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Fibonacci, and Lucas Pascal triangles

Hacène Belbachir∗ and László Szalay†‡

Abstract

In this paper, we give explicit formulas for elements of the Fibonacci,
and Lucas Pascal triangles. The structure of these objects and Pascal's
original triangle coincide. Keeping the rule of addition, we replace both
legs of the Pascal triangle by the Fibonacci sequence, and the Lucas
sequence, respectively. At the end of the study we describe how to
determine such a formula for any binary recurrence {Gn}∞n=0 satisfying
Gn = Gn−1 +Gn−2. Other scattered results are also presented.
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1. Introduction

Although a lot is known about the Pascal triangle, its origin is lost in the mist of time.
Since the work of Pascal [10] several scholars have contributed with variations, gener-
alizations to this object. An early generalization is due to Raab [11], who introduced
the so-called AB-based Pascal triangles. Its structure is identical to the regular Pascal
triangle, and the elements are the coe�cients of xn−kyk in the expansion of the polyno-
mial (Ax+By)n. Some variations, for instance the Pascal pyramid, stem from di�erent
combinatorial approaches. The Hosoya's triangle [7] is also a triangular arrangement
based on the Fibonacci numbers, where each entry is the sum of the two entries above
in either the left diagonal or the right diagonal. Koshy [9] gave a description on di�erent
Pascal-like triangles which are linked to the sums αn +βn (and the di�erences αn−βn),
where α and β are the zeros of the characteristic polynomial x2 − Ax − B of the linear
recurrence Gn = AGn−1 +BGn−2. Sun [12] provided a generalization of the DFF , and
DFFz triangles introduced by Ferri et al. [5, 6], respectively. Generally, the cited papers
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work with elementary considerations, using the properties of binomial coe�cients and
certain sequences.

In this paper, we keep the arrangement of Pascal's original triangle and, apart from
the beginning, the rule of addition, but we vary the sequences located on the legs of the
triangle. More precise description will be given later. The main purpose of this work
is to give applicable explicit formulas for the elements of the so-called Fibonacci, and
Lucas Pascal triangle. Note that the Fibonacci triangle studied by the present paper
and Hosoya's triangle do not coincide since the insertion methods are di�erent. Ensley
[4] already derived a formula for the elements of Fibonacci Pascal triangle. While his
result is given by a weighted sum of certain binomial coe�cents, here (in Corollary 6)
the exponential and polynomial terms are separated. The principal results are Theorems
1 and 4 in Section 3. As a consequence of these outcomes, we are able to determine
analogous formula for the triangle generated by any binary recurrence {Gn}∞n=0 satisfying
Gn = Gn−1 + Gn−2 (Theorem 5). On the other hand, we provide certain interesting
arguments on arithmetic triangles, some of them have been justi�ed previously. In fact,
such objects are actually very popular, and one can �nd lot of information about them
in the literature (see [2, 3, 4, 12]).

Let {an}∞n=0 and {bn}∞n=0 denote two real sequences. There is no importance if a0 6= b0,
in this case we replace both terms by Ω as an indeterminate object.

The two initial sequences, as it was described by Dil and Mez® [3], generate an in�nite
matrix M = (Mk,n)k≥0,n≥0 as follows. Put M0,0 = Ω, and

Mk,0 = ak, M0,n = bn, k ≥ 1, n ≥ 1,

further let

Mk,n = Mk,n−1 +Mk−1,n, kn 6= 0.

For k ≥ 1 and n ≥ 1 the authors proved the explicit formula

(1.1) Mk,n =

k∑
i=1

(
k + n− i− 1

n− 1

)
ai +

n∑
j=1

(
k + n− j − 1

k − 1

)
bj .

A similar approach in constructing a sort of Generalized Arithmetic Triangle (in short
GAT) was used in [2]. Letting A, B ∈ R, the GAT is structurally identical with Pascal's
original triangle (Pascal himself called his object arithmetic triangle) and contains rows
numbered by 0, 1, 2, . . . such that the nth row possesses the elements

〈
n
k

〉
in the positions

(say columns) k = 0, 1, . . . , n as follows.
Let

〈
0
0

〉
be arbitrary denoted by Ω, and for positive integer n put

〈
n
0

〉
= Anan and〈

n
n

〉
= Bnbn, further for n ≥ 2 and 1 ≤ k ≤ n− 1 let〈

n

k

〉
= B

〈
n− 1

k − 1

〉
+A

〈
n− 1

k

〉
.

