Continuous dependence of solutions to fourth-order nonlinear wave equation

İpek Güleç ${ }^{* \dagger}$ and Şevket Gür ${ }^{\ddagger}$

Abstract

This paper gives a priori estimates and continuous dependence of the solutions to fourth-order nonlinear wave equation.

Keywords: Continuous dependence, nonlinear wave equation.
2000 AMS Classification: 35B30, 35L35.

Received : 08.09.2014 Accepted : 10.03.2015 Doi: 10.15672/HJMS. 20164512496

1. Introduction

We consider the following initial boundary value problem

$$
\begin{align*}
& u_{t t}-\alpha \Delta u-\beta \Delta u_{t}-\gamma \Delta u_{t t}=f(u) \tag{1.1}\\
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), x \in \Omega \\
& u=0, x \in \partial \Omega, t>0
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is bounded region with smooth boundary $\partial \Omega ; \alpha, \beta$ and γ are positive constants. $f(u)$ is a given nonlinear function which satisfies

$$
\begin{equation*}
f \in C^{1}(R),\left|f^{\prime}(u)\right| \leq c\left(1+|u|^{p-1}\right), p \geq 1,(n-2) p \leq n \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{u \rightarrow \infty} \frac{f(u)}{u}<\alpha \lambda_{1} \tag{1.5}
\end{equation*}
$$

where λ_{1} is the first eigenvalue of the Laplace operator with the homogeneous Dirichlet boundary condition.

Continuous dependence of solutions on coefficients of equations is a type of structural stability, which reflects the effect of small changes in coefficients of equations on the solutions. Many results of this type can be found in [1].

[^0]In [2], authors studied asymptotic behaviour of solution to initial value problem of fourth order wave equation with dispersive and dissipative terms by taking coefficients $\alpha=\beta=\gamma=1$ in (1). They proved that the global strong solution of the problem decays to zero exponentially as $t \rightarrow \infty$. The authors Guo-wang Chen and Chang-Shun Hou, in article [3], studied the following initial value problem for a class of fourth order nonlinear wave equations,

$$
\begin{array}{ll}
v_{t t}-a_{1} v_{x x}-a_{2} v_{x x t}-a_{3} v_{x x t t}=f\left(v_{x}\right)_{x} \quad, x \in R, t>0 \\
v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x), x \in R &
\end{array}
$$

where a_{1}, a_{2}, a_{3} are positive constants. They gave also the blow up results for this problem.

In [4], Shang studied the initial boundary value problem

$$
\begin{equation*}
u_{t t}-\Delta u-\Delta u_{t}-\Delta u_{t t}=f(u), x \in \Omega, t>0 \tag{1’}
\end{equation*}
$$

$$
\begin{align*}
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), x \in \Omega \tag{2'}\\
& u=0, x \in \partial \Omega, t>0
\end{align*}
$$

Under the assumptions that $n=1,2,3 ; f \in C^{1}, f^{\prime}(u)$ is bounded above and satisfies (i) $\left|f^{\prime}(u)\right| \leq A|u|^{p}+B, 0<p<\infty$ if $n=2 ; 0<p \leq \frac{2}{n-2}$ if $n=3 ; u_{i}(x) \in$ $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)(i=0,1)$, it was proven that problem ($\left.1^{\prime}\right)-\left(3^{\prime}\right)$ admits unique global strong solution u such that $\forall T>0, u \in W^{2, \infty}\left(0, T ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)$.

In [5], problem (1')-(3') were studied again for all $n \geq 1$. By supposing that $f \in C^{1}$ and $f^{\prime}(u)$ is bounded above satisfying (ii) $\left|f^{\prime}(u)\right| \leq A|u|^{p}+B, 0<p<\infty$ if $n=$ 2; $0<p \leq \frac{4}{n-2}$ if $n \geq 3, u_{i}(x) \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)(i=0,1)$, it was proven that problem (1')-(3') admits unique global strong solution u such that for all $T>0, u \in$ $W^{2, \infty}\left(0, T ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)$.

In [6], authors studied the spatial behavior of a coupled system of wave-plate type . They got the alternative results of Phragmen-Lindelof type in terms of an area measure of the amplitude in question based on a first-order differential inequality. They also got the spatial decay estimates based on a second-order differential inequality.

