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Abstract
In this paper we compute the simplicial homology groups of some digital
surfaces.
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1. INTRODUCTION
Digital topology [19, 17] has been used in different image processing and computer

graphics algorithms for several decades. It addresses the fundamental properties of binary
object connectivity in two dimensional (2D) and three dimensional (3D) digital images.
Concepts and results of Digital Topology are used to specify and justify some important
low-level image processing algorithms including algorithms for thinning, boundary extrac-
tion, object counting, and contour filling. The properties of digital images with tools from
Topology (including Algebraic Topology) are used by many researchers [1−12, 16, 17, 19].

Homology is a powerful topological invariant which characterizes an object by its
p-dimensional holes. Intuitively the 0-dimensional holes can be seen as "tiny holes",
1-dimensional holes can be seen as tunnels, and 2-dimensional holes can be seen as
cavities. The usage of homology groups is a new topic and is not widely spread. Simplicial
homology groups of digital images have been studied by several researchers [1, 10, 16].
Boxer et al. [10] extend results of [1] about computing simplicial homology groups of
digital images. In this work, we compute simplicial homology groups of certain minimal
simple closed surfaces.

This paper is organized as follows. Section 2 provides some basic notions used in
this paper. In section 3, we compute the simplicial homology groups of certain digital
surfaces.
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2. PRELIMINARIES
Let Zn be the set of lattice points in the n-dimensional Euclidean space where Z is

the set of integers. For a positive integer l with 1 ≤ l ≤ n and two distinct points
p = (p1, p2, ..., pn), q = (q1, q2, ..., qn) ∈ Zn, p and q are cl-adjacent [8] if

(1) there are at most l indices i such that |pi − qi| = 1; and
(2) for all other indices i such that |pi − qi| 6= 1, pi = qi.

Another commonly used notation for cl-adjacency reflects the number of neighbors
q ∈ Zn that a given point p ∈ Zn may have under the adjacency. For example, if n = 1
we have c1 = 2-adjacency; if n = 2 we have c1 = 4-adjacency and c2 = 8-adjacency; if
n = 3 we have c1 = 6-adjacency, c2 = 18-adjacency, and c3 = 26-adjacency [8]. Given
a natural number l in conditions (1) and (2) with 1 ≤ l ≤ n, l determines each of the
κ-adjacency relations of Zn in terms of (1) and (2) [14] as follows.

(2.1) κ ∈
{
2n (n ≥ 1), 3n − 1 (n ≥ 2), 3n −

r−2∑
t=0

Cnt 2
n−t − 1 (2 ≤ r ≤ n− 1, n ≥ 3)

}
The pair (X,κ) is considered in a digital picture (Zn, κ, κ,X) for n ≥ 1 in [3, 4, 6, 13],

which is called a digital image where (κ, κ) ∈ {(κ, 2n), (2n, 3n − 1)}. Each of κ and κ is
one of the general κ-adjacency relations. We usually do not permit that κ and κ both
equal 2n when n > 1, because of the digital connectivity paradox [18]. For instance,
(κ, κ) ∈ {(4, 8), (8, 4)} and {(6, 18), (6, 26), (26, 6), (18, 6)} are usually considered in Z2

and Z3, respectively [6, 13, 19, 20].
A digital interval is a set of the form [a, b]Z = {z ∈ Z | a ≤ z ≤ b} where a, b ∈ Z with

a < b.
Let κ be an adjacency relation on Zn. A κ-neighbor of a lattice point p is κ-adjacent

to p. A digital image X ⊂ Zn is κ-connected [15] if and only if for every pair of different
points x, y ∈ X, there is a set {x0, x1, ..., xr} of points of a digital image X such that
x = x0, y = xr and xi and xi+1 are κ-neighbors where i = 0, 1, ..., r − 1. A κ-component
of a digital image X is a maximal κ-connected subset of X.

Let X ⊂ Zn0 and Y ⊂ Zn1 be digital images with κ0 and κ1-adjacency respectively.
Then the function f : X → Y is called (κ0, κ1)-continuous [6, 20] if for every κ0-connected
subset U ofX, f(U) is a κ1-connected subset of Y . We say that such a function is digitally
continuous. Similar notions are defined on discrete manifolds in [11]: Let D1 and D2 be
two discrete manifolds and f : D1 → D2 be a mapping. f is said to be an immersion
from D1 to D2 or a gradually varied operator if x and y are adjacent in D1 implies either
f(x) = f(y) or f(x), f(y) are adjacent in D2.