Theorem 1 of [2] admits the direct formula

(1.2)

〈
n

k

〉
= An−kBk

(
n−k∑
i=1

(
n− 1− i
k − 1

)
Γ

ai +

k∑
j=1

(
n− 1− j
n− k − 1

)
Γ

bj

)
,

to express
〈
n
k

〉
in the terms of A, B and the sequences if 1 ≤ n and 0 ≤ k ≤ n. The

extension
(·
·

)
Γ
of binomial coe�cients to arbitrary integers n and k appeared in (1.2) is

obtained by the Gamma function (see [1], formula 6.1.21):(
n

k

)
Γ

= lim
n1→n

lim
k1→k

Γ(n1 + 1)

Γ(k1 + 1) · Γ(n1 − k1 + 1)
.
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We really need it since if k = 0 or k = n in (1.2), then the lower index of the binomial
coe�cients is negative. Note that

(
n
k

)
Γ

=
(
n
k

)
if k is nonnegative.

Our Generalized Aritmetic Triangle extends Ensley's GAT [4], since here we allow
a0 6= b0 in the generator sequences, further we also vary the rule of addition by the
parameters A and B. In [4] (where A = B = 1, and a0 = b0) the formula

(1.3)

〈
n

k

〉
=

n−k∑
i=0

(
n− i
k

)
δai +

k∑
j=0

(
n− j
k − j

)
δbj −

(
n

k

)
a0

was established, where δai = ai − ai−1 for positive i, and δa0 = a0 (analogous scheme
holds for the sequence {bn}). At the �rst sight (1.3) is strange because it contains a0,
meanwhile the structure says no in�uence of a0 = b0 on the triangle. But there is no
contradiction, since a short calculation shows that we can exclude a0 (and δa0 , δ

b
0) from

(1.3). Moreover it is easy to see that (1.2) and (1.3) are compatible. Indeed, by (1.3) we
have 〈

n

k

〉
=

n−k∑
i=1

(
n− i
k

)
(ai − ai−1) +

(
n

k

)
b0 +

k∑
j=1

(
n− j
k − j

)
(bj − bj−1),

and for 1 ≤ k ≤ n− 1, via a0 = b0 it leads to〈
n

k

〉
=

n−k∑
i=1

(
n− 1− i
k − 1

)
ai +

k∑
j=1

(
n− 1− j
k − j

)
bj .

The next frame collects some relevant Pascal type triangles (or arrays) have been
already studied.

{an} {bn} Reference

1 1 Pascal Triangle (PT)

An Bn Raab [11] (AB-based PT)

2 1 Hosoya [8] (Asymmetrical PT)

arbitrary arbitrary Ensley [4] (GAT)

Fn+1 Fn+1 Ensley [4] (shifted Fibonacci Triangle)

0 1
n

Dil � Mez® [3] (Hyperharmonic numbers)

0 Fn Dil � Mez® [3] (Hyper-Fibonacci numbers)

F2n−1 Fn−1 Dil � Mez® [3]

Ana Bnb Belbachir � Szalay [2]

Assume now that A = B = 1. Then the rectangular shape matrix M and the tri-
angular shape GAT di�er only in their appearance. Indeed, apart from the geometrical
display, the identity

(1.4) Mk,n =

〈
k + n

n

〉
transmits them to each other for k+n ≥ 1. Apparently, for k ≥ 1 and n ≥ 1 the formulas
(1.2) and (1.1) are equivalent via (1.4). Really, replacing n by k + n and k by n in (1.2)
at the same time we arrive at (1.1).
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Obviously, with the parameters A and B a kind of Generalized Pascal Array (GPA,

given by the matrix M̃) can be obtained if we introduce the modi�cation

M̃k,0 = Akak, M̃0,n = Bnbn, k ≥ 1, n ≥ 1,

and

M̃k,n = BM̃k,n−1 +AM̃k−1,n, kn 6= 0.

