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Weakly second modules over noncommutative rings
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Abstract

Let R be an arbitrary ring. In this paper we will introduce the concept
of a weakly second R-module (a generalization of the second R-module)
and we will obtain some related results.
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1. Introduction

Throughout this paper, all rings will have identity elements and all modules will be
right unitary. We use the notation �⊂" to denote strict inclusion. Unless otherwise
stated, R denotes an arbitrary ring with identity element. Let M be an R-module. Then
the annihilator of M (in R) is the ideal annR(M) = {r ∈ R | Mr = 0}. Also for any
submodule N of M and any ideal I of R, the submodule {x ∈ M | xI ⊆ N} of M is
denoted by (N :M I).

Recall that a nonzero R-module M is prime if annR(M) = annR(N) for every nonzero
submodule N of M . Also a nonzero R-module M is called weakly prime in case annR(N)
is a prime ideal of R for every nonzero submodule N of M . By a (weakly) prime sub-
module of a module M we mean a submodule N such that the module M/N is (weakly)
prime. The notion of prime modules �rst was introduced by Dauns in [11]. Also in [9],
Behboodi and Koohi introduced the notion of weakly prime modules and investigated
the properties of this class of modules. More details about prime modules and weakly
prime modules can be found in [2, 5, 6, 9].

On the other hand, a nonzero module M is called a second module (the dual notion
of a prime module) provided annR(M) = annR(M/N) for every proper submodule N of
M . This notion was introduced by Yassemi in [15], for modules over commutative rings.
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Moreover, in [10], the authors generalized second modules from commutative rings to
noncommutative setting.

The purpose of this paper is to introduce and study the concept of weakly second
modules (the dual of weakly prime modules) over noncommutative rings. A nonzero
R-module M is called a weakly second module if annR(M/N) is a prime ideal of R for
every proper submodule N of M . It is clear that every second module is a weakly second
module. By a (weakly) second submodule of a module we mean a submodule which is also
a (weakly) second module. In addition to obtaining some useful information about this
class of modules, we investigate which dual of the given results about the weakly prime
modules hold for the weakly second ones. For a right R-module M , among other results,
we prove the following statements:

• Theorem 2.3. ((1), (2), (8)) M is a weakly second module if and only if for every two
ideals I and J of R, MIJ = MI or MIJ = MJ , if and only if the set {annR(M/N) | N
is a proper submodule of M} is a chain of prime ideals of R.

• Theorem 2.5 and Theorem 2.6. Secondness and weakly secondness are Morita in-
variant properties.

• Proposition 2.7. M is weakly second if and only if for every proper submodule K of
M , there is a prime ideal I of R contained in annR(M/K) such that M/K cogenerates
R/I.

• Corollary 2.9. If R is a right Artinian ring, then M is a weakly second R-module if
and only if M is a homogenous semisimple R-module.

• Theorem 2.15. If M satis�es the descending chain condition on weakly socle sub-
modules, then every nonzero submodule of M has only a �nite number of maximal weakly
second submodule.

• Proposition 2.17. If R satis�es the ascending chain condition on prime ideals, then
M has a second submodule if and only if it has a weakly second submodule.

• Theorem 3.5. Let R be a ring whose two-sided ideals satisfy ACC. Then a nonzero
R-module M is weakly second if and only if for every two prime ideals I and J of R,
MIJ = MI or MIJ = MJ .
• Proposition 3.7. Let R be a prime right Goldie ring. Then every nonzero properly
divisible R-module is a weakly second module.

2. Weakly second modules

We begin this section with the de�nition of weakly second modules and then some
remarks and examples are given.

2.1. De�nition. A nonzero right R-module M is called weakly second if for every proper
submodule N of M , annR(M/N) is a prime ideal of R.

2.2. Examples. (a) The Z-module Zn is a weakly second if and only if n is a prime
number.

(b) If n 6= m, then the Z-module Zn ⊕ Zm is not weakly second.

(c) Let D be a division ring and V = ⊕∞i=1eiD be a vector space over D. Set R =
End(VD) and T = {f ∈ R | rankf < ∞}. It is known that R has only three ideals (0),
R and T . So T is a maximal ideal and (0) is a prime ideal of R. Now it is easy to check
that R as a left R-module is weakly second but is not a second R-module.
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(d) Let p and q be two distinct prime numbers. Consider the Z-modules

M =< 1/p + Z > ⊕ < 1/q + Z > ⊕ Zp∞ ,

and

N =< 1/p + Z > ⊕(0)⊕ Zp∞ .

