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Abstract
This paper deals with the numerical solutions of one dimensional time dependent cou-
pled Burgers’ equation with suitable initial and boundary conditions by using Chebyshev
wavelets in collaboration with a collocation method. The proposed method converts cou-
pled Burgers’ equations into system of algebraic equations by aid of the Chebyshev wavelets
and their integrals which can be solved easily with a solver. Benchmarking of the proposed
method with exact solution and other known methods already exist in the literature is
made by three test problems. The feasibility of the proposed method is demonstrated by
test problems and indicates that the proposed method gives accurate results in short cpu
times. Computer simulations show that the proposed method is computationally cheap,
fast and quite good even in the case of less number of collocation points.
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1. Introduction
We consider the Coupled Burgers’ problem

ut − uxx + ηuux + α(u.v)x = 0, x ∈ [0, 1], t ∈ [0, T ] (1.1)
vt − vxx + ξvvx + β(u.v)x = 0, x ∈ [0, 1], t ∈ [0, T ] (1.2)

with the initial conditions

u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), x ∈ [a, b]
and the boundary conditions

u(0, t) = f1(t), u(1, t) = f2(t), t ∈ [0, T ]
v(0, t) = g1(t), v(1, t) = g2(t), t ∈ [0, T ]
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where η, ξ are real constants and α, β are arbitrary constants depend on system parame-
ters such as Peclet number, Stokes velocity of particles due to gravity and the Brownian
diffusivity [30]. u(x, t) and v(x, t) are the velocity components to be determined; ψi, fi
and gi (i = 1, 2) are the known functions; uux is the nonlinear convection term, ut is
unsteady term and uxx is diffusion term.

Coupled Burgers’ equation was first derived by Esipov [12] which is a simple model
of sedimentation or evolution of scaled volume concentrations of two kinds of particles in
fluid suspensions or colloids, under the effect of gravity [30]. This equation has been solved
by various approaches such as; Khater et al. [21] used the Chebyshev spectral collocation
method to solve the equation and M. Dehghan et al. [11] applied Adomian–Pade technique
for solving the coupled Burgers equations and more recently Kutluay and Ucar [23] solved
coupled Burgers’ equation by using the Galerkin quadratic B-spline method. In order to
solve Eqs. (1.1), (1.2) Mittal and Arora [28] used a cubic B-spline collocation scheme.
Rashid and Ismail [34] have used Fourier Pseudospectral method to solve the equation
numerically. Srivastava et al. [42] obtained numerical solutions of the Eqs.(1.1), (1.2) by
implicit finite-difference method. Zhang et al. [37] applied local discontinuous Galerkin
method to solve coupled Burgers’ equations. Siraj-ul-Islam et al. [17] solved coupled
Burgers’ equation by mesh free interpolation method. Kelleci and Yıldırım [20] have
solved the equation by combining homotopy perturbation and Pade techniques and Inan et
al. [16] have applied Bäcklund transformation to the Eqs.(1.1), (1.2). In the studies [22,29],
coupled Burgers’ equations are solved by Haar wavelet method. Rashid et al. have solved
the coupled viscous Burgers’ equation by Chebyshev–Legendre Pseudo-Spectral method
in [33].

Kaya [19] obtained the exact solution of the equation by Adomian Decomposition
method and Soliman [41] used a modified extended tanh-function method to obtain its
exact solution. Abdou and Soliman [2] used Variational iteration method to solve the
coupled viscous Burgers’ equation.

The wavelet methods were first applied for solving differential equations at the beginning
of 1990s. Until now a vast number of papers devoted to this topic. In most cases the
wavelet coefficients were calculated by the Galerkin or collocation method. But there is
a drawback in these methods since we have to evaluate integrals of some combinations of
the wavelet functions (connection coefficients). This is a very sophisticated problem, since
for most wavelet families we do not have an explicit form for these integrals [25]. Due
to these facts, researchers have focused on more simple wavelets such as Haar wavelets,
Legendre wavelets and Chebyshev wavelets for obtaining numerical solutions of differential
and integral equations. There are a lot of studies on application of Haar wavelets in
solving differential and integral equations numerically [6,7,9,18,22,24,26,27,29,31,32,40].
Nowadays, Legendre and Chebyshev wavelets are studied by many researchers [3, 4, 8, 13,
14, 35, 36, 38,39, 44–47]. In this paper we propose a Chebyhev wavelet method for solving
coupled Burgers’ equations numerically.

