Hacettepe Journal of Mathematics and Statistics
Volume 45 (6) (2016), 16851692

Subalgebra analogue to H-basis for ideals
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Abstract

The H-basis concept allows an investigation of multivariate polynomial
spaces degree by degree. In this paper we present the analogue of H-
bases for subalgebras in polynomial rings, we call them "SH-bases".
We present their connection to the Sagbi basis concept, characterize
SH-basis and show how to construct them.
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1. Introduction

The concept of Grobner bases, introduced by Buchberger [3] in 1965, has become an
important ingredient for the treatment of various problems in computational algebra,
(see [2] for an extensive survey). This concept has also been extended to more general
situations, such as Grobner bases of modules, for example, as in [9]. However, all ap-
proaches related to Grébner bases are fundamentally tied to monomial orderings, which
lead to asymmetry among the variables of interest. On the other hand, the concept of
H-bases, introduced long ago by Macaulay [7], is based solely on homogeneous terms of
a polynomial. In [12], an extension of Buchberger’s algorithm is presented to construct
H-bases algorithmically. Some applications of H-bases are given in [10], in addition, many
of the problems in applications which can be solved by the Grébner technique can also
be treated successfully with H-bases.

The concept of Grobner basis for ideals of a polynomial ring over a field K can be
adopted in a natural way to K-subalgebras of a polynomial ring. In [11] Sagbi (Subalge-
bra Analogue to Grobner Basis for Ideals) basis for the K-subalgebra of K[z1,...,zn] is
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defined; this concept was also independently developed in [6]. The properties and appli-
cations of Sagbi bases are typically similar to standard Grébner basis results (see [1] and
[4] for an overview of the standard theory). Like Grobmer bases, the concept of Sagbi
basis is also tied to monomial orderings. Consequently, within the concept of H- bases for
ideals, it is natural to probe the concept of subalgebra bases which may be based solely on
homogenous terms of a polynomial. In this paper we will present the analogue to H-bases
for ideals in polynomial rings, we call them "SH-bases". Unlike H-bases, SH-bases are
not finite. This is not surprising because unlike ideals in polynomial rings, subalgebras
in polynomial rings are not necessarily finitely generated. The subalgebras which are not
finitely generated cannot have finite SH-basis. Moreover, a finitely generated subalgebra
may have an infinite SH-basis (see Example 3.8).

The paper is organized as follows. In section 2, we briefly describe the underlying
concept of grading which leads to Sagbi basis and SH-basis. Then, we give the notion of
d-reduction, which is one of the key ingredients for the characterization and construction
of SH-basis. After setting up the necessary notation, we present the d-reduction Algo-
rithm (see Algorithm 1). Also, here we present some properties characterizing SH-basis
(Theorem 2.4). In section 3, we present a criterion through which we can check that the
given system of polynomials is an SH-basis of the subalgebra it generates (Theorem 3.4)
and further on the basis of this theorem we present an algorithm for the construction of
SH-basis (Algorithm 2).

2. SH-bases and Sagbi bases

Here and in the following sections we consider polynomials in n variables z1,...,zy
with coefficients from a field K. For short, we write

P = Klz1,...,xn].

If G is a subset of K[z1,...,2,] (not necessarily finite), then the subalgebra of P
generated by G is K[G]. This notion is natural since the elements of K[G] are precisely
the polynomials in the set of formal variables G, viewed as elements of K[G].

2.1. Definition. A G-monomial is a finite power product of the form G = g7 ... gom
where g; € Gfori=1,...,m, and a = (a1,...,am) € N,

Let I' denote an ordered monoid, i.e., an abelian semigroup under an operation +,
equipped with a total ordering > such that, for all o, 8,y € T,

a>ff=a+v>8+".
A direct sum
P=PrP
yer
is called grading (induced by T') or briefly a I'-grading if for all o, 3 € T'

21) fePPge?y = ge?l),

Since the decomposition above is a direct sum, each polynomial f # 0 has a unique
representation

F=3 fur O0#f, €.
i=1
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Assuming that v1 > v2 > ... > ~s, the I'-homogeneous term f,, is called the maximal
part of f, denoted by M<F)(f) = fy,, and f — M(F)(f) is called the d-reductum of f.
For G C P, MT(G) := {MT(g)|g € G}.

There are two major examples of gradings. The first one is grading by degrees,

TP&U = {p € P|p homogenous of degree d} Vd e N.