It is easily checked that N and M/N are weakly second modules, but M is not a weakly
second module.

(e) Recall that a submodule N of an R-module M is fully invariant if for every R-
endomorphism f : M →M , f(N) ⊆ N . A right R-module M is a weakly second module
if and only if for every fully invariant proper submodule N of M , annR(M/N) is a prime
ideal of R. To see this, let I and J be two ideals of R and L be a proper submodule
of M such that IJ ⊆ annR(M/L). Since MIJ is a fully invariant proper submodule
of M , annR(M/MIJ) is a prime ideal of R. Now IJ ⊆ annR(M/MIJ) implies that
MI ⊆MIJ ⊆ L or MJ ⊆MIJ ⊆ L, and so I ⊆ annR(M/L) or J ⊆ annR(M/L). Thus
annR(M/L) is prime.

In the following theorem, some characterizations of weakly second modules are given.

2.3. Theorem. For a nonzero right R-module M , the following statements are equiva-
lent:

(1) M is a weakly second module;
(2) For every two ideals I and J of R, MIJ = MI or MIJ = MJ ;
(3) For every two ideals I and J of R, J * annR(M/MIJ) implies that MIJ = MI;
(4) For every two ideals I and J of R, I * annR(M/MIJ) implies that MIJ = MJ ;
(5) For every two ideals I and J of R, annR(M/MIJ) ⊂ I implies that MIJ = MJ ;
(6) For every two ideals I and J of R, annR(M/MIJ) ⊂ J implies that MIJ = MI;
(7) Every nonzero quotient of M is weakly second;
(8) The set {annR(M/N) | N is a proper submodule of M} is a chain of prime ideals of
R.

Proof. (1) ⇒ (2). Suppose that M is weakly second and I and J are two ideals of
R. If MIJ = M , then MIJ = MI and MIJ = MJ . So suppose that MIJ is a
proper submodule of M and hence annR(M/MIJ) is a prime ideal of R. Since IJ ⊆
annR(M/MIJ), I ⊆ annR(M/MIJ) or J ⊆ annR(M/MIJ). Thus MIJ = MI or
MIJ = MJ .

(2) ⇒ (1). Let N be a proper submodule of M and IJ ⊆ annR(M/N) for some two
ideals I and J of R. Then MIJ ⊆ N and by the hypothesis MI ⊆ N or MJ ⊆ N . Thus
annR(M/N) is prime.

(2)⇔ (3) and (2)⇔ (4) are clear.

(4) ⇒ (5). Let I and J be two ideals of R such that annR(M/MIJ) ⊂ I. Then I *
annR(M/MIJ) and so MIJ = MJ .

(5) ⇒ (4). Suppose that I and J are two ideals of R and I * annR(M/MIJ). Then
annR(M/MIJ) ⊂ I+ annR(M/MIJ) and we have annR(M/MIJ) = annR(M/M(I+
annR(M/MIJ))J). Thus annR(M/M(I+ annR(M/MIJ))J) ⊂ I+ annR(M/MIJ) and
by (5), M(I+ annR(M/MIJ))J = MJ . But M(I+ annR(M/MIJ))J ⊆ MIJ and so
MIJ = MJ .

(3)⇒ (6) is similar to (4)⇒ (5) and (6)⇒ (3) is similar to (5)⇒ (4).

(1)⇒ (7) is clear.
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(7)⇒ (8). Let N1 and N2 be two proper submodules of M , P = annR(M/N1) and Q =
annR(M/N2). If P * Q and Q * P , then there exist two ideals I1 and I2 of R such that
I1 ⊆ P , I2 ⊆ Q, I1 * Q and I2 * P . Since annR(M/(N1∩N2)) is a prime ideal of R and
I1I2 ⊆ annR(M/(N1 ∩N2)), I1 ⊆ annR(M/(N1 ∩N2)) or I2 ⊆ annR(M/(N1 ∩N2)). But
annR(M/(N1∩N2)) ⊆ annR(M/N2) = Q and annR(M/(N1∩N2)) ⊆ annR(M/N1) = P .
Thus I1 ⊆ Q or I2 ⊆ P , a contradiction.

