following second order boundary value problem with integral boundary conditions

(1.4)  z"(t) = f(t, (b)), 0<t<1,

(1.5) z(0) — cx’(0) = /0 go(s)x(s)ds,
(1.6) z(1) —dz'(1) = /0 g1(s)z(s)ds,

where f : [0,1] X R — R is continuous, go, g1 : [0, 1] — [0, 00) are continuous and positive,
c and d are nonnegative real parameters. The author established some excellent results
for the existence of positive solutions to problem (1.4) — (1.6) by using the fixed point
theorem in cones.

Throughout this paper T is a symmetric time scale with a, b are points in T. By an
interval (a,b), we always mean the intersection of the real interval (a,b) with the given
time scale, that is (a,b)N'T. Other types of intervals are defined similarly. For the details
of basic notions connected to time scales we refer to [1,2].

Now, we present some symmetric definition.

1.1. Definition. A time scale T is said to be symmetric if for any given ¢t € T, we have
b+a—-teT.

1.2. Definition. A function u : T — R is said to be symmetric on T if for any given
teT, u(t)=ulb+a—t).

2. The Preliminary Lemmas

In this section we collect some preliminary results that will be used in subsequent
section.
Throughout the paper we will assume that the following conditions are satisfied:
(Hl) «, B > 0>
(Hz) V-differentiable function g € C([a,b], (0,00)) is symmetric on [a, b],
(Hs) the continuous function f : [a,b] x [0,00) — R is semipositone, i.e., f(t,u) needn’t
be positive for all (¢,u) € [a,b] X [0,00) and f(.,u) is symmetric on [a, b] for all u > 0,

(Hi) hi,ha € L'([a,b]) is nonnegative, symmetric on [a,b] and A > 0, where A =
b

A b
/J/‘:(B—K)’lﬂ—ﬂ’v% K = g> M:2a6+a2/¢1 W:)v U1 :/a hl(T)VT7 V2 =
/ hao(T)VT.

The lemmas in this section are based on the boundary value problem

(2.1) —[lg)u™ )] = p(2), t € (a,b)
with boundary conditions (1.2) — (1.3).
To prove the main result, we will employ following lemmas.

2.1. Lemma. Let (H1),(H2) hold and A # 0. Then for any p € C([a,b]), the boundary
value problem (2.1) — (1.2) — (1.3) has a unique solution u given by
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/Hts s)Vs,

where

(2.2) H(t,s) = G(t,s) + B1 /b G(s,7)h1(7)VT + B2 /b G(s,T)h2(T)VT

S Ar Ar
(B+oz/a WW”/ S5 ass<esh,

(2.3) G(t,s) = — ¢
p (B—!—a/ Ar /AT a<t<s<hb,
o g(r
b Ar K-8 8
= 2 _— = — = —
where p = 208 4+ « /a g(r)’Bl 1 , B> 1

2.2. Lemma. Assume that (H1),(H2) and (H4) hold. Then we have
(?) H(t,s) >0, G(t,s) >0, fort,s € [a,b],
(#) Hb+a—t,b+a—s)=H(t,s), Gb+a—t,b+a—s)=G(ts), fort,s € [a,b],

(42) 1527 < H(t,s) < H(s,s) < lvD and lﬁ2 < G(t,s) < G(s,s) < lD, for
I m 1 p
t,s € [a,b],

b
where D = (ﬂ—l—a/ %)2, v =1+ Biv1 + Bavs.

Proof. Tt is clear that (i) hold. Now we prove that (i7) and (i¢) hold. First, we consider
(13). Ift < s, then b+a—t > b+ a—s. Using (2.3) and the assumption (Hg), we get

b+a—s b
Glb+a—tb+a—s)= (ﬂJra/+ Ar)(ﬁ+ / ﬂ)

g(r) +a—t 9(r)
_1 SAMb+a— *Ab+a—r)
_;ﬂ+ b+afr J(B+a b+afr)
1

= (B+a / ar ﬂ+/AT G(t,s).