The aim of this paper is to prove the continuous dependence of solutions to the problem (1)-(3) on coefficients α, β and γ.

Throughout this paper, we use the notation $\|\cdot\|_{p}$ for the norm in $L^{P}(\Omega)$. We use $\|\cdot\|$ instead of $\|.\|_{2}$.

2. A Priori Estimates

In this section, we obtain a priori estimates for the problem (1)-(3).
2.1. Theorem. Assume that the conditions (4) and (5) hold. Then for $u_{0}, u_{1} \in H_{0}^{1}(\Omega)$ the solution u of problem (1)-(3) satisfies the following estimates:

$$
\begin{equation*}
\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2} \leq D_{1} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t}\left\|\nabla u_{s s}\right\|^{2} d s \leq D_{2} t \tag{2.2}
\end{equation*}
$$

for any $t>0$. Here $D_{1}>0$ and $D_{2}>0$ depend on initial data and the parameters of (1).

Proof. First, by taking the inner product of (1) by u_{t} in $L^{2}(\Omega)$ and integrating by parts, we get

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{\alpha}{2}\|\nabla u\|^{2}+\frac{\gamma}{2}\left\|\nabla u_{t}\right\|^{2}-\int_{\Omega} F(u) d x\right]+\beta\left\|\nabla u_{t}\right\|^{2}=0 \tag{2.3}
\end{equation*}
$$

and
(2.4) $E(t) \leq E(0)$
where $F(u)=\int_{0}^{u} f(s) d s$ and $E(t)=\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{\alpha}{2}\|\nabla u\|^{2}+\frac{\gamma}{2}\left\|\nabla u_{t}\right\|^{2}-\int_{\Omega} F(u) d x$. From (5) and definition of limsup we obtain

$$
\begin{equation*}
F(u) \leq c+\frac{\alpha \lambda_{1}}{2} u^{2}-\frac{\varepsilon}{2} u^{2} \tag{2.5}
\end{equation*}
$$

Using (10) and Poincare's inequality from (9) we find (6).
Next we multiply (1) by $u_{t t}$ in $L^{2}(\Omega)$ to get

$$
\begin{equation*}
\frac{d}{d t} \frac{\beta}{2}\left\|\nabla u_{t}\right\|^{2}+\gamma\left\|\nabla u_{t t}\right\|^{2}+\left\|u_{t t}\right\|^{2}+\alpha \int_{\Omega} \nabla u \nabla u_{t t} d x=\int_{\Omega} f(u) u_{t t} d x \tag{2.6}
\end{equation*}
$$

Using Cauchy-Schwarz inequality, ε-Cauchy inequality and from (4), we take,

$$
\begin{equation*}
\left(\gamma-\frac{\varepsilon}{2}\right)\left\|\nabla u_{t t}\right\|^{2}+\frac{d}{d t} \frac{\beta}{2}\left\|\nabla u_{t}\right\|^{2} \leq c_{2}+\frac{|\alpha|^{2}}{2 \varepsilon}\|\nabla u\|^{2}+\frac{c_{1}^{2}}{2} \int_{\Omega}|u|^{2 p} d x \tag{2.7}
\end{equation*}
$$

where c_{1}, c_{2} are constants and ε is sufficiently small and positive. Using Sobolev inequality and (6) we have

$$
\begin{equation*}
\int_{\Omega}|u|^{2 p} d x=\|u\|_{2 p}^{2 p} \leq c_{3}\|\nabla u\|^{2 p} \leq c_{4} \tag{2.8}
\end{equation*}
$$

where c_{3} is a Sobolev constant and $c_{4}=c_{4}\left(\alpha, \gamma, u_{0}, u_{1}\right)$. From (12) and (13) we obtain

$$
\begin{equation*}
\left(\gamma-\frac{\varepsilon}{2}\right)\left\|\nabla u_{t t}\right\|^{2}+\frac{d}{d t} \frac{\beta}{2}\left\|\nabla u_{t}\right\|^{2} \leq c_{5} \tag{2.9}
\end{equation*}
$$

where c_{5} depends on initial data and the parameters of (1). Now, we integrate (14) from $(0, \mathrm{t})$, then we obtain

$$
\begin{equation*}
\int_{0}^{t}\left\|\nabla u_{s s}\right\|^{2} d s \leq c_{6} t \tag{2.10}
\end{equation*}
$$

where c_{6} depends on initial data and the parameters of (1). Hence, (7) follows from (15).