(8)⇒ (1). Clear. �

Next, we show that both secondness and weakly secondness are Morita invariant
properties.

2.4. Theorem. Secondness is a Morita invariant property.

Proof. Let R and S be Morita equivalent rings via an equivalence F : ModR → ModS .
Suppose that M is a second R-module. Let I = annR(M) and B = annS(F (R/I)). By
[1, Proposition 21.11], R/I is Morita equivalent to S/B. Also by [1, Proposition 21.6],
F (M) is faithful as an S/B-module because M is a faithful R/I-module. Thus B =
annS(F (M)). Now assume that N is a proper S-submodule of F (M). We show that
annS(F (M)) = annS(F (M)/N). For a submodule K of M , let iK≤M : K → M denote
the inclusion monomorphism. Since by [1, Proposition 21.7], the mapping de�ned by
ΛM : K → Im F (iK≤M ) is a lattice isomorphism from the lattice of submodules of
M onto the lattice of submodules of F (M), there exists K ≤ M such that ΛM (K) =
N = Im F (iK≤M ). Since Morita equivalences preserve exactness, F (M)/Im F (iK≤M ) ∼=
F (M/K). Therefore F (M)/N ∼= F (M/K) and so annS(F (M)/N) = annS(F (M/K)).
On the other hand, since M is a second R-module, I = annR(M) = annR(M/K) and so
by the �rst part of the proof, B = annS(F (M)) = annS(F (M/K)). Thus annS(F (M)) =
annS(F (M)/N) and this implies that F (M) is a second S-module, as desired. �

2.5. Theorem. Weakly secondness is a Morita invariant property.

Proof. Let R and S be Morita equivalent rings via an equivalence F : ModR → ModS .
Suppose that M is a weakly second R-module and N is a proper S-submodule of F (M).
We show that annS(F (M)/N) is a prime ideal of S. In the notations of the proof
of above theorem, there exists K ≤ M such that ΛM (K) = N = Im F (iK≤M ) and
annS(F (M)/N) = annS(F (M/K)). Let I = annR(M/K). Again by the proof of above
theorem, R/I is Morita equivalent to S/B, where B = annS(F (R/I)) = annS(F (M/K)).
Since M is a weakly second R-module, I = annR(M/K) is a prime ideal of R and hence
R/I is a prime ring. By [13, Corollary 18.45], S/B is also a prime ring. Thus B =
annS(F (M/K)) = annS(F (M)/N) is a prime ideal of S, as desired. �

2.6. Remark. For a nonzero R-module M , we note that M is a second R-module if
and only if for any proper submodule K of M , M/K cogenerates R/annR(M). To
see this, suppose that M is second and K is a proper submodule of M . Then r+
annR(M) → (xr + K)x∈M is an R-monomorphism of R/annR(M) into

∏
x∈M M/K.

Thus R/annR(M) is cogenerated by M/K. For the other direction, assume that f :
R/annR(M)→

∏
α∈AM/K is an R-monomorphism, where K is a proper submodule of

M . Let f(1) = (xα +K)α∈A. If r ∈ annR(M/K), then f(r) = (xαr +K)α∈A = 0 and so
r = 0. Thus r ∈ annR(M). This yields that annR(M) = annR(M/K) and hence M is
a second module.

Now for weakly second modules, we have the following statement.

2.7. Proposition. Let M be a nonzero R-module. Then M is weakly second if and
only if for every proper submodule K of M , there is a prime ideal I of R contained in
annR(M/K) such that M/K cogenerates R/I.
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Proof. First suppose that M is a weakly second module and K is a proper submodule of
M . Then annR(M/K) is a prime ideal and clearly M/K cogenerates R/annR(M/K).
Conversely, suppose that K is a proper submodule of M and I is a prime ideal of R con-
tained in annR(M/K) such that R/I is cogenerated byM/K. Say f : R/I →

∏
α∈AM/K

is an R-monomorphism. Then annR(M/K) = annR(
∏
α∈AM/K) ⊆ annR(R/I) ⊆ I and

hence I = annR(M/K). �

Recall that a module M is homogeneous semisimple if M is a direct sum of pairwise
isomorphic simple submodules. Clearly, any homogeneous semisimple module is (weakly)
second. We show that the converse is true when R is an Artinian ring. First the following
lemma is needed.