Let X be a digital image with κ-adjacency. If f : [0,m]Z → X is a (2, κ)-continuous
function such that f(0) = x and f(m) = y, then f is called a digital path from x to y
in X. If f(0) = f(m) then the κ-path is said to be closed, and the function is called a
κ-loop. Let f : [0,m − 1]Z → X be a (2, κ)-continuous function such that f(i) and f(j)
are κ-adjacent if and only if j = i±1mod m. Then the set f([0,m−1]Z) is called a simple
closed κ-curve. A point x ∈ X is called a κ-corner, if x is κ-adjacent to two and only two
points y, z ∈ X such that y and z are κ-adjacent to each other [4]. Moreover, the κ-corner
x is called simple if y, z are not κ-corners and if x is the only point κ-adjacent to both
y, z [3]. X is called a generalized simple closed κ-curve if what is obtained by removing
all simple κ-corners of X is a simple closed κ-curve [4]. If (X,κ) is a κ-connected digital
image in Z3, |X|x = N∗3 (x) ∩ X, where N∗3 (x) = {x′ ∈ Z3 : x and x′ are 26-adjacent}
[3, 4]. Generally, if (X,κ) is a κ-connected digital image in Zn, |X|x = N∗n(x)∩X, where
N∗n(x) = {x′ ∈ Zn : x and x′ are cn-adjacent} [13].

Let X ⊂ Zn0 and Y ⊂ Zn1 be digital images with κ0 and κ1-adjacency respectively.
A function f : X → Y is a (κ0, κ1)-isomorphism [9] (called (κ0, κ1)-homeomorphism in
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[5]) if f is (κ0, κ1)-continuous, bijective and f−1 : Y → X is (κ1, κ0)-continuous, in which
case we write X ≈(κ0,κ1) Y .

2.1. Definition. [13] Let c∗ := {x0, x1, ..., xn} be a closed κ-curve in Z2 where {κ, κ} =
{4, 8}. A point x of the complement c∗ of a closed κ-curve c∗ in Z2 is said to be in the
interior of c∗ if it belongs to the bounded κ-connected component of c∗. The set of all
interior points of c∗ is denoted by Int(c∗).

2.2. Definition. [13] Let (X,κ) be a digital image in Zn, n ≥ 3 and X = Zn−X. Then
X is called a closed κ-surface if it satisfies the following.

(1) In case that (κ, κ) ∈ {(κ, 2n), (2n, 3n − 1)}, where the κ-adjacency is taken from
(2.1) with κ 6= 3n − 2n − 1 and κ is the adjacency on X, then

(a) for each point x ∈ X, |X|x has exactly one κ-component κ-adjacent to x;
(b) |X|x has exactly two κ-components κ-adjacent to x; we denote by Cxx and

Dxx these two components; and
(c) for any point y ∈ Nκ(x) ∩ X, Nκ(y) ∩ Cxx 6= ∅ and Nκ(y) ∩ Dxx 6= ∅, where

Nκ(x) means the κ-neighbors of x.
Further, if a closed κ-surface X does not have a simple κ-point, then X is called simple.

(2) In case that (κ, κ) = (3n − 2n − 1, 2n), then
(a) X is κ-connected,
(b) for each point x ∈ X, |X|x is a generalized simple closed κ-curve.

Further, if the image |X|x is a simple closed κ-curve, then the closed κ-surface X is called
simple.

For a closed κ-surface Sκ, we denote by Sκ the complement of Sκ in Zn. Then a point
x of Sκ is said to be interior of Sκ if it belongs to the bounded κ-connected component
of Sκ. The set of all interior points of Sκ is denoted by int(Sκ).

The 3-dimensional digital images MSS∗18 and MSS∗6 which are obtained from the
minimal simple closed curves MSC8 and MSC4 in Z2, respectively, are essentially used
in establishing the notion of a connected sum [13].

Figure 1. Minimal simple closed curves MSC4 and MSC8.

• MSS∗6 :=MSS6 ∪ Int(MSS6) where

MSS6 ≈(6,6) (MSC4 × [0, 2]Z) ∪ (Int(MSC4)× {0, 2})
and MSC4 is 4-isomorphic to the set

{(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)}.

• MSS∗18 :=MSS18 ∪ Int(MSS18) where

MSS18 ≈(18,18) (MSC8 × {1}) ∪ (Int(MSC8)× {0, 2})
and MSC8 is 8-isomorphic to the set

{(0, 0), (−1, 1), (−2, 0), (−2,−1), (−1,−2), (0,−1)}.
2.3. Definition. [13] Let Sκ0 be a closed κ0-surface in Zn0 and Sκ1 be a closed κ1-surface
in Zn1 for n0, n1 ≥ 3. Consider A′κ0

⊂ Aκ0 ⊂ Sκ0 such that

A′κ0
≈(κ0,8) Int(MSC∗8 ), A

′
κ0
≈(κ0,4) Int(MSC∗4 ) or A

′
κ0
≈(κ0,8) Int(MSC′∗8 ).