In the sequel we always assume that A = B = 1, and in this paper, we basicly
investigate the situation, when the sequences {an} = {bn} are the Fibonacci, or the
Lucas sequence. When an = bn = Fn+1, as a consequence of (1.3), Ensley provided

n−k∑
i=1

(
n− i
k

)
Fi−2 +

k∑
j=1

(
n− j
k − j

)
Fj−2 +

(
n

k

)
,

for the kth entry in row n, we develope a more informative explicit formula. In this study,
we also show a new and simple proof for one of the equivalent formulas (1.2), (1.1) and
(1.3). Note that in [4] the author used a combination of two preliminary lemmata, in [3]
and in [2] the technique of induction was used. Here we apply an elementary �atomic�
observation. Later we will use some preliminary lemmata, which are stated here.

1.1. Lemma. For arbitrary nonnegative integer n we have

n∑
i=0

(
n

i

)
Fi = F2n,

n∑
i=0

(−1)i
(
n

i

)
Fi = −Fn.

Proof. See [9], Theorems 12.5 and 12.6, on pages 157-158. �

We note that in the case of the second statement of Lemma 1.1, some inaccuracy
appears in [9].

1.2. Lemma. Let n be a nonnegative integer. Then

n∑
i=0

(
n

i

)
Li = L2n,

n∑
i=0

(−1)i
(
n

i

)
Li = Ln

hold.

Proof. See [9], remarks after Theorems 12.5 and 12.6, on pages 157-158. �

1.3. Lemma. Let n, n1 and n2 be nonnegative integers. Then

n∑
i=0

(
n− i
n1

)(
i

n2

)
=

(
n+ 1

n1 + n2 + 1

)
is valid.

Proof. This is a corollary of the Vandermonde identity. �
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2. The �atomic� lemma, the principle of superposition, and some

easily computable arithmetic triangles

Recall, that A = B = 1. Let
〈
n
k

〉
{an,bn}

denote the elements of the Generalized Pascal

Triangle (in short GPT) generated by the sequences {an} and {bn}. For every given
sequences {an}, {bn}, {cn} and {dn}, we can show easily that〈

n

k

〉
{an,bn}

+

〈
n

k

〉
{cn,dn}

=

〈
n

k

〉
{an+cn,bn+dn}

.

Now we intend to split this e�ect into elementary parts, and as a consequence we
describe a method for determining

〈
n
k

〉
when the modifying sequences {cn} and {dn}

are simple from one sort of point of view. The next lemma describes the elementary
situation when an existing GPT is modi�ed by c ∈ R at exactly one element of one of
the legs. That is, apart from one entry of {cn} or {dn} we assume cn = dn = 0. Clearly,
such a modi�cation can be applied as many times as we need, and the in�uences of the
consecutive modi�cations can be superposed. At the end of the section we will see, that
this approach is not su�cient to handle the case of Fibonacci, and the Lucas triangle.

Assume that there is given a GPT by the sequences {an} and {bn}.

2.1. Lemma. If one modi�es the element
〈
i
j

〉
{an,bn}

located on one of the legs of a

triangle (i ≥ 1, further j = 0 or j = i) by adding c ∈ R to, then the only change on the

legs is
〈
i
j

〉
new

=
〈
i
j

〉
{an,bn}

+ c. Further, in the inner part of the triangle we �nd

(1) in case of j = 0 (left leg)〈
n

k

〉
new

=


〈
n
k

〉
{an,bn}

+ c
(
n−i−1
k−1

)
, if n ≥ i+ 1 and 1 ≤ k ≤ n− i;〈

n
k

〉
{an,bn}

, otherwise,

(2) in case of j = i (right leg)〈
n

k

〉
new

=


〈
n
k

〉
{an,bn}

+ c
(
n−i−1
k−i

)
, if n ≥ i+ 1 and i ≤ k ≤ n− 1;〈

n
k

〉
{an,bn}

, otherwise.

Proof. It is obvious by the construction (see Figure 1, as an illustration with i = 2,
j = 0). �

We can build simple GPT's by starting with the empty triangle (any
〈
n
k

〉
is zero), using

element by element of the sequences {cn} and {dn}. Note, that the idea is more and less
due to Ensley [4], although he started with the classical Pascal triangle, therefore at the
end of the procedure he removed that. Observe, that only inserting c1, c2, . . . , cn−k, and
d1, d2, . . . , dk has in�uence on the element

〈
n
k

〉
. Thus, by Lemma 2.1 and the principle of

superposition we obtain immediately a (new) proof for the identity (1.2), since
(
n
k

)
Γ

=
(
n
k

)
holds if k is nonnegative.