The outline of this paper is as follows. In Section 2, preliminaries about Chebyshev
wavelets are given. In section 3, we show how to use Chebyshev wavelet method for solving
coupled Burgers’ equation. In Section 4, proposed method tested by three examples,
obtained numerical results tabulated and numerical solutions depicted graphically. Finally
we conclude the paper in Section 5.

2. Preliminaries and notations
In this section, we give some necessary definitions and mathematical preliminaries of

Chebyshev wavelets.
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2.1. Chebyshev wavelets
Wavelets constitute a family of functions which are generated from dilation and translation
of a single function which is called as mother wavelet ψ(x). If the dilation parameter a and
the translation parameter b vary continuously we have the following family of continuous
wavelets [10]:

ψa,b(x) = |a|−1/2ψ

(
x− b
a

)
,

where a, b ∈ R and a 6= 0. Chebyshev wavelets ψnm = ψ(k, n,m, x) defined as follows:

ψnm(x) =

γm 2(k−1)/2
√
π

Tm
(
2kx− 2n+ 1

)
, n−1

2k−1 ≤ x < n
2k−1

0, else
(2.1)

where

γm =
{√

2, m = 0
2, m = 1, 2, ...

and m = 0, 1, ...,M − 1. Here n = 1, 2, ..., 2k−1, k can take any positive integer, m is the
degree of Chebyshev polynomials of first kind and x is the normalized time. Tm(x) are
Chebyshev polynomials of the first kind of degree m and satisfy the following recursive
formula:

T0(x) = 1,T1(x) = x, Tm+1(x) = 2xTm(x)− Tm−1(x).

which are orthogonal with respect to the weight function ω(x) = 1/
√

1− x2.We should re-
mind that Chebyshev wavelets are orthogonal with respect to the weight function ωn(x) =
ω(2kx− 2n+ 1).

2.2. Function approximation
Any function u(x) ∈ L2

ω[0, 1) can be expanded into Chebyshev wavelets as follows:

u(x) =
∞∑
n=1

∞∑
m=0

cnmψnm(x). (2.2)

Here wavelet coefficients are cnm = 〈u(x), ψnm(x)〉 , where 〈., .〉 represents the inner prod-
uct with respect to ωn(x).
In practice, one needs the truncated version of the Eq. (2.2), namely:

u(x) =
2k−1∑
n=1

M−1∑
m=0

cnmψnm(x) = CTΨ(x), (2.3)

where C and Ψ(x) are 2k−1M × 1 matrices given as

C = [c10, c11, ..., c1(M−1), c20, c21, ..., c2(M−1), ...,

c2k−10, c2k−11, ..., c2k−1(M−1)]T ,
Ψ(x) = [ψ10(x), ψ11(x), ..., ψ(x)1(M−1), ψ20(x), ψ21(x), ..., ψ(x)2(M−1), ...,

ψ2k−10(x), ψ2k−11(x), ..., ψ(x)2k−1(M−1)].T

Convergence analysis of Chebyshev wavelets is given in [3, 45].
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2.3. Integrals of Chebyshev wavelets [8]
We denote the first integral of the Eq. (2.1) as pnm(x) =

∫ x
0 ψnm(s)ds and the second

integral of the Eq. (2.1) as qnm(x) =
∫ x

0 pnm(s)ds. The first integral pnm(x) is given for
m = 0, m = 1 and m > 1 as follows:

pn0(x) =



0 0 ≤ x < n− 1
2k−1

γ0
2−(k−1)/2−1
√
π

[T1 (t) + T0 (t)] , n− 1
2k−1 ≤ x <

n

2k−1

γ0
2−(k−1)/2
√
π

T0 (t) , n

2k−1 ≤ x < 1

pn1(x) =


0 0 ≤ x < n− 1

2k−1

γ1
2−(k−1)/2−3
√
π

[T2 (t)− T0 (t)] , n− 1
2k−1 ≤ x <

n

2k−1

0, n

2k−1 ≤ x < 1

pnm(x) =


0 0 ≤ x < n− 1

2k−1

γm
2−(k−1)/2−2
√
π

[
Tm+1 (t)− (−1)m+1

m+ 1 − Tm−1 (t)− (−1)m−1

m− 1

]
,

n− 1
2k−1 ≤ x <

n

2k−1

γm
2−(k−1)/2−2
√
π

,
n

2k−1 ≤ x < 1

where t = 2kx − 2n + 1. The second integral qnm(x) is given for m = 0, m = 1, m = 2
and m > 2 as follows:

qn0(x) =



0 0 ≤ x < n− 1
2k−1

γ0
2−3(k−1)/2−4
√
π

[T2 (t) + 4T1(t) + 3T0 (t)] , n− 1
2k−1 ≤ x <

n

2k−1

γ0
2−(k−1)/2
√
π

( 1
2k + x− n

2k−1

)
,

n

2k−1 ≤ x < 1

qn1(x) =



0 0 ≤ x < n− 1
2k−1

γ1
2−3(k−1)/2−4
√
π

[
T3 (t)