Let f : Aκ0 → f(Aκ0) ⊂ Sκ1 be a (κ0, κ1)-isomorphism. Let S′κi
= Sκi \ A′κi , i ∈ {0, 1}.

Then the connected sum, denoted by Sκ0]Sκ1 , is the quotient space S
′
κ0
∪S′κ1

/ ∼, where
i : Aκ0 \A′κ0

→ S′κ0
is the inclusion map and i(x) ∼ f(x) for x ∈ Aκ0 \A′κ0

.
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2.4. Definition. [21] Let S be a set of nonempty subsets of a digital image (X,κ). The
members of S are called simplexes of (X,κ) if the following holds:

(i) If p and q are distinct points of s ∈ S, then p and q are κ-adjacent.
(ii) If s ∈ S and ∅ 6= t ⊂ s, then t ∈ S (note this implies every point p that belongs

to a simplex determines a simplex {p}).
An m-simplex is a simplex S such that |S| = m+ 1.

Let P be a digital m-simplex. If P ′ is a nonempty proper subset of P , then P ′ is
called a face of P .

Since computing homology groups is easier than computing higher degree homotopy
groups in algebraic topology, for the same reason computing homology groups of digi-
tal images is preferred to computing homotopy groups of digital images. The simplicial
homology groups of n-dimensional digital images from algebraic topology have been in-
troduced in [1].

2.5. Definition. [1] Let (X,κ) be a finite collection of digital m-simplices, 0 ≤ m ≤ d
for some nonnegative integer d. If the following statements hold, then (X,κ) is called a
finite digital simplicial complex:

(1) If P belongs to X, then every face of P also belongs to X.
(2) If P,Q ∈ X, then P ∩Q is either empty or a common face of P and Q.

The dimension of a digital simplicial complex X is the biggest integer m such that X
has an m-simplex.

Cκq (X) is a free abelian group with basis all digital (κ, q)-simplices in X [1].

2.6. Corollary. [10] Let (X,κ) ⊂ Zn be a digital simplicial complex of dimension m.
Then for all q > m, Cκq (X) is a trivial group.

Let (X,κ) ⊂ Zn be a digital simplicial complex of dimension m. The homomorphism
∂q : C

κ
q (X)→ Cκq−1(X) defined by

∂q(< p0, p1, ..., pq >) =


q∑
i=0

(−1)i < p0, p1, ..., p̂i, ..., pq >, q ≤ m;

0, q>m
is called a boundary homomorphism where p̂i means deleting the point pi. Then for all
1 ≤ q ≤ m, we have ∂q−1 ◦ ∂q = 0 [1].

2.7. Theorem. [1] Let (X,κ) ⊂ Zn be a digital simplicial complex of dimension m.
Then

Cκ∗ (X) : 0
∂m+1 // Cκm(X)

∂m // Cκm−1(X)
∂m−1 // ...

∂1 // Cκ0 (X)
∂0 // 0

is a chain complex.

Let (X,κ) be a digital simplicial complex. The group of digital simplicial q-cycles
is Zκq (X) = Ker ∂q = {σ ∈ Cκq (X)|∂q(σ) = 0} and the group of digital simplicial q-
boundaries is Bκq (X) = Im ∂q+1 = {τ ∈ Cκq (X)|∂q+1(σ) = τ for σ ∈ Cκq+1(X)}. The qth
digital simplicial homology group is Hκ

q (X) = Zκq (X)/Bκq (X) [1].

2.8. Theorem. [1] If f : X → Y is a digital (κ0, κ1)-isomorphism, then for all q
Hκ0
q (X) ∼= Hκ1

q (Y ).

2.9. Theorem. [10] Let (X,κ) be a directed digital simplicial complex of dimension m.
(1) Hκ

q (X) is a finitely generated abelian group for every q ≥ 0.
(2) Hκ

q (X) is a trivial group for all q > m.
(3) Hκ

q (X) is a free abelian group, possibly zero.
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2.10. Definition. [10] Let (X,κ) be a digital image of dimension m, and for each q ≥ 0,
let αq be the number of digital (κ, q)-simplexes in X. The Euler characteristic of X,
denoted by χ(X,κ), is defined by

χ(X,κ) =

m∑
q=0

(−1)qαq.

2.11. Theorem. [10] If (X,κ) is a digital image of dimension m, then

χ(X,κ) =

m∑
q=0

(−1)qrank Hκ
q (X).

2.12. Example. [10] By the definition of Euler characteristic, we have
χ(MSS6, 6) = α0 − α1 = 26− 48 = −22
χ(MSS6]MSS6, 6) = α0 − α1 = 42− 80 = −38
χ(MSS18, 18) = α0 − α1 + α2 = 10− 20 + 8 = −2
χ(MSS18]MSS18, 18) = α0 − α1 + α2 = 14− 28 + 8 = −6

3. MAIN RESULTS
Simplicial homology groups of several digital surfaces have been computed in [10]. By

using an argument similar to that of [10], we have the following theorems.

