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Abstract
Let X be a Tychonoff space, Y an equiconnected space and C(X,Y ) be the set of all
continuous functions from X to Y . In this paper, we provide a criterion for the coincidence
of set open and uniform topologies on C(X,Y ) when these topologies are defined by a
family α consisting of Y -compact subsets of X. For a subspace Z of a topological space
X, we also study the continuity and the openness of the restriction map πZ : C(X,Y )→
C(Z, Y ) when both C(X,Y ) and C(Z, Y ) are endowed with the set open topology.
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1. Introduction
Let X,Y be topological spaces and C(X,Y ) be the set of all continuous functions from

X to Y . The set C(X,Y ) has a number of classical topologies; among them the topology
of uniform convergence and the set open topology. Since their introduction by Arens and
Dugundji [1], set open topologies have been studied and the comparison between them
and the topology of uniform convergence have been considered by many authors (see, for
example, [4, 7, 9, 10]).

In [4], Bouchair and Kelaiaia have established a criterion for the coincidence of the set
open topology and the topology of uniform convergence on C(X,Y ) defined on a family
α of compact subsets of X. They also have studied the comparison between some set
open topologies on C(X,Y ) for various families α. In this paper we continue the study
of the comparison between these topologies in the case when α is a family consisting of
Y -compact sets and give a criterion for their coincidence.

One of the most useful tools normally used for studying function spaces is the concept
of restriction map. If Z is a subspace of a topological space X, then the restriction map
πZ : C(X,Y )→ C(Z, Y ) is defined by πZ(f) = f|Z for any f ∈ C(X,Y ). The properties of
the restriction map πZ : C(X,R)→ C(Z,R), when both C(X,R) and C(Z,R) are endowed
with the topology of the pointwise convergence, have been studied by Arhangel’skii in
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[2, 3]. In the present paper, we give a criteria for the continuity and for the openness of
the restriction map in the case when Y is an equiconnected topological space and C(X,Y )
and C(Z, Y ) are equipped with the set open topology.

Our paper is organized as follows. In Section 3, we prove that the set open and uniform
topologies on C(X,Y ) coincide if and only if α is a functional refinement family. Section 4
is devoted to compare the spaces Cα(X,Y ) and Cβ(X,Y ) for two given families α and β of
Y -compact subsets of X. In Section 5, we consider, for a subspace Z of a topological space
X, the restriction map πZ : Cα(X,Y ) → Cβ(Z, Y ) and we give necessary and sufficient
condition for the continuity and for the openness of the restriction map in the framework
of set open topology. We prove that, if α is a functional refinement family consisting
of closed Y -compact subsets of X and β is a family of closed Y -compact subsets of Z,
then πZ is continuous if and only if the quadruplet (β, α,X, Y ) satisfies the property (P ).
We also show that, if α and β are two admissible families of compact subsets of X and
Z respectively, then πZ : Cα(X,Y ) → Cβ(Z, Y ) is open onto its image if and only if β
approximates α|Z .

2. Definitions and preliminaries
Throughout this paper, X is a Tychonoff space, Y is an equiconnected topological space,

C(X,Y ) is the set of all continuous functions from X to Y , and α is always a nonempty
family of subsets of X. The set open topology on C(X,Y ) has a subbase consisting of all
sets of the form [A, V ] = {f ∈ C (X) : f (A) ⊆ V }, where A ∈ α and V is an open subset
of Y, and the function space C(X,Y ) endowed with this topology is denoted by Cα (X,Y ) .
If V is not arbitrary but is restricted to some collection B of open subsets of Y , then we
denote by CB

α (X,Y ) the corresponding function space.
For a metric space (Y, ρ), the topology of uniform convergence on members of α has as

base at each point f ∈ C(X,Y ) the family of all sets of the form

< f,A, ε >= {g ∈ C(X,Y ) : sup
x∈A

ρ(f(x), g(x)) < ε},

where A ∈ α and ε > 0. The space C(X,Y ) having the topology of uniform convergence
on α is denoted by Cα,u(X,Y ).

The symbols ∅ and N will stand for the empty set and the positive integers, respectively.
We denote by R the real numbers with the usual topology. The complement and the closure
of a subset A in X is denoted by Ac and A, respectively. If A ⊆ X, the restriction of a
function f ∈ C(X,Y ) to the set A is denoted by f|A. Let Z be a subspace of X, then α|Z
denotes the family {A ∩ Z : A ∈ α}.