Similarly, we can prove that G(b+a —t,b+a — s) = G(t, s), for s < t. Thus we have
Gb+a—t,b+a—s)=G(t,s), for t,s € [a,b]. Now by (2.2), for ¢, s € [a,b], we have

b
H(bJraft,bJrafs):G(b+a7t,b+afs)+31/ Gb+a—s,T)hi(T)VT

b
Bg/ G(b+a—s,T)h(7)VT

:G(t,s)+B1/ G(b+a—s,b+a—71)hi(b+a—7)V(b+a—T)
b
+B2/ Gb+a—sb+a—1)ho(b+a—-7)V(b+a—T)

b
b

=G(t,s) + B1 / G(s,7)h1(7)VT + B2 /b G(s,T)ha(T)VT
= H(t,s). ‘ ‘

So (i) is established. Now we show that (#i4) holds. In fact, if ¢ < s, from (2.3) and
the assumption (Hsz), then we get
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1 LAr b Ar 1 S Ar b Ar
G(t,s)—;(ﬁ—i—a/a m)(ﬁ‘f'a/s M)S;(ﬁ-f'a/a M)(ﬁ‘*‘a/s m)

G(s,s)
1 b Ar b Ar 1 b Ar 2 1
g;(ﬁm/ﬂ MW“’/G m):;(ma/a S =1p.

1
Similarly, we can prove that G(¢,s) < G(s,s) < ﬁD for s < t.

Therefore G(t, s) < G(s,s) < iD, for t,s € [a,b]. And then, by (2.2), we have
b b
H(t,s) =G(t,s) + Bl/ G(s,7)hi(T)VT + Bz/ G(s,T)h2(T)VT

< G(s,s)+ B1 /b G(1,7)h1(7)VT + B2 /b G(1,7)h2(T)VT

b b
< iD + iDBl/ h1(T)VT =+ iDBQ/ hQ(T)VT = iD(l + Biv + BQ'UQ)

= lny.
I

On the other hand, for ¢, s € [a, b], we have
1 ¢ Ar b Ar 1 5
Gt s Z*ﬁJra/ Ar ﬁ+a/ Ary_Lge
(&) u( a g(?"))( b g(f’)) I
And then, we get

H(t,s) = G(t, ) + B /b G(s,7)h (1)V'T + Bs /b G(s, 7)ha(7) VT

1 1 b 1 b 1
> =B+ 75231/ hi(T)VT + 75232/ hao(T)VT = ~ 7.
1 I o I o 1
Thus for ¢, s € [a,b], we have
iﬁ2’y < H(t,s) < H(s,s) < i’yD and i52 < G(t,s) < G(s,s) < iD.

This completes the proof.

2.3. Lemma. Let w be the unique positive solution of the boundary value problem

(2.4) lgtu®®)]Y +1=0
with the boundary condition (1.2) — (1.3). Then,
w(t) <Co, te€la,b],
where
(2.5) 5:‘12, c=bzape
D nB?

Proof. Using Lemma 2.2, for all ¢ € [a, b], we have
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b b
w(t) =/ H(t,s)Vs < ivD/ Vs = C86.

The proof is complete.

Let E denote the Banach space Cla,b] with the norm |Ju|| = m[a);] |u(t)|. Define the
tela,
cone P C E by P={u € E : u(t) is symmetric and u(t) > 6||u| for ¢t € [a, b]}.

To obtain the a positive solution of BVP (1.1)—(1.3), the following fixed point theorem
is essential.

2.4. Theorem. Let E = (E,||.||) be a Banach space, and let P C E be a cone in B.
Assume Q1, Qo are bounded open subsets of E with 0 € Q1,Q1 C Qa, and let
S:PN(Q\Q)— P
be a continuous and completely continuous operator such that, either
(a) ||Sul| < ||ull,u € PN, and ||Su| > ||u|l,u € PN O, or
(@) ||Sul| = |Jull,w € PNIQ, and ||Su| < ||u|,u € PN oQs.
Then S has a fired point in PN (Q2\Q).

3. Main Results

In this section, we apply the Krasnoselskii fixed point theorem to obtain the exis-
tence of at least one symmetric positive solution for the nonlinear boundary value problem
(1.1) — (1.3).