3.1. Theorem. The digital simplicial homology groups of MSS18]MSS18 are

H18
q (MSS18]MSS18) =


Z, q = 0;
Z7, q = 1;
0, q ≥ 2.

Figure 2. MSS18]MSS18

Proof. Let
MSS18]MSS18 = {c0 = (1, 0, 1), c1 = (1, 1, 1), c2 = (1, 2, 1),

c3 = (0, 3, 1), c4 = (−1, 2, 1), c5 = (−1, 1, 1),
c6 = (−1, 0, 1), c7 = (0,−1, 1), c8 = (0, 2, 2),

c9 = (0, 1, 2), c10 = (0, 0, 2), c11 = (0, 2, 0),

c12 = (0, 1, 0), c13 = (0, 0, 0)}.
Then we can direct MSS18]MSS18 by the ordering c6 < c5 < c4 < c7 < c13 < c10 <

c12 < c9 < c11 < c8 < c3 < c0 < c1 < c2. We have the following simplicial chain
complexes:
C18

0 (MSS18]MSS18) has for a basis {〈c0〉, 〈c1〉, ..., 〈c13〉},
C18

1 (MSS18]MSS18) has for a basis
{〈c7c0〉, 〈c10c0〉, 〈c13c0〉, 〈c0c1〉, 〈c9c1〉, 〈c12c1〉, 〈c1c2〉, 〈c8c2〉, 〈c11c2〉, 〈c3c2〉, 〈c4c3〉,
〈c8c3〉, 〈c11c3〉, 〈c5c4〉, 〈c4c8〉, 〈c4c11〉, 〈c6c5〉, 〈c5c9〉, 〈c5c12〉, 〈c6c7〉, 〈c6c10〉, 〈c6c13〉,
〈c7c10〉, 〈c7c13〉, 〈c9c8〉, 〈c10c9〉, 〈c12c11〉, 〈c13c12〉},

and C18
2 (MSS18]MSS18) has for a basis

{〈c7c13c0〉, 〈c7c10c0〉, 〈c8c3c2〉, 〈c11c3c2〉, 〈c4c8c3〉, 〈c4c11c3〉, 〈c6c7c10〉, 〈c6c7c13〉}.
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Thus, we obtain the following short sequence:

0
∂3−→ C18

2 (MSS18]MSS18)
∂2−→ C18

1 (MSS18]MSS18)
∂1−→ C18

0 (MSS18]MSS18)
∂0−→ 0.

By Theorem 2.9, H18
q (MSS18]MSS18) is a trivial group for all q > 2.

We determine the kernel of ∂2. If
∂2(a1〈c7c13c0〉+ a2〈c7c10c0〉+ a3〈c8c3c2〉+ a4〈c11c3c2〉+ a5〈c4c8c3〉+ a6〈c4c11c3〉

+ a7〈c6c7c10〉+ a8〈c6c7c13〉) = a1〈c13c0〉+ (−a1 − a2)〈c7c0〉+ (a1 + a8)〈c7c13〉
+ a2〈c10c0〉+ (a2 + a7)〈c7c10〉+ (a3 + a4)〈c3c2〉 − a3〈c8c2〉+ (a3 + a5)〈c8c3〉
− a4〈c11c2〉+ (a4 + a6)〈c11c3〉+ (−a5 − a6)〈c4c3〉+ a5〈c4c8〉
+ a6〈c4c11〉 − a7〈c6c10〉+ (a7 + a8)〈c6c7〉 − a8〈c6c13〉 = 0,

then one easily sees that a1 = a2 = a3 = a4 = a5 = a6 = a7 = a8 = 0. Therefore,
Z18

2 (MSS18]MSS18) = {0} and hence H18
2 (MSS18]MSS18) = {0}.

Since Ker ∂2 = Z18
2 (MSS18]MSS18) = {0}, Im ∂2 ∼= C8

2 (MSS18]MSS18), and so
B18

1 (MSS18]MSS18) ∼= Z8.
We can use standard methods to determine that Z18

1 (MSS18]MSS18) ∼= Z15, from
which it follows easily that B18

0 (MSS18]MSS18) ∼= Z13. However, the direct calculation
of Z18

1 (MSS18]MSS18) is very long. Since our goal is to calculate H18
1 (MSS18]MSS18),

we will do so below without showing a direct calculation of Z18
1 (MSS18]MSS18).