Let β be a nonempty family of subsets of X. We say that α refines β if every member
of α is contained in some member of β. We say that β approximates α provided that for
every A ∈ α and every open neighborhood U of A in X, there exist B1, ..., Bn ∈ β such
that A ⊆ B1 ∪ B2 ∪ ... ∪ Bn ⊆ U . A family α is said to be admissible if for every A ∈ α
and every finite sequence U1, ..., Un of open subsets of X such that A ⊆

n
∪
i=1
Ui, there exists

a finite sequence A1, ..., Am of members of α which refines U1, ..., Un and whose union
contains A. For example, the family of all compact sets as well as the family of all finite
sets in a topological space is an admissible family.

A topological space Y is said to be equiconnected [6] if there exists a continuous map
Ψ : Y × Y × [0, 1]→ Y such that Ψ(x, y, 0) = x, Ψ(x, y, 1) = y , and Ψ(x, x, t) = x for all
x, y ∈ Y and t ∈ [0, 1]. The map Ψ is called an equiconnecting function. A subset V of an
equiconnected space Y is called a Ψ-convex subset of Y if Ψ(V, V, [0, 1]) ⊆ V . It is a known
fact that any topological vector space or any convex subset of any topological vector space
is an equiconnected space, and any equiconnected space is a pathwise connected space.
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For topological space X and Y , we write X = Y (X ≤ Y ) to mean that X and Y have
the same underlying set and the topology on Y is the same to ( finer than or equal to )
the topology on X.

Definition 2.1. ([10]). Let A ⊆ X and let Y be an arbitrary topological space. For a
fixed natural number n, we will say that A is Y n-compact if, for any continuous function
f ∈ C(X,Y n), the set f(A) is compact in Y n.

We would like to mention that there are Y -compact sets which are not closed. Indeed,
it is proved in [10, Example 1] that if X is the set of all ordinals that are less than or equal
to ω1 and Y = R, then the subset of all countable ordinals from X is R-compact but it is
not closed in X. It was proved also that there are closed sets that are not Y -compact, see
[10, Example 4]. So in our comparison of topologies on C(X,Y ) we consider the family
α in the class of closed and Y -compact sets. Notice that, in the case when A = X and
Y = R, the R-compactness of the set A coincides with the pseudocompactness of the space
X.

Definition 2.2. ([11]). A space Y is called cub−space (or quadra- space) if for any
x ∈ Y × Y there are a continuous map f from Y × Y to Y and a point y ∈ Y such that
f−1(y) = x.

For example, any Tychonoff space with Gδ-diagonal containing a nontrivial path or a
zero-dimensional space with Gδ-diagonal containing a nontrivial convergent sequence is a
cub-space. Also a pathwise connected metric space is a cub−space.

Proposition 2.3. Let X be a topological space, and (Y, ρ) be a pathwise connected metric
space. If A is an Y -compact subset of X and n is a natural number, then A is also an
Y n-compact subset of X.

Proof. For the proof see Proposition 2.2 in [11]. �

The following lemma will be useful in the sequel which is a particular case of the
Proposition 2.4 in [11].

Lemma 2.4. Let X be a topological space and (Y, ρ) be a pathwise connected metric
space. Then the intersection of an Y -compact subset of X and the inverse image, by any
continuous function from X to Y , of any closed subset of Y is Y -compact.

Proof. Let A ⊆ X be an Y -compact set, F a closed subset of Y, and g ∈ C(X,Y ).
We will show that A ∩ g−1(F ) is Y -compact. Take an arbitrary element f of C(X,Y )
and prove that f(A ∩ g−1(F )) is compact in Y 2. Define the function h : X → Y 2 by
h(x) = (f(x), g(x)), for every x ∈ X. It is clear that the function h is continuous. By
Proposition 2.3, the set h(A) is compact in Y 2. Consider the set T = Y × F . We claim
that h(A∩g−1(F )) = h(A)∩T . Indeed, if z ∈ h(A∩g−1(F )), then z ∈ h(A). On the other
hand, there exists a point x ∈ A ∩ g−1(F ) such that z = h(x) = (f(x), g(x)). Therefore
z ∈ T . Conversely, let y ∈ h(A)∩T . Then, y = h(x) = (f(x), g(x)) for some x ∈ A. Since
y ∈ T , we have x ∈ g−1(F ). Therefore, x ∈ A ∩ g−1(F ) and y ∈ h(A ∩ g−1(F )). Thus,
h(A ∩ g−1(F )) = h(A) ∩ T which is compact as the intersection of the compact set h(A)
with the closed set T . To finish the proof of the lemma it suffices to see that f(A∩g−1(F ))
is the projection of the set h(A ∩ g−1(F )) on T . �

We give the following definition.