6 − 3T1 (t)
2 − 4T0 (t)

3

]
,

n− 1
2k−1 ≤ x <

n

2k−1

γ1
2−3(k−1)/2−1

−3
√
π

,
n

2k−1 ≤ x < 1

qn2(x) =


0 0 ≤ x < n− 1

2k−1

γ2
2−3(k−1)/2−3

√
π

[
T4 (t)− 1

24 − T2 (t)− 1
3 − 2T1 (t)

3 − 2T0 (t)
3

]
,

n− 1
2k−1 ≤ x <

n

2k−1

γ2
2−(k−1)/2

−3
√
π

( 1
2k

+ x− n

2k−1

)
,

n

2k−1 ≤ x < 1
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qnm(x) =



0 0 ≤ x < n− 1
2k−1

γm
2−3(k−1)/2−3

√
π



Tm+2 (t)− (−1)m+2

2(m+ 1)(m+ 2) − Tm (t)− (−1)m

2(m+ 1)m

−Tm (t)− (−1)m

2m(m− 1)

+Tm−2 (t)− (−1)m−2

2(m− 1)(m− 2) +

(1 + T1(t))
[

(−1)m−1

m− 1 − (−1)m+1

m+1

]


,

n− 1
2k−1 ≤ x <

n

2k−1

γm
2−3(k−1)/2−3

√
π



1− (−1)m+2

2(m+ 1)(m+ 2) −
1− (−1)m

2(m+ 1)m −
1− (−1)m

2m(m− 1)

+ 1− (−1)m−2

2(m− 1)(m− 2) + 2
[

(−1)m−1

m− 1 − (−1)m+1

m+ 1

]
+2k

(
x− n

2k−1

)[1− (−1)m+1

m+ 1 − 1− (−1)m−1

m− 1

]

 ,
n

2k−1 ≤ x < 1

where t = 2kx− 2n+ 1. We will use these integrals in solution procedure later.

3. Method of solution for coupled Burgers’ equation
Consider the equations (1.1), (1.2) with the initial conditions

u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), x ∈ [0, 1]

and the boundary conditions

u(0, t) = f1(t), u(1, t) = f2(t), t ∈ [0, T ]
v(0, t) = g1(t), v(1, t) = g2(t), t ∈ [0, T ]

Let us divide the interval [0, T ] into N equal parts of length ∆t = T/N and denote
ts = (s − 1)∆t, s = 1, 2, ..., N . In order to use the Chebyshev integrals given in the
previous section we expand the highest derivatives that appeared in the Eqs. (1.1) and
(1.2) into Chebyshev wavelets. Therefore assume that u̇′′(x, t) and v̇′′(x, t) can be expanded
in terms of Chebyshev wavelets as

u̇′′(x, t) =
2k−1∑
n=1

M−1∑
m=0

cnmψnm(x) (3.1)

v̇′′(x, t) =
2k−1∑
n=1

M−1∑
m=0

dnmψnm(x) (3.2)

where . and ′ means differentiation with respect to t and x, respectively, the row vectors
cnm and dnm are constants in the sub-interval t ∈ [ts, ts+1]. We discretize u(x, t) below,
same procedure can be applied to v(x, t).
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Integrating equation (3.1) with respect to t from ts to t and twice with respect to x from
0 to x, we have following equations:

u′′(x, t) =(t− ts)
2k−1∑
n=1

M−1∑
m=0

cnmψnm(x) + u′′(x, ts), (3.3)

u′(x, t) =(t− ts)
2k−1∑
n=1

M−1∑
m=0

cnmpnm(x) + u′(x, ts)− u′(0, ts) + u′(0, t), (3.4)

u(x, t) =(t− ts)
2k−1∑
n=1

M−1∑
m=0

cnmqnm(x) + u(x, ts)− u(0, ts)

+ x
[
u′(0, t)− u′(0, ts)