Here, I' = N with the natural total ordering. This grading is called the H-grading because
of the homogeneous polynomials. Therefore we also write H in place of this I". The space
of all polynomials of degree at most d can now be written as

d

Pa = PP

k=0
The maximal part of a polynomial f # 0 is its homogeneous form of highest degree,

M) (f). For simplicity, let M) (0) := 0.

Now we introduce SH-bases and some of their properties. This concept is very similar
to the concept of Sagbi bases. Therefore, we will briefly explain the underlying common
structure.

2.2. Definition. A subset G of P is called SH- basis of the subalgebra A of P if, for all
0 # f € A, there exist G-monomials G** and ¢; € K, i=1,...,p such that

p
(2.2) f= ZciGo‘i and m%lx{deg(Gai)} = deg(f).
i=1 -
The representation for f in (2.2) is also called its SH-representation with respect to G.

Note that SH-basis of a subalgebra is also a generating set of it. To obtain more
insight into SH-bases, we will give some equivalent definitions. First we need a more
technical notion.

2.3. Definition. Let f € P and G C P. We say f d-reduces to fwith respect to G if

F=F-Y"aG™, deg(f) < deg(f),
=1

holds with G-monomials G** satisfying deg(G*') < deg(f), ¢ = 1,...,m. In this case
we write

f—alf
By —¢,. we denote the transitive closure of the binary relation —¢°.

The concept of d-reduction plays an important role in the characterization and con-
struction of SH-basis. For f € P and G C P, the following algorithm computes h such
that f —a.« h.

§f —a,« h if we apply d-reduction iteratively such as f —g h1 —g h2... =g h, where h
cannot be d-reduced any further with respect to G.
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Algorithm 1

Input: Let G and f be subset and polynomial respectively in P.
Output: h € P such that f —a,« h.
1: h:=f.
2: while (h # 0 and Gj, = {3, ;G | MU (3, e;G*) = M) (h)} # 0)
3: (a) choose ), ;G € Gh.
4: (b) h:=h—73",¢;G% and continue at 2.

We note that when step 2(b), has been performed, then deg(h) is strictly smaller than
the deg(h — >, ¢;:G®?) (by the choice of Y. ¢;G*?). This shows that the Algorithm 1
always terminate.

2.4. Theorem. Let G C P and A be a subalgebra of P. Then the following conditions
are equivalent:

i) G is an SH-basis of A.

ii) K{M "™ (g) |g € GY] = K{M "D (f)| f € A}].

i11) For all f € A, f —a,« 0.

Proof. (i) = (it) follows by

MUD(f) =37 e MID(@™), T = {j] deg(G™) = deg(f)}

jer

for arbitrary f € A with SH-representation f =Y ¢;GY.
(i) = (ii1) ¥ 0 # f € A, then M (f) = 3., ¢; M) (G*). Therefore, f = f —
> jes¢iG%, where f € A and deg(f) < deg(f). Inductively, we get f —vc.« 0.
(#41) = (i) Let

go=f—>ca9g —¢...>cg9a=0
where M) (g, 1) = M) (G*?) and deg(Gi+') < deg(G*), i =1,...,d. Then

d
f=> cG* and deg(f) = deg(G*!) = méf{deg(G”)}
i=1 N
i.e., f has an SH-representation with respect to G. (]

The second major example of gradings leads to the Sagbi basis concept. Here, I' = N"
with componentwise addition and equipped with a total ordering satisfying (2.1) and, in
addition, v > 0 Vv € . For arbitrary v = (y1,...,7v) € I, the space TPEYF) is a vector
space of dimension 1, namely,

ngm ={c-z ...z |ce K}.
The maximal part of a polynomial is now a product of a leading coefficient and a
leading monomial, MM (f) = LC(f) - LM(f), LC(f) € K,LM(f) a leading mono-
mial. The s-reduction f —¢ f is defined if there exists a G-monomial G* such that

LM(G®*) = LM(f) and then we set f := f — cG®, ¢ € K. The relation —¢ . is con-
structed as above.

A Sagbi basis G (with respect to a given monomial ordering and a given subalgebra A)
is a set of polynomials, generating the subalgebra A and satisfying one of the following
equivalent conditions:

(i) Every f € A has a representation f =>"7_, ¢;G*, LM(f) = max{_;{LM(G*)}.
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(i) K{M T (g)[g € GY] = K{M D (f)| f € A}]-
(iii) Every f € A s-reduces to 0 with respect to G.
The proof of this equivalence and many other equivalent conditions can be found in
[11]. If a monomial ordering is compatible with the semi-ordering by degrees,
deg(a") > deg(z”) = 7> B, 7,6 €N

then any Sagbi-representation as given in (i) is an SH-representation, in other words, a
Sagbi basis with respect to a degree compatible ordering is an SH-basis as well. The
converse is false, as the following example shows.