2.8. Lemma. Let R be a ring in which every prime ideal is maximal. For a nonzero
R-module M , consider the following statements:
(1) M is prime;
(2) M is weakly prime;
(3) M is second;
(4) M is weakly second;
(5) M is homogeneous semisimple.

Then (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇐ (5). Moreover, if in addition R is a commutative
ring, then all �ve statements are equivalent.

Proof. (1)⇒ (2), (3)⇒ (4) and (5)⇒ (4) are trivial.
(2)⇒ (3). Suppose thatM is weakly prime. Then annR(M) is a prime ideal and hence is
a maximal ideal. Thus for any proper submodule N of M , annR(M) ⊆ annR(M/N) ⊂ R
implies that annR(M) = annR(M/N) and so M is a second module.
(4)⇒ (1). Suppose M is a weakly second module. Then annR(M) is a prime ideal and
hence is a maximal ideal. Thus annR(M) ⊆ annR(N) ⊂ R implies that annR(M) =
annR(N), for every nonzero submodule N of M . It follows that M is a prime module.
(4) ⇒ (5). Suppose that R is a commutative ring and M is a weakly second R-module.
Then annR(M) is a prime ideal and by the hypothesis, it is a maximal ideal. Thus R/P
is a �eld where P = annR(M). This implies that M is a homogeneous semisimple as
R/P -module and as R-module. �

2.9. Corollary. Let R be a right Artinian ring. Then for any nonzero right R-module
M , the �ve statements in the previous lemma are all equivalent.

Proof. We only prove that if M is a weakly second R-module, then it is a homogeneous
semisimple R-module. Since M is weakly second, annR(M) is a prime ideal and so R/P
is a right Artinian prime ring where P = annR(M). By the Wedderburn-Artin Theorem
[12, Theorem 3.5], we conclude that M is a homogeneous semisimple as R/P -module and
as R-module. �

2.10. Corollary. Let R be a commutative von Neumann regular ring and M be an R-
module. Then the following statements are equivalent:

(1) M is second;
(2) M is weakly second;
(3) M is homogeneous semisimple.

Proof. It is well known that every prime ideal in a commutative von Neumann regular
ring is a maximal ideal. Now apply Lemma 2.8. �
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The next two results were proved for second modules. See [10, Corollary 2.4 and
Proposition 3.6].

2.11. Corollary. Let A be an ideal of a ring R and M be a nonzero right R-module
such that MA = 0. Then the R-module M is a weakly second module if and only if the
R/A-module M is a weakly second module.

Proof. Suppose �rst that the R-module M is weakly second and let I and J be two ideals
of R containing A. Then M(I/A)(J/A) = M(IJ + A/A) = MIJ and so by Theorem
2.3, M(I/A)(J/A) = M(I/A) or M(I/A)(J/A) = M(J/A). Conversely, suppose that
the R/A-module M is a weakly second module. For any two ideals I and J of R,
MIJ = M(IJ +A) = M((IJ +A)/A) = M((I +A)/A)((J +A)/A). Using Theorem 2.3,
we have MIJ = M((I + A)/A) = MI or MIJ = M((J + A)/A) = MJ , as desired. �

Let R be a ring. An ideal A of R is called right T -nilpotent if for any sequence
{a1, a2, . . .} in A, there exists a positive integer n such that an . . . a1 = 0.

2.12. Proposition. Let A be a right T -nilpotent ideal of a ring R and R = R/A. Then
every nonzero right R-module M has a proper submodule N such that M/N is a weakly

second R-module if and only if, every nonzero right R-module M has a proper submodule
N such that M/N is a weakly second R-module.