]
+ u(0, t), (3.5)

u̇(x, t) =
2k−1∑
n=1

M−1∑
m=0

cnmqnm(x) + u̇(0, t) + xu̇′(0, t). (3.6)

By using boundary conditions, we obtain

u(0, t) = f1(t), u(0, ts) = f1(ts), u̇(0, ts) = f ′1(ts)
u(1, t) = f2(t), u(1, ts) = f2(ts), u̇(1, ts) = f ′2(ts)

At x = 1 in the formulae (3.5) and (3.6) and by using conditions, we have

u′(0, t)− u′(0, ts) =− (t− ts)
2k−1∑
n=1

M−1∑
m=0

cnmqnm(1) + f2(t)

− f2(ts) + f1(ts)− f1(t) (3.7)

u̇′(0, t) =−
2k−1∑
n=1

M−1∑
m=0

cnmqnm(1)− f ′1(t) + f ′2(t). (3.8)

Substituting (3.7) and (3.8) into (3.4)-(3.6) and discretizing the results by assuming x→ xl
and t→ ts+1 we obtain

u′′(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

cnmψnm(xl) + u′′(xl, ts), (3.9)

u′(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

cnmpnm(xl) + u′(xl, ts)

− (ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

cnmqnm(1) + f2(ts+1)

− f2(ts) + f1(ts)− f1(ts+1), (3.10)
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u(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

cnmqnm(xl) + u(xl, ts)

+ f1(ts+1)− f1(ts)

+ xl

−(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

cnmqnm(1)


+ xl [f2(ts+1)− f2(ts) + f1(ts)− f1(ts+1)] , (3.11)

u̇(xl, ts+1) =
2k−1∑
n=1

M−1∑
m=0

cnmqnm(xl) + f ′1(ts+1)

+ xl

− 2k−1∑
n=1

M−1∑
m=0

cnmqnm(1)− f ′1(ts+1) + f ′2(ts+1)

 . (3.12)

Similarly we obtain

v′′(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

dnmψnm(xl) + v′′(xl, ts), (3.13)

v′(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

dnmpnm(xl) + v′(xl, ts)

− (ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

dnmqnm(1)

+ g2(ts+1)− g2(ts) + g1(ts)− g1(ts+1), (3.14)

v(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

dnmqnm(xl) + v(xl, ts) + g1(ts+1)− g1(ts)

+ xl

−(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

dnmqnm(1)


+ xl [g2(ts+1)− g2(ts) + g1(ts)− g1(ts+1)] , (3.15)

v̇(xl, ts+1) =
2k−1∑
n=1

M−1∑
m=0

dnmqnm(xl) + g′1(ts+1)

+ xl

− 2k−1∑
n=1

M−1∑
m=0

dnmqnm(1)− g′1(ts+1) + g′2(ts+1)

 . (3.16)

for v(x, t). Based on the Eqs. (3.9)-(3.12) and (3.13)-(3.16) we will use following equations.

u̇(xl, ts+1) = u′′(xl, ts+1)− ηu(xl, ts)u′(xl, ts)− α [u(xl, ts)v(xl, ts)]x
v̇(xl, ts+1) = v′′(xl, ts+1)− ξv(xl, ts)v′(xl, ts)− β [u(xl, ts)v(xl, ts)]x (3.17)
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Now by substituting (3.9)-(3.12) and (3.13)-(3.16) into (3.17) we obtain
2k−1∑
n=1

M−1∑
m=0

cnm [qnm(xl)− xlqnm(1)−∆tψnm(xl)] = u′′(xl, ts)− ηu(xl, ts)u′(xl, ts)

− α [u(xl, ts)v(xl, ts)]x − f
′
1(ts+1)

+ xl
[
f ′1(ts+1)− f ′2(ts+1)

]
2k−1∑
n=1

M−1∑
m=0

dnm [qnm(xl)− xlqnm(1)−∆tψnm(xl)] = v′′(xl, ts)− ηv(xl, ts)v′(xl, ts)

− α [u(xl, ts)v(xl, ts)]x − g
′
1(ts+1)

+ xl
[
g′1(ts+1)− g′2(ts+1)

]
(3.18)

where ∆t = ts+1 − ts. From the system (3.18) the wavelet coefficients cnm and dnm can
be successively calculated. This computation starts with the following initial values.

u(xl, 0) = ψ1(xl), v(xl, 0) = ψ2(xl),
u′(xl, 0) = ψ′1(xl), v′(xl, 0) = ψ′2(xl),
u′′(xl, 0) = ψ′′1(xl), v′′(xl, 0) = ψ′′2(xl).