Definition 2.5. A family α of subsets of X is called a functional refinement if for every
A ∈ α, every finite sequence U1, ..., Un of open subsets of Y , and every f ∈ C(X,Y ) such
that A ⊆

n
∪
i=1
f−1(Ui), there exists a finite sequence A1, ..., Am of members of α which

refines f−1(U1), ..., f−1(Un) and whose union contains A.
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It is clear that every admissible family is a functional refinement family.

Proposition 2.6. Let X be a topological space, and (Y, ρ) be a metric space. Then, the
family of all Y -compact subsets of X is a functional refinement family.

Proof. Let A ⊆ X be an Y -compact set, {U1, ..., Un} a finite sequence of open subsets
of Y , and f ∈ C(X,Y ) such that A ⊆

n
∪
i=1
f−1(Ui). For every y ∈ f(A), there exist

iy ∈ {1, ..., n} and εy > 0 such that B(y, εy) ⊆ Uiy , where B(y, εy) is the open ball with
center y and radius εy. Then the family {B(y, εy) : y ∈ f(A)} is an open covering of
f(A). From this covering, let us choose a finite subcover

{
B(yj , εyj )

}m
j=1

and for each

j = 1, ...,m, let us choose some iyj such that B(yj , εyj ) ⊆ Uiyj . By Lemma 2.4, the set
Aj = f−1

(
B(yj , εyj )

)
∩ A is Y -compact, for each j. Therefore, the family A1, ..., Am of

Y -compact subsets of X covers A and refines f−1(U1), ..., f−1(Un) . Hence, the family of
all Y -compact subsets of X is a functional refinement. �

3. Coincidence of set open and uniform topologies
In this section, we study necessary and sufficient condition for the coincidence of the

set open topology and the uniform topology on C(X,Y ) in the case when the family α
consists of closed Y -compact sets. We first give subbase for the space Cα(X,Y ) that help
us to study the comparison of these topologies.

Theorem 3.1. Let α be a functional refinement family consisting of Y -compact subsets
of X and B be an arbitrary base for Y . Then, the family

{[A, V ] : A ∈ α, V ∈ B}
is a subbase for the space Cα(X,Y ).

Proof. Let f ∈ C(X,Y ) and take a subbasic open neighborhood [K,U ] of f in Cα(X,Y ),
where K ∈ α and U open in Y . The open set U will be written as the union of some
subfamily {Vi : i ∈ I} of B which covers f(K). Since f(K) is compact, there exists
n ∈ N∗ such that f(K) ⊆

n
∪
i=1
Vi. Since α is a functional refinement, there exists a sequence

Ki, ....,Km of members of α which refines
{
f−1(Vi) : i = 1, ..., n

}
and whose union contains

K. For each j ∈ {1, ...,m}, let us choose ij ∈ {1, ..., n} such that Ki ⊆ f−1(Vij ). It is easy
to see that f ∈

m
∩
j=1

[
Kj , Vij

]
⊆ [K,U ] . �

The following result was obtained in [11, Theorem 3.3].

Theorem 3.2. For every Hausdorff space X and any uniform cub-space (Y,U) the topology
on C(X,Y ) induced by the uniformity Û|α of uniform convergence on the saturation family
α coincides with the set open topology on C(X,Y ), where Y has the topology induced by
U.

Because every equiconnected metric space is a cub-space, the following result follows
immediately from the above theorem.

Theorem 3.3. Let X be a topological space, and (Y, ρ) be an equiconnected metric space. If
α is a functional refinement family consisting of Y -compact subsets of X, then Cα(X,Y ) =
Cα,u(X,Y ).

Corollary 3.4. Let X be a topological space, and (Y, ρ) be an equiconnected metric space.
If α is a family consisting of Y -compact subsets of X which contains all Y -compact subsets
of its elements, then Cα(X,Y ) = Cα,u(X,Y ).
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We will now give a necessary and sufficient condition for which CB
α (X,Y ) = Cα,u(X,Y ).