Proof. Suppose �rst that every nonzero right R-module M has a proper submodule N
such that M/N is a weakly second R-module. Let K be a nonzero right R-module. Then
K is a right R-module and by the hypothesis, there exists a proper submodule L of K
such that the R-module K/L is weakly second. It follows that the R-module K/L is a

weakly second module. Conversely, suppose that every nonzero right R-module M has a
proper submodule N such that M/N is a weakly second R-module. Let X be a nonzero
right R-module. Then by [1, Lemma 28.3], X 6= XA and so X/(XA) is a nonzero right

R-module. Also by the hypothesis, there exists a proper submodule Y of X containing
XA, such that the R-module X/Y is weakly second. Now by Corollary 2.11, X/Y is a
weakly second R-module. �

In [10, Proposition 4.2], it is shown that the union of a chain of second submodules of
a module is also second. Here, we show that a similar result holds for a directed set of
weakly second submodules of a module.

2.13. Lemma. Let R be a ring, and let Ni (i ∈ I) be a directed set of weakly second
submodules of a right R-module M . Then N =

⋃
i∈I Ni is a weakly second R-module.

Proof. Note that N is a nonzero submodule of M . Let A and B be two ideals of R.
By Theorem 2.3, it su�ces to show that NAB = NA or NAB = NB. If there exists
k ∈ I such that for each i ∈ I, Nj = sup{Ni, Nk} satis�es NjAB = NjA, then for
each i ∈ I, we have NiA ⊆ NjA = NjAB ⊆ NAB. Thus NA = NAB. Now suppose
that for every k ∈ I, there exists i ∈ I such that Nj = sup{Ni, Nk} dose not satisfy
NjAB = NjA. Since Nj is weakly second, NjB = NjAB. Then for each i ∈ I, we have
NiB ⊆ NjB = NjAB ⊆ NAB. Thus NB = NAB. �

By a maximal weakly second submodule of a module M , we mean a weakly second
submodule L of M such that L is not properly contained in another weakly second
submodule of M .

2.14. Corollary. Let M be any nonzero module. Then every weakly second submodule
of M contained in a maximal weakly second submodule.

Proof. By Lemma 2.13 and Zorn's Lemma. �
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Let N be a submodule of a right R-module M . We de�ne the weakly socle of N as
the sum of all weakly second submodules of M contained in N , denoted by W.soc(N).
The weakly socle of N is de�ned to be (0) in case N dose not contain any weakly second
submodule. N is said to be a weakly socle submodule of M if N 6= 0 and W.soc(N) = N .

2.15. Theorem. Let M be a right R-module. If M satis�es the descending chain con-
dition on weakly socle submodules, then every nonzero submodule of M has only a �nite
number of maximal weakly second submodule.

Proof. Suppose that the result is false. Then there exists a nonzero submodule N of
M such that it has an in�nite number of maximal weakly second submodules. Thus
W.soc(N) is a weakly socle submodule of M and W.soc(N) has an in�nite number of
maximal weakly second submodules. By the assumption, let S be a weakly socle sub-
module of M chosen minimal such that S has an in�nite number of maximal weakly
second submodules. If S is weakly second, then every maximal weakly second sub-
module contained in S is equal to S. Thus S has not an in�nite number of max-
imal weakly second submodules, a contradiction. Therefore S is not weakly second
and so there exist two ideals I and J of R and a proper submodule K of M such
that SIJ ⊆ K, SI * K and SJ * K. Thus S * (K :S I) and S * (K :S J).
Therefore S * W.soc((K :S I)) and S * W.soc((K :S J)). Now we conclude that
W.soc((K :S I)) ⊂ S and W.soc((K :S I)) ⊂ S. Let V be a maximal weakly sec-
ond submodules of M contained in S. Then V IJ ⊆ SIJ ⊆ K and hence V I ⊆ K
or V J ⊆ K. Thus V ⊆ (K :S I) or V ⊆ (K :S J) so that V ⊆ W.soc((K :S I)) or
V ⊆ W.soc((K :S J)). The minimality of S, implies that both W.soc((K :S I)) and
W.soc((K :S J)) have only �nitely many maximal weakly second submodules. Therefore
there is only a �nite number of possibilities for the module S, which is a contradiction. �

The following result is immediately obtained.

2.16. Corollary. Every nonzero Artinian module contains only a �nite number of max-
imal weakly second submodule.

Clearly, if an R-module has a second submodule, then it has a weakly second sub-
module. Now, we show that the converse is true when a certain set of ideals of R has
the descending chain condition (brie�y, DCC). In fact, it is the dual statement of [9,
Proposition 5.1].