We collocate x at xl = (l− 0.5)/m′, l = 1, 2, ...,m′ collocation points where m′ = 2k−1M.

4. Numerical results and discussion
To show the performance of suggested method as compared with the exact solution we

are going to use the norms L2 and L∞ defined by

L2 =

√√√√∑m′
i=1 |uexact

i − unum
i |2∑m′

i=1 |uexact
i |2

,

L∞ = max
i

∣∣∣uexact
i − unum

i

∣∣∣ .
We have executed our computations on Intel Core i5-2410M 2.3Ghz and 4GB (667Mhz)
of RAM with the codes implemented in free software package GNU Octave and Python
programming language. Graphical outputs were generated by Matplotlib package [15].

4.1. Problem 1.
We firstly consider the coupled Burgers’ equation (1.1), (1.2) for α = β = 5

2 and η = ξ =
−2, [1]. So we have

ut − uxx − 2uux + 5
2(u.v)x = 0,

vt − vxx − 2vvx + 5
2(u.v)x = 0.

The exact solution of the coupled system for x ∈ [0, 1], is

u(x, t) = v(x, t) = λ

[
1− tanh

(3
2λ (40(x− 0.5)− 3λt)

)]
,

boundary conditions and initial conditions are determined from the exact solution and λ is
an arbitrary constant. This problem has large gradients moving rightward with constant
velocity. In Table 1, we show the obtained results for various values of λ. It can be seen
from the Table 1 that by increasing the number of collocation points one can achieve more
accurate results. On the other hand as time grows errors get larger. Measured cpu times
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are also given in Table 1 which are quite small. In Fig. 1, we plot the numerical solution
for λ = 0.05, 0.1 0.4, 0.8 and ∆t = 0.005 at t = 3 and t = 5. We see that for greater
values of λ, large gradient regions occur in the solution. The present method is capable
of analyzing the large gradient regions that occur in the solution which is an indicator
of the efficiency of a numerical method according to the Vasilyev and Paolucci [43] and
Basdevant et al. [5].

0.0 0.2 0.4 0.6 0.8 1.0
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0.00
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,t
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Exact

0.0 0.2 0.4 0.6 0.8 1.0

x
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U
(x
,t
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Numerical
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U
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,t
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�=0.05 �=0.1

�=0.4 �=0.8

Figure 1. Numerical solution of problem 1 for λ = 0.05, 0.10.4, 0.8 and ∆t = 0.01
at t = 1 with m′ = 128.

Table 1. Errors for various values of parameters of problem 1.

k = 5, M = 4, m′ = 64 k = 6, M = 4, m′ = 128 k = 7, M = 4, m′ = 256
t = 3 t = 5 t = 3 t = 5 t = 3 t = 5

λ = 0.1
L2 8.5052e-6 1.2956e-5 8.4321e-6 1.2802e-5 8.4272e-6 1.2792e-5
L∞ 2.7482e-6 4.2070e-6 2.7140e-6 4.1204e-6 2.7133e-6 4.1136e-6

λ = 0.8
L2 1.0348e-2 1.3720e-2 1.1782e-3 1.3820e-3 7.6982e-4 7.0642e-4
L∞ 7.7311e-2 1.1248e-1 9.5027e-3 1.2746e-2 7.0736e-3 7.0315e-3

Cpu time 0.458 0.796 0.963 1.505 2.633 4.081

4.2. Problem 2.
We consider the coupled Burgers’ equation (1.1), (1.2) for η = ξ = −2 so that equations
(1.1), (1.2) take the following form:

ut − uxx − 2uux + α(u.v)x = 0,
vt − vxx − 2vvx + β(u.v)x = 0.
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The exact solution of this equation is given in [41]

u(x, t) = a0 (1− tanh(A(20(x− 0.5)− 2At)))

v(x, t) = a0

((2β − 1
2α− 1

)
− tanh(A(20(x− 0.5)− 2At))