3. Continuous Dependence on the Coefficients

In this section, we prove that the solution of the problem (1)-(3) depends continuously on the coefficients α, β and γ in $H^{1}(\Omega)$.

We consider the problem

$$
\begin{align*}
& u_{t t}-\alpha_{1} \Delta u-\beta_{1} \Delta u_{t}-\gamma_{1} \Delta u_{t t}=f(u) \tag{3.1}\\
& u(x, 0)=0, u_{t}(x, 0)=0 \tag{3.2}\\
& \left.u\right|_{\partial \Omega}=0 \tag{3.3}\\
& v_{t t}-\alpha_{2} \Delta v-\beta_{2} \Delta v_{t}-\gamma_{2} \Delta v_{t t}=f(v) \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
& v(x, 0)=0, v_{t}(x, 0)=0 \tag{3.5}\\
& \left.v\right|_{\partial \Omega}=0
\end{align*}
$$

Let us define the difference variables w, α, β and γ by $w=u-v, \alpha=\alpha_{1}-\alpha_{2}, \beta=\beta_{1}-\beta_{2}$ and $\gamma=\gamma_{1}-\gamma_{2}$ then w satisfy the following the initial boundary value problem:

$$
\begin{align*}
& w_{t t}-\alpha_{1} \Delta w-\alpha \Delta v-\beta_{1} \Delta w_{t}-\beta \Delta v_{t}-\gamma_{1} \Delta w_{t t}-\gamma \Delta v_{t t}=f(u)-f(v) \tag{3.7}\\
& w(x, 0)=0, w_{t}(x, 0)=0 \tag{3.8}\\
& \left.w\right|_{\partial \Omega}=0
\end{align*}
$$

The main result of this section is the following theorem.
3.1. Theorem. Let w be the solution of the problem (22)-(24). If

$$
\begin{equation*}
|f(u)-f(v)| \leq c_{7}\left(1+|u|^{p-1}+|v|^{p-1}\right)|u-v| \tag{3.10}
\end{equation*}
$$

holds, then w satisfies the estimate

$$
\left\|w_{t}\right\|^{2}+\|\nabla w\|^{2}+\left\|\nabla w_{t}\right\|^{2} \leq e^{M t} K\left[\left(\alpha_{1}-\alpha_{2}\right)^{2}+\left(\beta_{1}-\beta_{2}\right)^{2}+\left(\gamma_{1}-\gamma_{2}\right)^{2}\right] t
$$

where M and K are positive constants depending on initial data and the parameters of (1).

Proof. Let us take the inner product of (22) with w_{t} in $L^{2}(\Omega)$; we have

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{1}{2}\left\|w_{t}\right\|^{2}+\frac{\alpha_{1}}{2}\|\nabla w\|^{2}+\frac{\gamma_{1}}{2}\left\|\nabla w_{t}\right\|^{2}\right]+\beta_{1}\left\|\nabla w_{t}\right\|^{2}+ \\
& \alpha \int_{\Omega} \nabla v \nabla w_{t} d x+\beta \int_{\Omega} \nabla v_{t} \nabla w_{t} d x+\gamma \int_{\Omega} \nabla v_{t t} \nabla w_{t} d x=\int_{\Omega}|f(u)-f(v)| w_{t} d x \tag{3.11}
\end{align*}
$$

From (26) we obtain

$$
\frac{d}{d t} E_{1}(t)+\beta_{1}\left\|\nabla w_{t}\right\|^{2} \leq|\alpha|\left\|\nabla w_{t}\right\|\|\nabla v\|+|\beta|\left\|\nabla w_{t}\right\|\left\|\nabla v_{t}\right\|+
$$

$$
\begin{equation*}
|\gamma|\left\|\nabla w_{t}\right\|\left\|\nabla v_{t t}\right\|+\int_{\Omega}|f(u)-f(v)| w_{t} d x \tag{3.12}
\end{equation*}
$$