Now we demonstrate the applicabilty of Lemma 2.1 by a few further examples. Locally
we use the notations

Λc =

n−k∑
i=1

(
n− 1− i
k − 1

)
ci and Λd =

k∑
i=1

(
n− 1− i
n− k − 1

)
di.

Clearly, we have 〈
n

k

〉
new

=

〈
n

k

〉
old

+ Λc + Λd.
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Figure 1. The in�uence of modi�cation of one leg element

We will also use Lemma 1.3 to calculate the appropriate sums.

(1) Initial triangle: empty; modi�ed by cn = dn = 1 (case of classical Pascal trian-
gle).〈

n

k

〉
new

=

n−k∑
i=1

(
n− 1− i
k − 1

)
+

k∑
i=1

(
n− 1− i
n− k − 1

)
=

(
n− 1

k

)
+

(
n− 1

n− k

)
=

(
n

k

)
.

(2) Initial triangle: empty; modi�ed by cn = dn = p(n), where p(x) is a given poly-
nomial of degree d ≥ 1. First we express the polynomial as a linear combination
of the binomial coe�cients

(
x
i

)
, i = 1, . . . d. Then we apply Lemma 1.3 to de-

termine the sums appearing as the in�uence of the left, and the right leg. For
instance, put p(x) = x2, so cn = dn = n2. Since x2 = 2

(
x
2

)
+
(
x
1

)
, we �nd

Λc =

n−k∑
i=1

(
n− 1− i
k − 1

)
i2 =

n−k∑
i=1

(
n− 1− i
k − 1

)(
2

(
i

2

)
+

(
i

1

))

= 2

n−k∑
i=1

(
n− 1− i
k − 1

)(
i

2

)
+

n−k∑
i=1

(
n− 1− i
k − 1

)(
i

1

)
= 2

(
n

k + 2

)
+

(
n

k + 1

)
.

Similarly,

Λd = 2

(
n

k − 2

)
+

(
n

k − 1

)
,

thus 〈
n

k

〉
new

= 2

(
n

k − 2

)
+

(
n

k − 1

)
+

(
n

k + 1

)
+ 2

(
n

k + 2

)
.

(3) Initial triangle: Pascal triangle; modi�ed by cn = 1 (n ∈ N, Asymmetrical PT

in [8], see Figure 2). Only the changes at
(

1
0

)
,
(

2
0

)
, . . . ,

(
n−k

0

)
cause variation at
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n
k

)
. By Lemma 2.1 we �nd〈

n

k

〉
new

=


(
n
k

)
+
∑n−k
i=1

(
n−i−1
k−1

)
=
(
n
k

)
+
(
n−1
k

)
, if n ≥ 2 and 1 ≤ k ≤ n− 1;(

n
n

)
= 1, if k = n,

which coincides the result of [8].

Figure 2. Asymmetric Pascal triangle

Suppose now that we want to modify the empty triangle by the sequences cn = dn =
Fn. Then we face, among others, to the problem of determining the sum

(2.1) Λc =

n−k∑
i=1

(
n− 1− i
k − 1

)
Fi,

but unfortunately there is no closed formula to express it. Subsequently, we need some-
thing else to describe the Fibonacci Pascal triangle.

3. Fibonacci and Lucas triangles

3.1. Fibonacci triangle. In this part, �rst we focus on the Fibonacci triangle, which
was introduced by Ensley [4]. Recall, that he took cn = dn = Fn+1. Denoting the
elements of this triangle by

〈
n
k

〉
Fn+1

, Ensley showed〈
n

k

〉
Fn+1

=

(
n

k

)
+

n−k∑
i=1

(
n− i
k

)
Fi−2 +

n−k∑
j=1

(
n− j
k − j

)
Fj−2.

At the end of this section we will give a more applicable formula for the elements of this
triangle, but now we start with studying the triangle generated by an = bn = Fn (see
Figure 3). The main result is the following.