By using the short sequence again, we have

Z18
0 (MSS18]MSS18) =

{ 13∑
i=0

ai〈ci〉 | ai ∈ Z, i = 0, 1, ..., 13
}
∼= Z14

Any 0-cycle w0 =

13∑
i=0

ai〈ci〉 can be written as

w0 = ∂1((−a7)〈c7c0〉+ (a1 + a2 + a3)〈c0c1〉+ (a2 + a3)〈c1c2〉
+ (−a3)〈c3c2〉+ a11〈c4c11〉+ (a4 + a11)〈c5c4〉+ a12〈c5c12〉
+ (a4 + a5 + a11 + a12)〈c6c5〉+ a13〈c6c13〉
+ (−a4 − a5 − a6 − a11 − a12 − a13)〈c6c10〉+ a8〈c9c8〉

+ (a8 + a9)〈c10c9〉+ (a0 + a1 + a2 + a3 + a7)〈c10c0〉) +
13∑
i=0

ai〈c10〉.

So w0 is homologous to 0-chain
13∑
i=0

ai〈c10〉. Hence the 0-chain is homologous to an

integral multiple of 〈c10〉. Thus we deduce H18
0 (MSS18]MSS18) ∼= Z.

To compute the H18
1 (MSS18]MSS18), we can use the results in [10]. By Example

2.12, we know that χ(MSS18]MSS18, 18) = −6. From Theorem 2.11,

χ(MSS18]MSS18, 18) =

2∑
q=0

(−1)qrank H18
q (MSS18]MSS18)

−6 = 1− rank H18
1 (MSS18]MSS18) + 0

Thus we get rank H18
1 (MSS18]MSS18) = 7 which in turn gives us

H18
1 (MSS18]MSS18) ∼= Z7.

�

3.2. Theorem. The digital simplicial homology groups of MSS6 are
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H6
q (MSS6) =


Z, q = 0;
Z23, q = 1;
0, q 6= 0, 1.

Figure 3. MSS6

Proof. If we take

MSS6 = {c0 = (−1,−1, 0), c1 = (0,−1, 0), c2 = (1,−1, 0), c3 = (1, 0, 0),

c4 = (0, 0, 0), c5 = (−1, 0, 0), c6 = (−1, 1, 0), c7 = (0, 1, 0),

c8 = (1, 1, 0), c9 = (1, 1, 1), c10 = (0, 1, 1), c11 = (−1, 1, 1),
c12 = (−1, 0, 1), c13 = (1, 0, 1), c14 = (1,−1, 1), c15 = (0,−1, 1),
c16 = (−1,−1, 1), c17 = (−1,−1, 2), c18 = (0,−1, 2), c19 = (1,−1, 2),
c20 = (1, 0, 2), c21 = (0, 0, 2), c22 = (−1, 0, 2), c23 = (−1, 1, 2),
c24 = (0, 1, 2), c25 = (1, 1, 2)},

then we can direct MSS6 by the ordering c0 < c16 < c17 < c5 < c12 < c22 < c6 < c11 <
c23 < c1 < c15 < c18 < c4 < c21 < c7 < c10 < c24 < c2 < c14 < c19 < c3 < c13 < c20 <
c8 < c9 < c25.

We have the following simplicial chain complexes:
C6

0 (MSS6) has for a basis {〈c0〉, 〈c1〉, ..., 〈c25〉}, and C6
1 (MSS6) has for a basis

{〈c0c1〉, 〈c0c5〉, 〈c0c16〉, 〈c1c2〉, 〈c1c4〉, 〈c1c15〉, 〈c2c14〉, 〈c2c3〉, 〈c4c3〉, 〈c3c8〉, 〈c3c13〉,
〈c5c4〉, 〈c4c7〉, 〈c5c6〉, 〈c5c12〉, 〈c6c7〉, 〈c6c11〉, 〈c7c8〉, 〈c7c10〉, 〈c8c9〉, 〈c10c9〉, 〈c13c9〉,
〈c9c25〉, 〈c11c10〉, 〈c10c24〉, 〈c12c11〉, 〈c11c23〉, 〈c16c12〉, 〈c12c22〉, 〈c14c13〉, 〈c13c20〉,
〈c15c14〉, 〈c14c19〉, 〈c16c15〉, 〈c15c18〉, 〈c16c17〉, 〈c17c18〉, 〈c17c22〉, 〈c18c19〉, 〈c18c21〉,
〈c19c20〉, 〈c21c20〉, 〈c20c25〉, 〈c22c21〉, 〈c21c24〉, 〈c22c23〉, 〈c23c24〉, 〈c24c25〉}.

Thus we get the following short sequence:

0
∂2 // C6

1 (MSS6)
∂1 // C6

0 (MSS6)
∂0 // 0.

By Theorem 2.9, we have H6
q (MSS6) = {0} for every q > 1.