2.5. Ezample. Let fi = x° + 2%y, fo = v%, f3 = 2y +y and A = K[f1, f2, f3]. Then
f1, f2 and f3 already constitute an SH-basis of A. (This is consequence of Theorem 2.4).
If we order the monomials by degree lexicographical ordering then

KM (f)| f € AY] = K[2°, 4%, ay, 2°y").

Every Sagbi basis G with respect to this ordering contains at least four elements, for
instance SINGULAR ([5]) computes G = {g1, g2, g2, g4} with
p=2"+3"y=Ff
g2=y"=fo
gp=ay+ty=/J3
g1 = 224" — 32%y° — 34

Obviously, this Sagbi basis is an SH-basis as well.

It is possible that a subalgebra has a finite SH-basis, but no finite Sagbi basis, as the
following example shows.

2.6. Ezample. Let G = {f1, f2, f3} C K[z,y] where fi = 2+ vy, fo = xy, f3 = zy°
and A = K[G]. It is easy to see that G is an SH-basis of A. However, the set S =
{z + y, 2y, xy?, 2y, 2y*,...} C A is an infinite Sagbi basis for /A with respect to a
monomial ordering z > y. (see [11]).

3. Construction of SH-bases

In this section, we present an SH-basis criterion, through which we can construct SH-
basis. For this purpose, we fix some notations which are necessary for this construction.

3.1. Definition. Let G be a set of polynomials in P and let A = K[G]. We consider
f € A with the representation f = Y " ¢;G*. Then the degree-height of f, written
d-ht(f), with respect to this representation is maxj~;{deg(G“")}.

Let Y = {y1,...,ys} and K[Y] be a polynomial ring over a field K in variables
Y1,---,Ys. Let P(Y) = P(y1,...,ys) € K[Y] and Y be a Y-monomial.

3.2. Definition. Let G C P. A polynomial P(Y) =3 7" ¢ Y% € K[Y] (where ¢; € K)

is called G-homogenous if deg(G*?) are same for 1 <7 < m.

3.3. Definition. Let G = {¢1,...,gs} be a subset of K[z1,...,z,]. We denote
AR((M™)(@)), the ideal of algebraic relations between M) (g;),i = 1,... s defined
by:

AR((MY(G)) = {h € K[y1,...,ys] |h(M ™ (g1)), ..., M (g,)) = 0}
AR(M™)(@)) is an ideal in K[y1,...,ys].
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In the case of Sagbi bases, there is as an algorithm for computing Sagbi bases by
means of algebraic relations (see [8]) where algebraic relations and their connection to
Sagbi bases are studied in detail.) The analogue for constructing SH-bases by means of
algebraic relations is based on the following result.

3.4. Theorem. (SH-basis criterion) Let G = {g1,...,gs} be a subset of K[z1,...,zx].
Let A = K|G] and let {P;(Y)|j € J} be a finite set of G-homogenous generators for
AR((M™)(@)). Then the following conditions are equivalent:

i) G is an SH-basis of A.

it) For each j € J, P;(G) = Pj(g1,...,9s) —a,x 0.

Proof. (i) = (4i): This is trivial and follows from Theorem 2.4.
(i) = (4): For every h € K[G], we will show that

h= Zc G and deg(h) = mTa;c{deg(Gai)}.

Let h € K[G} and write h = 7" | ¢;G*; furthermore, assume that this representation
has the smallest possible degree-height to = max;~,{deg(G**)} of all such representation.
We know that deg(h) < to. Suppose that deg(h) < to, without loss of generality, let the
first N summands be the ones for which deg(M ) (G®?)) = to. Then the cancelation
of their maximal part must occur; i.e SN ¢; MU (G*) = 0. From this condition, we
obtain a polynomial P(Y) = vazl Y% € AR(MYD(Q@)). We can then write

(31)  Yer™ =) =3 0 NIn)

where the polynomials P;(Y) are among the stated generators of AR((M)(QG)) and
the polynomials ¢;(Y) € Kly1,...,ys|. Moreover, we may assume that each g¢;(Y) is
G-homogenous (since P(Y) and every P;(Y) are) and also that

(3.2)  d-ht(g;(@)) 4+ d-ht(P;(G)) = d-ht(P(G)) = to Vj.