where $E_{1}(t)=\frac{1}{2}\left\|w_{t}\right\|^{2}+\frac{\alpha_{1}}{2}\|\nabla w\|^{2}+\frac{\gamma_{1}}{2}\left\|\nabla w_{t}\right\|^{2}$.
Using the Holder, Sobolev, Cauchy-Schwarz inequalities and (25) we obtain the estimate

$$
\begin{aligned}
& \int_{\Omega}|f(u)-f(v)| w_{t} d x \leq c_{7} \int_{\Omega}\left(1+|u|^{p-1}+|v|^{p-1}\right)|w| w_{t} d x \\
& \leq c_{8}\left(1+\|\nabla u\|^{p-1}+\|\nabla v\|^{p-1}\right)\|w\|_{\frac{2 n}{n-2}}\left\|w_{t}\right\| \\
(3.13) \quad & \leq C\left(\|\nabla w\|^{2}+\left\|w_{t}\right\|^{2}\right)
\end{aligned}
$$

where c_{7}, c_{8} are constants and $C=C\left(c_{7}, c_{8}\right)$.Using Cauchy-Schwarz inequality and (28), from (27), we get

$$
\begin{align*}
& \frac{d}{d t} E_{1}(t)+\left(\beta_{1}-\varepsilon\right)\left\|\nabla w_{t}\right\|^{2} \leq \frac{3}{4 \varepsilon}|\alpha|^{2}\|\nabla v\|^{2}+\frac{3}{4 \varepsilon}|\beta|^{2}\left\|\nabla v_{t}\right\|^{2}+ \\
& \frac{3}{4 \varepsilon}|\gamma|^{2}\left\|\nabla v_{t t}\right\|^{2}+c_{9}\left(\|\nabla w\|^{2}+\left\|w_{t}\right\|^{2}\right) \tag{3.14}
\end{align*}
$$

and from (29) we can write

$$
\begin{equation*}
\frac{d}{d t} E_{1}(t) \leq \frac{3}{4 \varepsilon}\left(|\alpha|^{2}\|\nabla v\|^{2}+|\beta|^{2}\left\|\nabla v_{t}\right\|^{2}+|\gamma|^{2}\left\|\nabla v_{t t}\right\|^{2}\right)+M E_{1}(t) \tag{3.15}
\end{equation*}
$$

where $M=\frac{2 C\left(1+\alpha_{1}\right)}{\alpha_{1}}$. Applying Gronwall's inequality with (6) and (7), we get

$$
\begin{equation*}
E_{1}(t) \leq e^{M t} K\left(|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}\right) t \tag{3.16}
\end{equation*}
$$

Hence proof is completed.

References

[1] K.A. Ames, B. Straughan, Non-Standard and Improperly Posed Problems, in: Mathematics in science and Engineering series, vol.194, Academic Press, San Diego, 1997.
[2] Xu Run-zhang ,Zhao Xi-ren, Shen Ji-hong, Asymptotic behaviour of solution for fourth order wave equation with dispersive and dissipative terms, Appl. Math. Mech.Engl. Ed., 29(2), 259-262, 2008.
[3] Guo-wang Chen, Chang-shun Hou, Initial value problem for a class of fourth-order nonlinear wave equations, Appl. Math. Mech.-Engl. Ed. 30(3), 391-401, 2009.
[4] Shang Yadong, Initial boundary value problem of equation $u_{t t}-\Delta u-\Delta u_{t}-\Delta u_{t t}=$ $f(u)$, Acta Mathematicae Applicate Sinica 23(3), 385-393, 2000.
[5] Liu Yacheng, Li Xiaoyuan, Some remarks on the equation $u_{t t}-\Delta u-\Delta u_{t}-\Delta u_{t t}=$ $f(u)$, Journal of Natural Science of Heilongjiang University 21(3),1-6, 2004.
[6] Gusheng Tang, yan Liu and Wenhui Liao, Spatial Behavior of a Coupled System of Wave-Plate Type, Abstract and Applied Analysis, Volume 2014, Article ID 853693, 13 pages.

[^0]: *Department of Mathematics, Hacettepe University, Ankara, Turkey.
 Email : ipek@hacettepe.edu.tr
 ${ }^{\dagger}$ Corresponding Author.
 ${ }^{\ddagger}$ Department of Mathematics, Sakarya University, Sakarya, Turkey.
 Email : sgur@sakarya.edu.tr