Direct calculation yields that Z6
1 (MSS6) ∼= Z23, from which it follows easily that

B6
0(MSS6) ∼= Z25. However, direct calculation of Z6

1 (MSS6) is very long. Since our
goal is to calculate H6

1 (MSS6), we do so below without showing a direct calculation of
Z6

1 (MSS6).
By using the short sequence, we have

Z6
0 (MSS6) =

{ 25∑
i=0

ai〈ci〉 | ai ∈ Z, i = 0, 1, ..., 25
}
∼= Z26.

Any 0-cycle w0 =
25∑
i=0

ai〈ci〉 can be written as
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w0 = ∂1((−a6)〈c6c11〉+ (−a6 − a11)〈c11c23〉+ (a6 + a11 + a23)〈c22c23〉
+ (a6 + a11 + a22 + a23)〈c12c22〉+ (a6 + a11 + a12 + a22 + a23)〈c5c12〉
+ (a5 + a6 + a11 + a12 + a22 + a23)〈c0c5〉
+ (−a0 − a5 − a6 − a11 − a12 − a22 − a23)〈c0c16〉
+ (−a0 − a5 − a6 − a11 − a12 − a16 − a22 − a23)〈c16c17〉
+ (−a0 − a5 − a6 − a11 − a12 − a16 − a17 − a22 − a23)〈c17c18〉
+ a15〈c1c15〉+ (−a1 − a15)〈c1c4〉
+ (−a1 − a4 − a15)〈c4c7〉+ (−a1 − a4 − a7 − a15)〈c7c10〉
+ (−a1 − a4 − a7 − a10 − a15)〈c10c24〉
+ (a1 + a4 + a7 + a10 + a15 + a24)〈c21c24〉
+ (a1 + a4 + a7 + a10 + a15 + a21 + a24)〈c18c21〉+ (−a8)〈c8c9〉
+ (−a8 − a9)〈c9c25〉+ (a8 + a9 + a25)〈c20c25〉
+ (a8 + a9 + a20 + a25)〈c13c20〉+ (a8 + a9 + a13 + a20 + a25)〈c3c13〉
+ (a3 + a8 + a9 + a13 + a20 + a25)〈c2c3〉
+ (−a2 − a3 − a8 − a9 − a13 − a20 − a25)〈c2c14〉
+ (−a2 − a3 − a8 − a9 − a13 − a14 − a20 − a25)〈c14c19〉

+ (a2 + a3 + a8 + a9 + a13 + a14 + a19 + a20 + a25)〈c18c19〉) +
25∑
i=0

ai〈c18〉.

So w0 is homologous to 0-chain
25∑
i=0

ai〈c18〉. Hence the 0-chain is homologous to an

integral multiple of 〈c18〉. Thus we get

H6
0 (MSS6) ∼= Z.

We use the results in [10] to compute the H6
1 (MSS6). From Example 2.12, we have

χ(MSS6, 6) = −22. From Theorem 2.11,

χ(MSS6, 6) =

1∑
q=0

(−1)qrank H6
q (MSS6)

−22 = 1− rank H6
1 (MSS6)

Thus we get rank H6
1 (MSS6) = 23 which gives us

H6
1 (MSS6) ∼= Z23.

�

3.3. Theorem. The digital simplicial homology groups of MSS6]MSS6 are

H6
q (MSS6]MSS6) =


Z, q = 0;
Z39, q = 1;
0, q 6= 0, 1.



1019

Figure 4. MSS6]MSS6

Proof. Let

MSS6]MSS6 = {c0 = (0, 0, 0), c1 = (1, 0, 0), c2 = (2, 0, 0), c3 = (2, 1, 0),

c4 = (1, 1, 0), c5 = (0, 1, 0), c6 = (0, 2, 0), c7 = (1, 2, 0),

c8 = (2, 2, 0), c9 = (2, 3, 0), c10 = (1, 3, 0), c11 = (0, 3, 0),

c12 = (0, 4, 0), c13 = (1, 4, 0), c14 = (2, 4, 0), c15 = (2, 4, 1),

c16 = (1, 4, 1), c17 = (0, 4, 1), c18 = (0, 3, 1), c19 = (2, 3, 1),

c20 = (2, 2, 1), c21 = (0, 2, 1), c22 = (0, 1, 1), c23 = (2, 1, 1),

c24 = (2, 0, 1), c25 = (1, 0, 1), c26 = (0, 0, 1), c27 = (0, 0, 2),

c28 = (1, 0, 2), c29 = (2, 0, 2), c30 = (2, 1, 2), c31 = (1, 1, 2),

c32 = (0, 1, 2), c33 = (0, 2, 2), c34 = (1, 2, 2), c35 = (2, 2, 2),

c36 = (2, 3, 2), c37 = (1, 3, 2), c38 = (0, 3, 2), c39 = (0, 4, 2),

c40 = (1, 4, 2), c41 = (2, 4, 2)}.