We have assumed that each P;(G) —,. 0; therefore we have Pj(G) = 3,7 ck G*i
where ¢x; € K. By definition, these sums must have degree heights maxy{deg(G™*7 )}
deg(P;(G)) < d-ht(P;(G)) for each j, where the last inequality holds because P;(Y")
AR((M™)(@)). Then for each j, 1< j < M,

€

(33)  gi(G)P(G) =) crjg;(G)G™*

Note that

(3.4)  deg(g;(G))P;(G)) = deg(g;(G)) + deg(P;(G)) < deg(g;(G)) + d-ht(P;(G)).
From our observation and using equation (3.2), we have

(35)  deg(g;(G)) + d-ht(P;(G)) < d-ht(g;(G)) + d-ht(P;(G)) = to

Combining equations (3.4) and (3.5) we have

(3:6)  deg(g;(G)F;(G)) < to

Finally, equations (3.1) and (3.3) imply that

(3.7) h=P(G)+ i ciG“i:ZZ]cmg] Goki) Z G

i=N+1 j=1 k=1 i=N+1
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Sumi Suma
If we examine the expression (3.7) closely, we see that:
e By (3.6), d-ht(Sum1) = maxjL,{deg(g; (G)Pj(G))} < to;
e By the choice of N, d-ht(Sum2) < to;
But this contradicts our initial assumption that we have chosen a representation of h
that has the smallest possible height. Thus, G is an SH-basis of K[G]. O

On the basis of Theorem 3.4, now we present an algorithm which computes SH-basis
from a given set of generators. This algorithm is not necessarily terminating but does
terminate, if and only if, the considered subalgebra has a finite SH-basis.

Algorithm 2

Input: A finite subset G C P.
Output: SH-basis G.

: Compute a generating set 8 for AR(M ) (@)).

: For Pes§

: (a) h € P, such that P(G) —a,« h.

(b) If h # 0, set G := GU {h} and continue at 1.

W N

3.5. Remark. We have implemented SH-basis construction algorithm in the computer
algebra system SINGULAR [5]. Code can be download from mathcity.org/junaid.

Now we present some examples which show the computation of SH-basis through
Algorithm 2.

3.6. Example. The subalgebra A C P of symmetric polynomials is well known to be
finitely generated by a set S which is a set of elementary symmetric polynomials in
P. The set S is an SH-basis of A as AR(M7)(S)) = {0} i.e, there is no polynomial
0+# P(Y) € K[y1,---,yn] such that P(S) =0.

3.7. Ezample. Let G = {z +y+ 1,2° +y> — z + 2,22y — y} and A = Q[G]. The
ideal AR(MY)(@)) = AR(z + y, 2% + 42, 2y) in Q[y1,y2,ys] is generated by P(Y) =
y? — ya — y3. It is easy to see that the polynomial P(G) = 3z 4+ 3y — 1 —g.» 0. This
shows that G is an SH-basis of A.

The next example shows that there are finitely generated algebras which do not admit
a finite SH-basis.

3.8. Ezample. Let G = {g1 = xz+vy,92 = 2yz, g3 = xy*z} and A = Q[G]. Also we have
M (g1) = 2z, M (g5) = zyz and M (g3) = z3°2.

In first step, G = {g1 = 2z + y,g92 = 2yz, g3 = xy’z}. It is evident that the

ideal of relations AR(M™)(Q)) = AR(zz,xyz xy*2) C Q[yi,y2,ys] is generated by
P(Y) = y1y3 — ¥3. The polynomial P(G) = (zz + y)(zy*2) — (zyz)? = 2y°2 »a .. 0, s0
G:=GU{gs = zy®z}.
In second step, G = {g1 = 22z + y,g2 = 2yz,g3 = xy>2,g2 = xy>2}. The polynomial
P(Y) = yiys — yoys is one the generators of the ideal of relations AR(M) (@)
AR(zz,zyz, 2y° 2z, 29°2) C Q[y1,y2,y3,y4]. Here we note that the polynomial P(G) =
(xz + y)(zy2) — (zy2)(zy®2) = 2y*z »g.« 0, therefore we have G := G U {xy*z} =
{91 =224y, 92 = wyz, 93 = 2’2, 94 = 2y’ 2, g5 = 2y’ 2}

By induction, we get G = {zz + y, zyz, zy’z, xyz, zytz, 2y, . .} which implies that
A have an infinite SH-basis.
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