2.17. Proposition. Let R be a ring whose prime ideals satisfy DCC and let M be a
right R-module. Then M has a second submodule if and only if it has a weakly second
submodule.

Proof. Suppose that N is a weakly second submodule of M . Let I = annR(N). Since I
is a prime ideal, R/I is a prime ring and so N is a faithful R/I-module. Without loss
of generality, we may assume that R is a prime ring and M is a faithful weakly second
module. By Theorem 2.3, the set T = { annR(M/K) | K is a proper submodule of M}
is a chain of prime ideals. If T = {0}, then M is a second module and we are through.
Thus suppose that the chain T contains a nonzero element. Let L0 =

⋂
{L ⊂ M | 0 6=

annR(M/L) ∈ T}. Clearly, L0 is a submodule of M . By the hypothesis, assume that
P is a minimal among nonzero elements of T . Then P = annR(M/K) for some proper
submodule K of M . We claim that P = annR(M/L0). Since T is a chain, for any
proper submodule L of M with annR(M/L) 6= 0, we have annR(M/L) ⊆ annR(M/K)
or annR(M/K) ⊆ annR(M/L). The minimality of P implies that P ⊆ annR(M/L).
Thus MP ⊆ L for any proper submodule L of M with annR(M/L) 6= 0. It follows
that MP ⊆ L0 and hence P ⊆ annR(M/L0). By the de�nition of L0, we have P =
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annR(M/L0). Now we show that L0 is a second submodule of M . Suppose that I is an
ideal of R and L0I 6= 0. Since MP ⊆ L0, MPI ⊆ L0I. But R is a prime ring and so
PI 6= 0. Thus annR(M/L0I) 6= 0 and by the de�nition of L0, we conclude that L0 ⊆ L0I
and hence L0 = L0I, as desired. �

3. Further results related to weakly second modules

In this section, we start with some de�nitions. Then the relationships between weakly
second, weakly prime and second modules are investigated. Let R be a ring and M be a
right R-module. Then:

(i) M is called a multiplication module if for every submodule N of M there exists an
ideal I of R such that N = MI. This notion was introduced by Baranard in [7].

(ii) M is called a comultiplication module if for every submodule N of M there exists an
ideal I of R such that (0 :M I) = N . This notion is introduced by Ansari-Toroghy and
Farshadifar in [3].

(iii) A submodule N of M is called secondary submodule if for every ideal I of R, NI = N
or there exists a positive integer n such that NIn = 0.

3.1. Theorem. Let R be a ring and M be a nonzero right R-module. Then:

(1) If M is a multiplication module such that annR(M) is a prime ideal, then it is prime;
(2) If M is a comultiplication module such that annR(M) is a prime ideal, then it is
second;
(3) A submodule N of M is second if and only if it is both a weakly second and a secondary
submodule of M ;
(4) If any two prime ideals of R are comparable, i.e., I ⊆ J or J ⊆ I for every two prime
ideals I and J of R, then any sum of weakly second submodules of M is a weakly second
submodule of M .

Proof. (1) Suppose that N is a nonzero submodule of M and NI = 0, where I is an ideal
of R. Since M is multiplication, N = MJ for some ideal J of R. Then NI = MJI = 0
and so MI = 0 because annR(M) is prime. Thus M is a prime module.

(2) Suppose that N is a proper submodule of M and MI ⊆ N , where I is an ideal of R.
Since M is comultiplication, N = (0 :M J) for some ideal J of R. Then MI ⊆ (0 :M J)
and so MIJ = 0. Since annR(M) is prime and N 6= M , we have MI = 0. Thus
annR(M) = annR(M/N) and hence M is a second module.

(3) For one direction, the proof is clear. For the other direction, assume that N is both
a secondary and a weakly second submodule of M . Let I be an ideal of R such that
NI 6= 0 and NI 6= N . Since N is secondary, there exists n ≥ 2 such that NIn = 0. On
the other hand, since N is weakly second, we conclude that NI = 0, a contradiction.

(4) Let {Ni}i∈I be a collection of weakly second submodules of M and N =
∑
i∈I Ni.