We can direct MSS6]MSS6 by the ordering c0 < c26 < c27 < c5 < c22 < c32 < c6 <
c21 < c33 < c11 < c18 < c38 < c12 < c17 < c39 < c1 < c25 < c28 < c4 < c31 < c7 < c34 <
c10 < c37 < c13 < c16 < c40 < c2 < c24 < c29 < c3 < c23 < c30 < c8 < c20 < c35 < c9 <
c19 < c36 < c14 < c15 < c41.

We have the following simplicial chain complexes:
C6

0 (MSS6]MSS6) has for a basis {〈c0〉, 〈c1〉, ..., 〈c41〉}, and
C6

1 (MSS6]MSS6) has for a basis

{〈c0c1〉, 〈c0c5〉, 〈c0c26〉, 〈c1c4〉, 〈c1c2〉, 〈c1c25〉, 〈c2c3〉, 〈c2c24〉, 〈c4c3〉, 〈c3c8〉, 〈c3c23〉,
〈c4c7〉, 〈c5c4〉, 〈c5c6〉, 〈c5c22〉, 〈c6c11〉, 〈c6c21〉, 〈c6c7〉, 〈c7c10〉, 〈c7c8〉, 〈c8c9〉, 〈c8c20〉,
〈c9c14〉, 〈c10c9〉, 〈c9c19〉, 〈c10c13〉, 〈c11c10〉, 〈c11c12〉, 〈c11c18〉, 〈c12c13〉, 〈c12c17〉,
〈c13c16〉, 〈c13c14〉, 〈c14c15〉, 〈c16c15〉, 〈c19c15〉, 〈c15c41〉, 〈c17c16〉, 〈c16c40〉, 〈c18c17〉,
〈c17c39〉, 〈c21c18〉, 〈c18c38〉, 〈c20c19〉, 〈c19c36〉, 〈c23c20〉, 〈c20c35〉, 〈c22c21〉, 〈c21c33〉,
〈c26c22〉, 〈c22c32〉, 〈c24c23〉, 〈c23c30〉, 〈c25c24〉, 〈c24c29〉, 〈c26c25〉, 〈c25c28〉, 〈c26c27〉,
〈c27c28〉, 〈c27c32〉, 〈c28c29〉, 〈c28c31〉, 〈c29c30〉, 〈c30c35〉, 〈c31c30〉, 〈c32c31〉, 〈c31c34〉,

〈c32c33〉, 〈c33c34〉, 〈c33c38〉, 〈c34c35〉, 〈c34c37〉, 〈c35c36〉, 〈c31c34〉, 〈c32c33〉, 〈c33c34〉,
〈c33c38〉, 〈c34c35〉, 〈c34c37〉, 〈c35c36〉, 〈c31c34〉, 〈c32c33〉, 〈c33c34〉, 〈c33c38〉, 〈c34c35〉,
〈c34c37〉, 〈c35c36〉, 〈c27c32〉, 〈c28c29〉, 〈c28c31〉, 〈c29c30〉, 〈c30c35〉, 〈c31c30〉, 〈c32c31〉,
〈c31c34〉, 〈c32c33〉, 〈c33c34〉, 〈c33c38〉, 〈c34c35〉, 〈c34c37〉, 〈c35c36〉, 〈c37c36〉, 〈c36c41〉,
〈c38c37〉, 〈c37c40〉, 〈c38c39〉, 〈c39c40〉, 〈c40c41〉}.

Thus we obtain the following short sequence:

0
∂2 // C6

1 (MSS6]MSS6)
∂1 // C6

0 (MSS6]MSS6)
∂0 // 0.

By Theorem 2.9, H6
q (MSS6]MSS6) is a trivial group for q > 1.

Direct calculation yields that Z6
1 (MSS6]MSS6) ∼= Z39, from which it follows easily

thatB6
0(MSS6]MSS6) ∼= Z41. However, direct calculation of the group Z6

1 (MSS6]MSS6)
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of digital simplicial 1-cylces is very long. Since our goal is to calculate H6
1 (MSS6]MSS6),

we do so below without showing a direct calculation of Z6
1 (MSS6]MSS6).

By using the short sequence again, we have

Z6
0 (MSS6]MSS6) =

{ 41∑
i=0

ai〈ci〉 | ai ∈ Z, i = 0, 1, ..., 41
}
∼= Z42.