To this end, we will introduce, for a family α of subsets of X, the following family
α1 =

{
A′/A′ is Y -compact subset of X and ∃A ∈ α : A′ ⊆ A

}
.

Proposition 2.6 leads us to the following corollary.

Corollary 3.5. If α is a family of Y -compact subsets of X, then the family α1 is always
a functional refinement family.

We give a definition.

Definition 3.6. Let X and Y be two topological spaces. Let α and β be two families
of subsets of X. We will say that the quadruplet (α, β,X, Y ) satisfies the property (P )
provided that for every A ∈ α, every open subset U in Y , and every f ∈ C(X,Y ) such
that A ⊆ f−1(U) , there exist B1, ..., Bn ∈ β with A ⊆

n
∪
i=1
Bi ⊆ f−1(U).

From the above definition, we observe that if a family β approximates α then (α, β,X, Y )
satisfies the property (P ).

Lemma 3.7. Let α be a family of Y -compact subsets of X. Then α is a functional
refinement if and only if the quadruplet (α1, α,X, Y ) satisfies the property (P ).

Proof. Suppose that α is a functional refinement family. We will show that (α1, α,X, Y )
satisfies the property (P ). Let A′ ∈ α1, U be an open subset of Y and f ∈ C(X,Y ) such
that A′ ⊆ f−1 (U). Let A ∈ α, with A′ ⊆ A. If A ⊆ f−1 (U) the proof is finished. If
A * f−1 (U); then the family

{
f−1(f(A′)c), f−1(U)

}
is an open cover of A. Since α is a

functional refinement family, there exists a finite sequence A1, ..., An of elements of α which
refines

{
f−1(f(A′)c), f−1(U)

}
and whose union contains A. Put I =

{
i : Ai ⊆ f−1 (U)

}
.

It is clear that A′ ⊆ ∪
i∈I
Ai ⊆ f−1(U).

Conversely, suppose that (α1, α,X, Y ) satisfies the property (P ). Let A ∈ α, {U1, ..., Un}
a finite family of open subsets of Y and let f ∈ C(X,Y ) such that A ⊆

n
∪
i=1
f−1(Ui).

From Proposition 2.6, there exists a finite sequence A1, ..., Am of Y -compact subsets of
X which refines {f−1(U1), ..., f−1(Un)} and whose union contains A. We set A′

j = Aj ∩
A for each 1 ≤ j ≤ m. Then the subfamily {A′

1, ..., A
′
m} of α1 covers A and refines

f−1(U1), ..., f−1(Un). For each j = 1, ...,m, let us choose some ij such that A′
j ⊆ f−1(Uij ).

By our hypothesis there is, for every j = 1, ...,m, a finite family Aj = {Aj1, ..., Ajmj} of

members of α, such that A′
j ⊆

mj⋃
k=1

Ajk ⊆ f−1(Uij ). Put A =
m
∪
i=1

Ai. This is a finite family of

elements of α which covers A and refines f−1(U1), ..., f−1(Un). Therefore α is a functional
refinement family. �

Corollary 3.8. For any family α of Y -compact subsets of X, we have Cα(X,Y ) ≤
Cα1(X,Y ) = Cα1,u(X,Y ) = Cα,u(X,Y ).

Let α = {A : A ∈ α}. We have the following result.

Proposition 3.9. Let X be a topological space, and (Y, ρ) be a metric space. For any
family α of Y -compact subsets of X, we have Cα,u(X,Y ) = Cα,u(X,Y ).

Proof. Let us prove that Cα,u(X,Y ) = Cα,u(X,Y ). Let A ∈ α, ε > 0 and f ∈ C(X,Y ). As
A ⊆ A, we have

〈
f,A, ε

〉
⊆ 〈f,A, ε〉 , then Cα,u(X,Y ) ≤ Cα,u(X,Y ). Let

〈
f,A, ε

〉
be an

open subbasic set of Cα,u(X,Y ). Let us show that
〈
f,A, ε3

〉
⊆
〈
f,A, ε

〉
. Let g ∈

〈
f,A, ε3

〉
and x be an arbitrary point of the set A. Since g and f are continuous, then for every
ε > 0, there exists a point yε ∈ A such that ρ (f(x), f(yε)) < ε