3.1. Theorem. For any nonnegative integers n and k we have

(3.1)

〈
n

k

〉
Fn

= Fn+k − qk(n),
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where

(3.2) qk(x) = 2

bk/2c∑
j=0

(
x

k − 2j

)
F2j

is a rational polynomial of degree k − 2 if k ≥ 2, and q0(x) = q1(x) = 0.

Figure 3. Fibonacci Pascal triangle

For proving Theorem 3.1, we need

3.2. Lemma. For any nonnegative integer k, the speci�c value qk(k) is given by qk(k) =
F2k − Fk.

Proof.

qk(k) = 2

bk/2c∑
j=0

(
k

k − 2j

)
F2j = 2

bk/2c∑
j=0

(
k

2j

)
F2j =

k∑
j=0

(
k

j

)
Fj+

k∑
j=0

(−1)j
(
k

j

)
Fj .

It implies, by Lemma 1.1, that qk(k) = F2k − Fk. �

3.3. Lemma. The equality qk(N + 1) − qk(N) = qk−1(N) ful�ls for any nonnegative
integers N and k.

Proof. Suppose �rst that k = 2κ. Then

qk(N + 1)

2
=

κ∑
j=0

(
N + 1

k − 2j

)
F2j =

κ−1∑
j=0

((
N

k − 2j − 1

)
+

(
N

k − 2j

))
F2j +

(
N

0

)
Fk

=

κ−1∑
j=0

(
N

k − 2j − 1

)
F2j +

κ∑
j=0

(
N

k − 2j

)
F2j =

qk−1(N)

2
+
qk(N)

2
.
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If k = 2κ+ 1 is odd, then similarly we get

qk(N + 1)

2
=

κ∑
j=0

(
N + 1

k − 2j

)
F2j =

κ∑
j=0

((
N

k − 2j − 1

)
+

(
N

k − 2j

))
F2j

=

κ∑
j=0

(
N

k − 2j − 1

)
F2j +

κ∑
j=0

(
N

k − 2j

)
F2j =

qk−1(N)

2
+
qk(N)

2
.

�

Now we turn to the proof of Theorem 3.1.

Proof. First we show the statement for the legs of the GPT.〈
n

0

〉
Fn

= Fn − q0(n) = Fn,〈
n

n

〉
Fn

= F2n − qn(n) = F2n − (F2n − Fn) = Fn.

Now assume that n ≥ 2 and 1 ≤ k ≤ n − 1. After verifying
〈

2
1

〉
Fn

= F3 − q1(2) = 2, we

use the technique of induction. Hence we assume that (3.1) is true for n ≤ N (N ≥ 2).
Applying it, together with Lemma 3.3, we deduce〈

N + 1

k

〉
Fn

=

〈
N

k − 1

〉
Fn

+

〈
N

k

〉
Fn

= (FN+k−1 − qk−1(N)) + (FN+k − qk(N))

= FN+k−1 + FN+k − (qk−1(N)− qk(N)) = FN+k+1 − qk(N + 1).

�

Since the polynomials qk(x) play crucial role in (3.1), in the next table we give the
�rst few of them explicitly. Recall, that q0(x) = q1(x) = 0.

k 2 3 4 5 6

qk(x) 2 2x x2 − x+ 6 1
3
(x3 − 3x2 + 20x) 1

12
(x4 − 6x3 + 47x2 − 42x+ 192)

The proof of Lemma 3.3 gives a hint how to determine qk−1(x) if one knows qk(x).
The reverse order is more interesting since we know the beginning of the list q2(x), q3(x),
. . . etc. Although we have (3.2) in Theorem 3.1, it may be challenging to know how to
generate the next unknown element of the list. Suppose that the polynomial

qt+1(x) = bt−1x
t−1 + bt−2x

t−2 + · · ·+ b1x+ b0

is known, and we intend to determine the coe�cients ai of the polynomial

qt+2(x) = atx
t + at−1x

t−1 + · · ·+ a1x+ a0.
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By Lemma 3.3, we expand the di�erence qt+2(x+1)−qt+2(x), and compare it to qt+1(x).
Hence we must consider the system of equations

bt−1 =

(
t

1

)
at,

bt−2 =

(
t

2

)
at +

(
t− 1

1

)
at−1,

bt−3 =

(
t

3

)
at +

(
t− 1

2

)
at−1 +

(
t− 2

1

)
at−2,

...

b1 =

(
t

t− 1

)
at +

(
t− 1

t− 2

)
at−1 + · · ·+

(
2

1

)
a2,

b0 =

(
t

t

)
at +

(
t− 1

t− 1

)
at−1 + · · ·+

(
2

2

)
a2 +

(
2

2

)
a2.