Clearly N 6= 0. Since for any i ∈ I, Ni is weakly second, annR(Ni) is a prime ideal of R.
Also annR(N) = annR(

∑
i∈I Ni) =

⋂
i∈I annR(Ni) and since any two prime ideals of R

are comparable, annR(N) is a prime ideal of R. To complete the proof, it is enough to
show that (L :R N) is a prime ideal of R, where L is a submodule of M such that N * L.
Assume for two ideals A and B of R, NAB ⊆ L such that NA * L and NB * L. Then
there exist i, j ∈ I such that NiA * L and NjB * L. This implies that

A * annR( Ni
L∩Ni

) and B * annR(
Nj

L∩Nj
). (∗)
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Now since Ni and Nj are weakly second submodules of M , annR( Ni
L∩Ni

) and annR(
Nj

L∩Nj
)

are prime and by the assumption, these are comparable. Without loss of generality, we
may assume that

annR( Ni
L∩Ni

) ⊆ annR(
Nj

L∩Nj
). (∗∗)

On the other hand, NAB ⊆ L implies that NiAB ⊆ L and NjAB ⊆ L. Thus NiAB ⊆
L ∩ Ni and NjAB ⊆ L ∩ Nj and so AB ⊆ annR( Ni

L∩Ni
) and AB ⊆ annR(

Nj

L∩Nj
). Since

annR( Ni
L∩Ni

) and annR(
Nj

L∩Nj
) are prime, by (∗), we have A ⊆ annR(

Nj

L∩Nj
) and B ⊆

annR( Ni
L∩Ni

). Now by (∗∗), B ⊆ annR(
Nj

L∩Nj
), a contradiction. �

Since every submodule of a comultiplication module is comultiplication and every
quotient module of a multiplication module is also multiplication, the following result is
immediate.

3.2. Corollary. Let R be a ring and M be a nonzero right R-module. Then:
(1) If M is multiplication and N is a weakly prime submodule of M , then N is prime;
(2) If M is comultiplication and N is a weakly second submodule of M , then N is second.

The following result shows that for an R-module M , if R has the ascending chain
condition (brie�y, ACC) on two-sided ideals, then there exists a factor module of M such
that to be second.

3.3. Proposition. Let R be a ring and M be a nonzero right R-module. If annR(M/N0)
is a maximal member in the family {annR(M/N)} where N ranges over all proper
submodules of M , then M/N0 is a second R-module.

Proof. For any proper submodule K/N0 of M/N0, annR(M/N0) ⊆ annR(M/K) =

annR(M/N0
K/N0

) and the maximality of annR(M/N0), implies that annR(M/N0) = annR(M/N0
K/N0

).

Thus M/N0 is second R-module. �

3.4. Proposition. Let R be a ring and M be a nonzero right R-module. If there exists a
proper submodule N of M such that M/N is a weakly second module, then annR(M/N)
is a maximal member in the collection of ideals I of R such that MIJ + N 6= MJ + N
for every ideal J of R with J * annR(M/N).

Proof. Let P = annR(M/N) and J be an ideal of R such that J * P . Then clearly
MPJ + N 6= MJ + N . Suppose that A is an ideal of R such that P ⊂ A. Then A * P

and since M/N is weakly second, (M/N)A2 = (M/N)A. Thus MA2 + N = MA + N
and it follows that P is a maximal member in the stated collection. �

It was seen that a right R-module M is weakly second if and only if MIJ = MI or
MIJ = MJ for every two ideals I, J of R. Here, we improve this fact to modules over
Noetherian rings.

3.5. Theorem. Let R be a ring whose two-sided ideals satisfy ACC. Then a nonzero
R-module M is weakly second if and only if for every two prime ideals P and Q of R,
MPQ = MP or MPQ = MQ.