3 and δ (g(x), g(yε)) < ε
3
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( this is possible, since f−1(B(f(x), ε3)) ∩ g−1(B(g(x), ε3) is a neighborhood of the point
x and x ∈ A ). Hence ρ (f(x), g(x)) ≤ ρ (f(x), f(y)) + ρ (f(y), g(y)) + ρ (g(x), g(y)) < ε;
therefore Cα,u(X,Y ) ≤ Cα,u(X,Y ). �

Theorem 3.10. Let X be a topological space, and (Y, ρ) be an equiconnected metric space
with a bounded metric ρ and having a base B consisting of Ψ−convex sets. Let α be a
family of closed Y -compact subsets of X. Then CB

α (X,Y ) = Cα,u(X,Y ) if and only if α
is a functional refinement family.

Proof. If α is a functional refinement family, then by Theorems 3.1 and 3.3 we have
CB
α (X,Y ) = Cα(X,Y ) = Cα,u(X,Y ). Conversely, suppose that CB

α (X,Y ) = Cα,u(X,Y )
and let us show that α is a functional refinement family. From Lemma 3.7 it suffices to
prove that (α1, α,X, Y ) satisfies the property (P ). Let A′ ∈ α1, f ∈ C(X,Y ) and let U
be an open subset in Y such that A′ ⊆ f−1(U). Since f(A′) is compact, there exists a
continuous function g : Y → [0, 1] such that g(f(A′)) = {1} and g(U c) = {0}. Take a
nontrivial path p in Y with p(0) 6= p(1), and put h = p ◦ g ◦ f . Since the topologies of the
spaces Cα1,u(X,Y ) and Cα,u(X,Y ) coincide, the set 〈h,A′, ε〉 , where ε is strictly inferior
to the distance between p(0) and p(1) in Y , is an open neighborhood of h in Cα,u(X,Y ).
Moreover, since CB

α (X,Y ) = Cα,u(X,Y ) there exist A1, ..., An ∈ α and V1, ..., Vn ∈ B such
that

h ∈
n
∩
i=1

[Ai, Vi] ⊆
〈
h,A′, ε

〉
.

Equiconnectedness of Y leads us, by [12, Corollary 1], to the fact that A′ ⊆
n
∪
i=1
Ai. We

set I =
{
i : Ai ⊆ f−1(U)

}
. By the same argument as in [4, Theorem 3], it follows that

A′ ⊆ ∪
i∈I
Ai. This means that (α1, α,X, Y ) satisfies the property (P ), and so the family α

is a functional refinement. �

Corollary 3.11. Let X be a topological space, and (Y, ρ) be an equiconnected metric space
with a bounded metric ρ and having a base B consisting of Ψ−convex sets. Let α be a
family of closed Y -compact subsets of X. Then CB

α (X,Y ) = Cα1(X,Y ) if and only if α is
a functional refinement family.

4. Comparison of Cα(X, Y ) and Cβ(X, Y )
In this section, we are going to compare the topologies of Cα(X,Y ) and Cβ(X,Y ) when

α and β are two families of Y -compact subsets of X.

Theorem 4.1. Let α and β be two families of subsets of X. If (α, β,X, Y ) satisfies the
property (P ), then Cα(X,Y ) ≤ Cβ(X,Y ).

Proof. The proof is the same of [4, Theorem 5]. �

Theorem 4.2. Let α and β be two families of closed Y -compact subsets of X, and Y
be an equiconnected topological space having a base B consisting of Ψ-convex sets. If
Cα(X,Y ) ≤ CB

β (X,Y ), then the quadruplet (α, β,X, Y ) satisfies the property (P ).

Proof. Let A ∈ α, V an open subset in Y and f ∈ C(X,Y ) such that A ⊆ f−1(V ).
Since f(A) is compact in Y , there exists a continuous function g : Y → [0, 1] such that
g(f(A)) = {0} and g(V c) = {1} ; Let p : [0, 1]→ Y be a path in Y with p(0) 6= p(1), and
let h = p ◦ g ◦ f . Let W ∈ B which contains the point p(0) and does not contain p(1).
Then [A,W ] is an open neighborhood of h in CB

α (X,Y ). Since the topology of CB
β (X,Y )

is finer than the topology of Cα(X,Y ) , there exist B1, ..., Bn ∈ β and V1, ..., Vn ∈ B such
that

h ∈
n
∩
i=1

[Bi, Vi] ⊆ [A,W ] .
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We have then A ⊆
n
∪
i=1
Bi. Put I =

{
i : Bi ⊆ f−1(V )

}
. As in the proof of Theorem 3.10,

we obtain that A ⊆ ∪
i∈I
Bi and hence (α, β,X, Y ) satisfies the property (P ). �

Corollary 4.3. Let α and β be two families consisting of closed Y -compact subsets of X,
and Y be an equiconnected topological space having a base B consisting of Ψ-convex sets. If
β is a functional refinement family, then Cα(X,Y ) ≤ Cβ(X,Y ) if and only if (α, β,X, Y )
satisfies the property (P ).