)
where

a0 = 0.05, A = 1
2a0

(4αβ − 1
2α− 1

)
and x ∈ [0, 1]. The initial and boundary conditions are taken from the exact solution.
In Table 2, we tabulated and compared the obtained results from the present method
with Chebyshev spectral collocation method [21], cubic B-spline collocation method [28],
Galerkin quadratic B-spline finite element method [23] and Fourier pseudospectral method
[34]. We take k = 4, M = 2 and ∆t = 0.01. It can be seen from the Table 2, the L∞
error norm obtained by the present method is smaller than those obtained by the existing
methods and even for the small number of collocation points one can achieve the accuracy
of the existing methods in the literature. In Table 3, we compare the L∞ error norms
for α = 0.1, β = 0.3, k = 4, M = 2 and ∆t = 0.001 with the ones obtained by Haar
wavelet method [22]. The superiority of the present method over Haar wavelet method in
the sense of accuracy is clearly seen from Table 3. The numerical solutions at t = 1, are
shown in Fig. 2 for k = 4, M = 2 and ∆t = 0.01.
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Table 3. Comparison of error norms for α = 0.1, β = 0.3 and ∆t = 0.001 at
various time levels for Problem 2.

L∞(u) L∞(v) Cpu times
t Present Haar Present Haar for the

m′ = 16 N = 64 m′ = 16 N = 64 present method
0.5 4.1638e-5 5.675e-5 2.1915e-5 3.679e-5 0.2089
2 1.6239e-4 2.085e-4 7.9455e-5 1.359e-4 0.8045
3 2.3962e-4 3.006e-4 1.1427e-4 2.049e-4 1.2080
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0.035

0.040

V
(x
,t
)

Numerical

Exact

Figure 2. Numerical solutions of problem 2 for α = 0.1, β = 0.3, ∆t = 0.01 at t = 1.

4.3. Problem 3.
Lastly we consider the coupled Burgers’ equation (1.1), (1.2) for α = β = 1 and η = ξ = −2
so that equations (1.1), (1.2) take the following form:

ut − uxx − 2uux + (u.v)x = 0,
vt − vxx − 2vvx + (u.v)x = 0.

The exact solution is u(x, t) = v(x, t) = e−t sin(2π(x − 0.5)), x ∈ [0, 1]. The initial and
boundary conditions are taken from the exact solution. Comparison of the error norms at
each time for k = 6, M = 2 and ∆t = 0.001 is given in Table 4. The obtained results by the
present method are in good agreement with Haar wavelet method [29] and are better than
Finite element method [23]. The physical behavior of numerical solutions for α = β = 1
and η = ξ = −2 between t = 0 and t = 2 and for α = 3, β = 2 and η = 1, ξ = −2 between
t = 0 and t = 1.5 are depicted with contour forms in Fig. 3 and Fig. (4) respectively.
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Figure 3. Numerical solution u(x, t) of problem 3 for ∆t = 0.025, m′ = 64,
α = β = 1 and η = ξ = −2.
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Figure 4. Numerical solution v(x, t) of problem 3 for ∆t = 0.025, m′ = 64,
α = 3, β = 2 and η = 1, ξ = −2.

Table 4. Comparisons of error norms for ∆t = 0.001 at different times for problem 3.

Kutluay [23] Mittal [29] Present method Cpu Time
(100 partitions) (64 partitions) (64 partitions) of Present
L2 L∞ L2 L∞ L2 L∞ Method

t = 0.01 1.876e-4 1.986e-5 4.9971e-6 5.0040e-6 0.048
t = 0.1 1.396e-4 3.984e-4 1.943e-4 1.382e-5 5.0122e-5 4.9327e-5 0.119
t = 0.5 2.473e-4 2.869e-4 2.232e-4 2.119e-5 2.1336e-4 1.4195e-4 0.385
t = 1 3.530e-4 1.786e-4 2.676e-4 1.552e-5 2.5548e-4 9.8263e-5 0.712
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5. Conclusion
In this paper Chebyshev wavelet method is used to get numerical solutions of one di-

mensional coupled Burgers’ equation. In the solution procedure, the highest derivatives
that appeared in the equations are expanded into Chebyshev wavelets and with aid of
the integrals of Chebyshev wavelets the considered partial differential equations are con-
verted to algebraic system of equations. The proposed method is tested by three examples
and obtained results are compared with the exact solution and with those existed in the
literature such as Finite element method, Haar wavelet method and Spectral methods.
The comparisons show that the present method is quite satisfactory and competitive with
other methods. We can give the highlights of the present method as follows:

• The present method can handle boundary conditions easily.
• Computer simulations show that the proposed method is computationally cheap,
fast and gives accurate results even in the case of a small number of collocation
points.
• The computer implementation of the proposed method is simple and straightfor-
ward.
• The present method can also be used for similar partial differential equations from
different branches of science and engineering with suitable modifications.
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