From the top of the list of equations to down one can consecutively determine the
coe�cients at, at−1, . . . , a1. Then the constant term a0 follows from the equality
qt+2(t+ 2) = F2t+4 − Ft+2.

At the end of this section recall that
∑n
k=0

〈
n
k

〉
Fn

= 2n+1 − 2Fn+1 ([2], after Example

1). Combining the former expression with (3.1), we have the following

3.4. Corollary. For any nonnegative integer n, the identity
n∑
k=0

qk(n) = F2n+2 + Fn+1 − 2n+1

holds.

The nonexistence of closed form for (2.1) was the motivation to work out a di�erent
approach for Fibonacci Pascal triangle. For the speci�c case n = 2k we see, that the two
sums in (1.3) coincide. This observation, together with Theorem 3.1 implies

3.5. Corollary. If k is a positive integer, then we get

k∑
i=1

(
2k − 1− i
k − 1

)
Fi =

F3k − qk(2k)

2
.

3.2. Lucas Pascal triangle. After studying Fibonacci Pascal triangle, it is natural to
consider Lucas Pascal triangle, i.e. when an = bn = Ln is the nth term of the Lucas
sequence {Ln}∞n=0 (see Figure 4).

Without detailing the proofs (only follow the maintance of Fibonacci PT), we yield
the main result and the corresponding lemmata.

3.6. Theorem. For any nonnegative integers n and k, we have〈
n

k

〉
Ln

= Ln+k − rk(n),

where

rk(x) = 2

b(k−1)/2c∑
j=0

(
x

k − 1− 2j

)
F2j+1
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Figure 4. Lucas Pascal triangle

is a rational polinomial of degree k − 1 if k ≥ 1, and r0(x) = 0.

Proof. Without going into details, we follow the method used in the case of an = bn =
Fn. �

The lemmata we need are the following.

3.7. Lemma. The equality rk(k) = L2k − Lk holds for any nonnegative integer k.

3.8. Lemma. For any nonnegative integers N and k, we have rk(N + 1) − rk(N) =
rk−1(N).

The �rst few polynomials rk(x) are listed here.

k 1 2 3 4 5

rk(x) 2 2x x2 − x+ 8 1
3
(x3 − 3x2 + 26x) 1

12
(x4 − 6x3 + 59x2 − 54x+ 264)

3.3. Ensley's Fibonacci Triangle and a generalization. Now we are ready to han-
dle Ensley's Fibonacci Triangle, when an = bn = Fn+1, by exploiting the results on
Fibonacci and Lucas Triangles.

Assume generally, that the sequence {Gn} satis�es the recursive rule

(3.3) Gn = Gn−1 +Gn−2 (n ≥ 2)

with the initial values G0 and G1. It is well known, that such a sequence can be given
by a linear combination of any two linearly independent recurrences (like Fibonacci and
Lucas sequences), which satisfy (3.3). Taking the Fibonacci and Lucas sequences as basis,
the solution of the vector equation[

F0

F1

]
x+

[
L0

L1

]
y =

[
G0

G1

]
,

(via F0 = 0, F1 = 1, L0 = 2 and L1 = 1) is y = G0/2, x = (2G1 −G0)/2. That is,

Gn =
2G1 −G0

2
Fn +

G0

2
Ln,
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and, by Theorems 3.1 and 3.6, and the principle of superposition we have the following
general theorem.

3.9. Theorem. The GPT generated by an = bn = Gn satis�es〈
n

k

〉
Gn

= Gn+k −
(2G1 −G0)qk(n) +G0rk(n)

2
.

Specifying Gn = Fn+1, we have[
G0

G1

]
=

[
F1

F2

]
=

[
1
1

]
,

hence now x = y = 1/2. Thus Fn+1 = (Fn + Ln)/2, and we conclude

3.10. Corollary. For any nonnegative integers n and k, we conclude〈
n

k

〉
Fn+1

= Fn+k+1 −
qk(n+ 1) + rk(n+ 1)

2
.
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