5. Restriction map
In this section, we use the results obtained above to study and generalize some results

due to Arhangel’skii about the properties of the so-called restriction map on function
spaces. Let Z be a subspace of a topological space X. The restriction map πZ : C(X,Y )→
C(Z, Y ) is defined by πZ(f) = f|Z for any f ∈ C(X,Y ). We begin by examining the
continuity of πZ . The following result is stated in [3].

Proposition 5.1. [3, Proposition 1] Let X,Y be topological spaces, and Z be a subspace
of X. Let α be a network in X and β be a network in Z. If β ⊂ α, then the restriction
map πZ : Cα(X,Y )→ Cβ(Z, Y ) is continuous.

Proposition 5.1 can be strengthened as follows.

Proposition 5.2. Let X,Y be topological spaces, and Z be a subspace of X. Let α be
a family of subsets of X and β be a family of subsets of Z. If (β, α,X, Y ) satisfies the
property (P ), then πZ : Cα(X,Y )→ Cβ(Z, Y ) is continuous.

Proof. Let f ∈ C(X,Y ) and [B, V ] be an open neighborhood of f|Z in Cβ(Z, Y ), where
B ∈ β and V open in Y . Then B ⊆ f−1(V ). Since (β, α,X, Y ) satisfies the property (P ),
there exist A1, ..., An ∈ α such that B ⊆

n
∪
i=1
Ai ⊆ f−1(V ). Thus

n
∩
i=1

[Ai, V ] is an open

neighborhood of f in Cα(X,Y ). It is easy to see that πZ(
n
∩
i=1

[Ai, Vi]) ⊆ [B, V ]. Therefore
πZ is continuous. �

Proposition 5.3. Let X,Y be topological spaces, and Z be a subspace of X. Let α be
a family of subsets of X and β be a family of subsets of Z. If Z is dense in X and
(β, α,X, Y ) satisfies the property (P ), then πZ : Cα(X,Y )→ πZ(Cα(X,Y )) is a bijective
continuous map, i.e. a condensation.

Proof. Let f and g be distinct elements in C(X,Y ). The continuity of the functions f
and g and the fact that Z = X imply that f|Z 6= g|Z . Hence πZ(f) 6= πZ(g). This means
that πZ is one-to-one. By Proposition 5.2, πZ is continuous. �

Corollary 5.4. Let X,Y be topological spaces, and Z be a subspace of X. Let α be a
family of subsets of X and β be a family of subsets of Z. If α approximates β, then
πZ : Cα(X,Y )→ Cβ(Z, Y ) is continuous.

Let B ⊆ Z ⊆ X and V ⊆ Y . Recall that [B, V ] = {f ∈ C(X,Y ) : f(B) ⊆ V }; let us
denote by [B, V ]Z = {f ∈ C(Z, Y ) : f(B) ⊆ V }. For the converse of Theorem 5.2, we
have the following.

Proposition 5.5. Let X be topological space, Y an equiconnected topological space having
a base B consisting of Ψ-convex sets, and Z be a subspace of X. Let α be a functional
refinement family consisting of closed Y -compact subsets of X and β be a family of closed
Y -compact subsets of Z. If πZ : Cα(X,Y ) → Cβ(Z, Y ) is continuous, then (β, α,X, Y )
satisfies the property (P ).



24 L. Harkat, A. Bouchair, S. Kelaiaia

Proof. By Corollary 4.3, it suffices to show that Cβ(X,Y ) ≤ Cα(X,Y ). Let f ∈ Cβ(X,Y )
and [B, V ] be an open neighborhood of it in Cβ(X,Y ), where B ∈ β and V open in Y .
Then πZ(f) = f|Z ∈ [B, V ]Z . The continuity of πZ leads to the existence of A1, ..., An ∈ α
and open subsets V1, ..., Vn of Y such that

f ∈
n
∩
i=1

[Ai, Vi] ⊆ [B, V ].