The main result of this paper is following:
3.1. Theorem. Let (Hy) — (Ha4) hold. Assume that

(C1) There exists a constant M > 0 such that f(t,u) > —M for all (t,u) € [a,b] x
[0, 00),

(C3) There ﬁlmrzgt HtaE Laég) such that

uU— 00 u
uniformly on [t1, t2],
(C3) r is a given positive real number and the parameter A satisfies

r 7
M|jwl]’ 2MC’}
where My = max{f(t,u) + M : (t,u) € [a,b] x [0,7]}.

Then the boundary value problem (1.1) — (1.3) has at least one symmetric positive

(3.1) 0 < XA <n:=min{

solution u such that ||u|| > %

Proof. Let z(t) = AMw(t), where w is the unique solution of the boundary value problem
(2.4) — (1.2) — (1.3).
We shall show that the following boundary value problem

(3.2 90y @] +AF(Ly(®) - 2(t) = 0, t € (a,b),
b

(3.3) (@) = 8 lim g(0)y" (1) = [ m(s)u(s) Vs
b

(3.9 ay(®) + 8 lim g()y*(0) = [ ha(o)y(5)s,

where
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ft2)+ M, z>0,

F(t’z):{ F60)+ M, =<0,

has at least one positive solution. Thereafter we shall obtain at least one positive solution
for the boundary value problem (1.1) — (1.3).

It is well known that the existence of positive solution to the boundary value problem
(3.2) — (3.4) is equivalent to the existence of fixed point of the operator S. So we shall
seek a fixed point of S in our cone P where the operator S : E — E is defined by

b
Sy(t) = )\/ H(t,s)F(s,y(s) — z(s))Vs, tE€]Ja,b].
First, it is obvious that S is continuous and completely continuous.
Now we shall prove that S(P) C P. Let y € P. Then, using Lemma 2.2, we get for
t € [a,b],

b b
Sy(t) = A / H(t,S)F(s,y(S)*fE(S))VSSgvD / F(s,y(s) - (s))Vs,

and so

)\ b
(35) ISyl < 39D [ Pls.p(s) = a(s) V.
Now, using Lemma 2.2 and (3.5), we obtain for ¢ € [a, b],

Sy(t) = )\/ H(t,s)F(s,y(s) —z(s))Vs > 2527/ F(s,y(s) —z(s))Vs

= %57D/a F(s,y(s) —z(s))Vs > 6| Sy||.

On the other hand, noticing y(¢), z(t) and f(¢,u) are symmetric on [a, b], we have
Sy(b+a—1t) =\ /ab H(b+a—t,8)F(s,y(s) — 2(s))Vs
- )\/ab Hb+a—t,5)(f(s,y(s) — 2(s)) + M)V
- )\/baH(b+a—t,b+a—s)(f(s, (y—2)(b+a—s)+M)V(b+a—s)
- " H(t,5) (/5. (u - )(s)) + M)V

b
— 2 / H(t,5)F (s, (y — £)())Vs = Sy(t)

Therefore Sy is symmetric.
So, we get S(P) C P.

Let Q1 = {y € E : ||ly|| < r}. We shall prove that ||Sy| < ||y|| for y € PN IQ. If
y € PN 0OQy, then |ly|| = r. By definition and (3.1), we find for ¢ € [a, b],

Sy(t) = )\/ H(t,s)F(s,y(s) —x(s))Vs < )\Ml/ H(t,s)Vs < AMi||lw]|| < 7.
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Therefore, we get || Sy|| < r = ||y|| for y € PN IQ;.

Let K be a positive real number such that

(3.6) %AK(tz - t1)5i,327 > 1.

In view of (C2), there exists N > 0 such that for all z > N and t € [t1,¢2],

(3.7) F(t,z) = f(t,z2)+ M > K=z
Now, set
(3.8) R=r+ g

Let Q2 = {y € E : |ly|| < R}. We shall prove that ||Sy|| > |ly|| for y € P N 0Q. If
y € PN OQy, then ||y|| = R. So from Lemma 2.3 and the fact that y € P, we get for
t € [a,b],

z(t) = AMw(t) < AMCS < /\Mc%),

This implies for ¢ € [a, b],
AMC AMC
y() —2(t) 2 (1 = —=)y(t) =2 (1 = ——)IR,

and, from (3.1) and (3.8), we get for ¢ € [t1,t2],

Ré > N.