Any 0-cycle w0 =
∑41
i=0 ai〈ci〉 can be written as

w0 = ∂1(− a12〈c12c17〉+ (−a12 − a17)〈c17c39〉+ (a12 + a17 + a39)〈c38c39〉
+ (a12 + a17 + a38 + a39)〈c18c38〉
+ (a12 + a17 + a18 + a38 + a39)〈c11c18〉
+ (a11 + a12 + a17 + a18 + a38 + a39)〈c6c11〉
+ (−a6 − a11 − a12 − a17 − a18 − a38 − a39)〈c6c21〉
+ (−a6 − a11 − a12 − a17 − a18 − a21 − a38 − a39)〈c21c33〉
+ (a6 + a11 + a12 + a17 + a18 + a21 + a33 + a38 + a39)〈c32c33〉
+ (a6 + a11 + a12 + a17 + a18 + a21 + a32 + a33 + a38 + a39)〈c22c32〉
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+ (a6 + a11 + a12 + a17 + a18 + a21 + a22 + a32 + a33 + a38 + a39)〈c5c22〉
+ (a5 + a6 + a11 + a12 + a17 + a18 + a21 + a22 + a32 + a33

+ a38 + a39)〈c0c5〉+ (−a0 − a5 − a6 − a11 − a12 − a17 − a18 − a21
− a22 − a32 − a33 − a38 − a39)〈c0c26〉+ (−a0 − a5 − a6 − a11−
− a12 − a17 − a18 − a21 − a22 − a26 − a32 − a33 − a38 − a39)〈c26c27〉
+ (−a0 − a5 − a6 − a11 − a12 − a17 − a18 − a21 − a22 − a26 − a27 − a32
− a33 − a38 − a39)〈c27c28〉+ a25〈c1c25〉+ (−a1 − a25)〈c1c4〉
+ (−a1 − a4 − a25)〈c4c7〉+ (−a1 − a4 − a7 − a25)〈c7c10〉
+ (−a1 − a4 − a7 − a10 − a25)〈c10c13〉
+ (−a1 − a4 − a7 − a10 − a13 − a25)〈c13c16〉
+ (−a1 − a4 − a7 − a10 − a13 − a16 − a25)〈c16c40〉
+ (a1 + a4 + a7 + a10 + a13 + a16 + a25 + a40)〈c37c40〉
+ (a1 + a4 + a7 + a10 + a13 + a16 + a25 + a37 + a40)〈c34c37〉
+ (a1 + a4 + a7 + a10 + a13 + a16 + a25 + a34 + a37 + a40)〈c31c34〉
+ (a1 + a4 + a7 + a10 + a13 + a16 + a25 + a31 + a34 + a37 + a40)〈c28c31〉
+ (−a14)〈c14c15〉+ (−a14 − a15)〈c15c41〉+ (a14 + a15 + a41)〈c36c41〉
+ (a14 + a15 + a36 + a41)〈c19c36〉+ (a14 + a15 + a19 + a36 + a41)〈c9c19〉
+ (a9 + a14 + a15 + a19 + a36 + a41)〈c8c9〉
+ (−a8 − a9 − a14 − a15 − a19 − a36 − a41)〈c8c20〉
+ (−a8 − a9 − a14 − a15 − a19 − a20 − a36 − a41)〈c20c35〉
+ (a8 + a9 + a14 + a15 + a19 + a20 + a35 + a36 + a41)〈c30c35〉
+ (a8 + a9 + a14 + a15 + a19 + a20 + a30 + a35 + a36 + a41)〈c23c30〉
+ (a8 + a9 + a14 + a15 + a19 + a20 + a23 + a30 + a35 + a36 + a41)〈c3c23〉
+ (a3 + a8 + a9 + a14 + a15 + a19 + a20 + a23 + a30 + a35 + a36 + a41)〈c2c3〉
+ (−a2 − a3 − a8 − a9 − a14 − a15 − a19 − a20 − a23 − a30 − a35 − a36
− a41)〈c2c24〉+ (−a2 − a3 − a8 − a9 − a14 − a15 − a19 − a20 − a23 − a24 − a30
− a35 − a36 − a41)〈c24c29〉+ (a2 + a3 + a8 + a9 + a14 + a15 + a19

+ a20 + a23 + a24 + a29 + a30 + a35 + a36 + a41)〈c28c29〉) +
41∑
i=0

ai〈c28〉.

So w0 is homologous to 0-chain
41∑
i=0

ai〈c28〉. Hence the 0-cycle is homologous to an integral

multiple of 〈c28〉. Thus we get H6
0 (MSS6]MSS6) ∼= Z.

From Example 2.12, Theorem 2.11, and the above, we have

−38 = χ(MSS6]MSS6) =rank H
6
0 (MSS6]MSS6)− rank H6

1 (MSS6]MSS6)

=1− rank H6
1 (MSS6]MSS6).

Therefore, rank H6
1 (MSS6]MSS6) = 39. It follows from Theorem 2.9 thatH6

1 (MSS6]MSS6) ∼=
Z39. �
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