Hence Cβ(X,Y ) ≤ Cα(X,Y ), and so (β, α,X, Y ) satisfies the property (P ). �

Now, to find out when πZ is open we first recall the following result obtained by
Arhangel’skii [2, Proposition 3] for the topology of poinwise convergence in the case Y = R.

Theorem 5.6. If Z is a closed subset od X, then πZ maps the space Cp(X) openly onto
the subspace πZ(Cp(X)) of Cp(Z).

In order to study the openness of the restriction map when C(X,Y ) and C(Z, Y ) are
equipped with set open topologies, we will need the following lemmas.

Lemma 5.7. Let X be a topological space, and Y be an equiconnected space. Let K be
compact subset of X, F be closed subset of X, and let f : X → Y be a continuous function
such that f(K ∩ F ) ⊆ V , where V is an open Ψ-convex subset of Y . Then there exists a
continuous function f1 : X → Y such that f1(K) ⊆ V and f1|F = f|F .

Proof. We observe that V is pathwise connected. Let p : [0, 1] → V be a path in
V . Put K1 = K ∩ f−1(V c) which is compact. Let g : X → [0, 1] be a continuous
function such that g(F ) = {1} and g(K1) = {0}. Define the function f1 : X → Y by
f1(z) = Ψ(p ◦ g(z), f(z), g(z)) for each z ∈ X. It is clear that f1 is continuous, and one
can easily verify that f1|F = f|F and f1(K) ⊆ V . �

Lemma 5.8. Let X be a topological space, Y an equiconnected space with equiconnecting
function Ψ, Z a subspace of X, α a family of compact subsets of X with A ∩ Z = A ∩ Z
for each A ∈ α and let g ∈ C(Z, Y ) be a function continuously extendable over X. Let
A1, ..., An ∈ α, and V1, ..., Vn are Ψ-convex open subsets of Y such that g(Ai ∩ Z) ⊆ Vi
for each i = 1, ..., n. Then there exists a continuous extension g′ : X → Y of g such that
g′(Ai) ⊆ Vi for each i = 1, ..., n.

Proof. We proceed by recurrence. Let g ∈ C(Z, Y ), A ∈ α and V be an open Ψ-convex
subset of Y with g(A ∩ Z) ⊆ V . By applying Lemma 5.7 with F = Z and K = A, we
obtain a continuous extension g′ of g over X with g′(A) ⊆ V .

Suppose that the property is true up to n. We show that it remains true for n+ 1; let
A1, ..., An+1 ∈ α, and V1, ..., Vn+1 are Ψ-convex open subsets of Y such that g(Ai∩Z) ⊆ Vi
for each i = 1, ..., n+1, and let us show the existence of a continuous extension g′ ∈ C(X,Y )
of g such that g′(Ai) ⊆ Vi for each i = 1, ..., n. By our assumption, we have g((Ai∩An+1)∩
Z) ⊆ Vi ∩ Vn+1, for each i = 1, ..., n. Then the family {A1 ∩ An+1, ..., An ∩ An+1} verifies
(Ai ∩ An+1) ∩ Z = (Ai ∩ An+1) ∩ Z for each i = 1, ..., n. Therefore, by the recurrence
hypothesis, we find a function g′

1 ∈ C(X,Y ) extending g and such that g′
1(Ai ∩ An+1) ⊆

Vi ∩ Vn+1, for each i = 1, ..., n. We set X1 = X ∪ (
⋃n
i=1(Ai ∩ An+1)). Clearly we have

Ai ∩X1 = Ai ∩X1 and g′
1(Ai ∩X1) ⊆ Vi for each i = 1, ..., n. Applying Lemma 5.7 once

again for F = X1 and K = An+1, we get an extension g′
2 ∈ C(X,Y ) of g′

1|X1
such that

g
′
2(An+1) ⊆ Vn+1. We observe that g′

2(Ai ∩ An+1) ⊆ Vi, for each i. Again we put X2 =
X1 ∪An+1. Then, we have, for each i = 1, ..., n, Ai ∩X2 = Ai ∩X2 and g′

2(Ai ∩X2) ⊆ Vi.
By the recurrence hypothesis, there exists g′

3 ∈ C(X,Y ) which extending g′

2|X2
such that

g
′
3(Ai) ⊆ Vi, for each i = 1, ..., n, and we have g′

3(An+1) = g
′
2(An+1) ⊆ Vn+1. Whence

g′ = g
′
3 is our required function. �
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Lemma 5.9. Let X be a topological space, Z a subspace of X, α and β are two families
of compact subsets of X and Z, respectively. If β approximates α|Z , then A ∩ Z = A ∩ Z
for each A ∈ α.