N =

(3.9) y(t) —x(t) >

Thus, by (3.7) and (3.9), we see that for ¢ € [t1, t2],

(3.10) F(t,yt) —z(t)) > K(y(t) — z(t)) > %KR&.
Considering Lemma 2.2 and (3.10), we get for ¢ € [a, b],
Su(t) = 3 [ H(t.9)P(s.y(s) = 2() Vs = 28 [ 12 F(s,y(s) — o(s))Vs

1 s [T
> —AKROB ’y/ Vs
2p t
and so by (3.6),
1
1Syl > ﬂAKR(@ —t1)0p%*y > R.
Therefore, we get || Sy|| > R = ||y|| for y € P N 9.
Then it follows from Theorem 2.1 that S has a fixed point y € P such that

(3.11) r<lyl <R
Moreover, using (3.1), (3.11) and Lemma 2.3, we obtain for ¢ € [a, ],
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(3.12) y(t) > 0|yl = ré > 2AMCo > 2AMw(t) = 2x(t).

Hence,
u(t) =y(t) —z(t) >0, tE€la,bl.
On the other hand, u(t) is symmetric on [a, b] since y and = are symmetric.
Now, we shall prove that u is a positive solution of the boundary value problem (1.1) —
(1.3). Since y is a fixed point of the operator S,

Sy(t) =y(t), te€la,b],

y(t) = Sy(t) = A / H(t, 5)F (s, y(s) — 2(s))V's
b
= [ H(t ) (F(s,(s) — 2(s) + M)Vs

Noticing thafcl,
b
w(t) :/ H(t,s)Vs

we have for ¢ € [a, b],

b
y(t) = A / H(t, 5) (5, y(s) — £(s))V's + AMuw(t),
or

b
o(0) = 2t) =3 [ H(6:9)f(5,(5) ~ 2(5) T,

and hence
b
u(t) :/\/ H(L,5) (s, u(s))Vs.

This shows that u is a symmetric positive solution of the boundary value problem of
(1.1) — (1.3). In addition, from (3.11) and (3.12), it follows that

lyll o
> = > —.
3.2. Example. Let T = Z. Consider the following boundary value problem

(3.13) 00 LA @)Y + Abe" cos?t — 12) = 0, £ € (~3,3),
t2+1
(3.14) 25u(—3) — 5 lim 100 u?(t) = /3 u(s) cosh sVs
’ t——3+ tQ + 1 o -3 ’
. 100 A 3
(3.15) 25u(3) + 5 lim u=(t) = u(s) cosh sVs,
t—3— t2 + 1 _3
100 w 2
where b > 0, o = 25,8 = 5, hi1(t) = ha(t) = cosht, g(t) = m,f(t,u(t)) = be" cos”t —

t*. Tt is obvious that f satisfies the conditions (Cs) and (Hs).

Now we shall obtain the constants M and M. Clearly, for all (¢,u) € [—3,3] X [0, c0),
we get

f(t,u) = be* cos’t — t* > —t*> > —9 and so we can choose the constant M = 9.
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M, = max be cos®t — t* + M = be” + M.
(t,u)€[—3,3]x[0,7]

It follows from a direct calculation that

3 3
A
v = vy = / hi(s)Vs = 21.5, 4 = 2a8 + a2/ 21~ 406.2,
-3 -3

g(r)
3 Ar o
D=B+al, m) ~126.6, A = p+ (8 — K)vi — fua =2 56,87,
B = KTfﬁ =~ (0.198, By = % = 0.088, v = 1 + Byv1 + Bavy 22 7.15,
6 2
C=—D%*y~67.71.
ppr”

Then by Theorem 3.1, we see that the boundary value problem (3.13) — (3.15) has

at least one symmetric positive solution u such that ||u| > 3 for any A € (0,n] where

n = min{m7 %}, r is a given positive number and w is the unique positive
. 100 .
solution of the boundary value problem [t2 m lua(t)]v + 1 = 0 with the boundary

condition (3.14) — (3.15).
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