Proof. For one direction, the proof is clear. For the other direction assume that for
every two prime ideals P and Q of R, MPQ = MP or MPQ = MQ. First we show
that for prime ideals P1, · · · , Pn of R, MP1 · · ·Pn = MPj for some 1 ≤ j ≤ n. We
proceed by induction on n, the case n = 2 being covered by hypothesis. For n = 3,
MP1P2P3 = (MP1P2)P3 and by hypothesis, MP1P2 = MP1 or MP1P2 = MP2. Thus
we have MP1P2P3 = (MP1P2)P3 = (MP1)P3 = MP1P3 or MP1P2P3 = (MP1P2)P3 =
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(MP2)P3 = MP2P3. This shows that we are reduced to the case n = 2. Again by
hypothesis, MP1P3 = MP1 or MP1P3 = MP3 and MP2P3 = MP2 or MP2P3 = MP3.
Therefore MP1P2P3 = MPi for some 1 ≤ i ≤ 3. Now by the induction hypothesis,
MP1 · · ·Pn = (MP1 · · ·Pn−1)Pn = MPiPn for some 1 ≤ i ≤ n − 1. Also by the case
n = 2, we have MP1 · · ·Pn = MPiPn = MPj for some 1 ≤ j ≤ n and the claim is proved.
Now let I and J be two ideals of R. Since R has ACC on two-sided ideals, by [14, Lemma
1], there exist two integers n, m and prime ideals Qi(1 ≤ i ≤ n) and Pj(1 ≤ j ≤ m),
such that

Q1 · · ·Qn ⊆ I ⊆ Q1 ∩ · · · ∩Qn

and

P1 · · ·Pm ⊆ J ⊆ P1 ∩ · · · ∩ Pm.

Thus

Q1 · · ·QnP1 · · ·Pm ⊆ IJ ⊆ (Q1 ∩ · · · ∩Qn)(P1 ∩ · · · ∩ Pm),

and so

MQ1 · · ·QnP1 · · ·Pm ⊆MIJ ⊆M(Q1 ∩ · · · ∩Qn)(P1 ∩ · · · ∩ Pm).

By the �rst part of the proof, without loss of generality, we may assume that
MQ1· · ·QnP1· · ·Pm = MQs for some 1 ≤ s ≤ n. Then we have
MQs = MQ1 · · ·QnP1 · · ·Pm ⊆ MIJ ⊆ M(Q1 ∩ · · · ∩ Qn)(P1 ∩ · · · ∩ Pm) ⊆ MQs and
so MIJ = MQs. On the other hand, I ⊆ Q1 ∩ · · · ∩ Qn implies that MI ⊆ MQs and
hence MIJ = MI. �

Following [1, p. 232, ex. 11], a submodule N of a right R-module M is said to be pure
(in M) provided N ∩MI = NI for every left ideal I of R.

3.6. Proposition. Let R be a ring and M be a weakly second R-module. Then every
pure submodule of M is weakly second.

Proof. Let N be a nonzero pure submodule of M and I, J be two ideals of R. If
MIJ = MI, then NIJ = N ∩MIJ = N ∩MI = NI. Similarly, MIJ = MJ implies
that NIJ = NJ . Now by Theorem 2.3, the proof is complete. �

A right R-module X is called properly divisible if for every proper submodule Y of X
and every regular element c of R, Y = Y c.

3.7. Proposition. Let R be a prime right Goldie ring. Then every nonzero properly
divisible R-module is a weakly second module.

Proof. Let X be a nonzero properly divisible R-module and I, J be two ideals of R. If
XI = X, then XIJ = XJ . Thus suppose that XI ⊂ X and let A = annR(XI). If
A 6= 0, then it is an essential ideal of RR (since R is prime) and by the Goldie,s Theorem
[13, Theorem 11.13], A contains a regular element c of R. Since X is properly divisible,
XI = XIc = 0 and so XIJ = XI. Now assume that A = 0 and d is a regular element
of J . Then XI = XId ⊆ XIJ and hence XI = XIJ , as desired. �

A right R-moduleM is called a semisecond module, if for any ideal I of R, MI2 = MI,
i.e., annR(M/N) is a semiprime ideal of R, for any proper submodule N of M . We
conclude the paper with the following result.
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3.8. Proposition. Let R be a ring, M be a right R-module and N be a semisecond
submodule of M such that M/N is second. If for any ideal I of R, NI is a weakly prime
submodule of M, then M is a semisecond module.

Proof. Let I be an ideal of R. Since M/N is second, (M/N)I = M/N or (M/N)I = 0.
If (M/N)I = M/N , then MI +N = M and so MI2 +NI = MI. Since N is semisecond,
NI = NI2 and hence MI2 = MI. Now suppose that (M/N)I = 0. Then MI + N = N
implies that MI2 +NI = MI2 +NI2 = NI and so MI2 = NI, because N is semisecond.
Since NI is a weakly prime submodule, MI ⊆ NI and we have MI2 = MI. �
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