Proof. Suppose that there exists A ∈ α such that A ∩ (Z \ Z) 6= ∅. Let x ∈ A ∩ (Z \ Z).
Then there is no member of β for which x belongs. Therefore A∩Z does not contained in
any finite union of members of β; this contradicts the fact that β approximates α|Z . �

Theorem 5.10. Let X be a topological space, Z a subspace of X, and Y is an equicon-
nected space with a base B consisting of Ψ-convex sets. Let α be an admissible family of
compact subsets of X and β be a family of compact subsets of Z. If β approximates α|Z ,
then πZ is an open map from Cα (X,Y ) onto the subspace πZ(Cα (X,Y )) of Cβ (Z, Y ).

Proof. Let ∩ni=1 [Ai, Vi], where A1, ..., An ∈ α and V1, ..., Vn ∈ B, be a basic open subset
of Cα (X,Y ) and f ∈ πZ (∩ni=1 [Ai, Vi]) . Let f ′ ∈ C(X,Y ) be an extension of f over X
such that f ′ ∈ ∩ni=1 [Ai, Vi] . Since β approximates α|Z , there exists, for each i = 1, ..., n, a
finite subfamily βi of β such that

Ai ∩ Z ⊆
⋃
{B : B ∈ βi} ⊆ f−1 (Vi) .

Then

f ∈

 n⋂
i=1

⋂
B∈βi

[B, Vi]

⋂πZ (C (X,Y )) = W.

We have W ⊆ πZ (∩ni=1 [Ai, Vi]) . Indeed, let g ∈W. Because g(
⋃
{B : B ∈ βi}) ⊆ Vi, then

g(Ai ∩ Z) ⊆ Vi for every i = 1, ..., n. Also, from Lemma 5.9, we have A ∩ Z = A ∩ Z
for each A ∈ α. Then, by Lemma 5.8, there exists a function g′ ∈ C(X,Y ) which agrees
with g on Z and belongs to ∩ni=1 [Ai, Vi] . We have then g ∈ πZ (∩ni=1 [Ai, Vi]) . Therefore
W ⊆ πZ (∩ni=1 [Ai, Vi]) , which means that πZ : Cα (X,Y )→ πZ(Cα (X,Y )) is open. �

Lemma 5.11. Let X be a topological space, Z a subspace of X, and α, β are two fam-
ilies of compact subsets of X and Z, respectively. Let Y be an equiconnected T1-space,
with equiconnecting function Ψ. If πZ is an open map from Cα (X,Y ) onto the subspace
πZ(Cα (X,Y )) of Cβ (Z, Y ), then A ∩ Z = A ∩ Z for each A ∈ α.

Proof. Suppose that there exists A ∈ α such that A∩(Z \Z) 6= ∅. Let x ∈ A∩(Z \Z). Let
p : [0, 1]→ Y be a path in Y with p(0) 6= p(1) and put V = Y \{p(0)}. Let f ∈ πZ([A, V ]),
then we have f = f ′|Z for some f ′ ∈ [A, V ]. Since πZ : Cα (X,Y )→ πZ(Cα (X,Y )) is open,
there exist B1, ..., Bn ∈ β and V1, ..., Vn open subsets in Y such that

f ∈ (
n⋂
i=1

[Bi, Vi]) ∩ πZ (C (X,Y )) ⊆ πZ ([A, V ]) .

Since x ∈ A∩ (Z \Z), we have x /∈ ∪ni=1Bi. Complete regularity of X gives us a continuous
function h : X → [0, 1] such that h(x) = 0 and h(∪ni=1Bi) = {1}. Consider the function
h1 : X → Y defined by h1(z) = Ψ(p ◦ h(z), f ′(z), h(z)) for each z ∈ X. It is clear
that h1 is continuous, h1(∪ni=1Bi) ⊆ V and h1(x) = p(0) /∈ V. So h1|Z ∈ (

n⋂
i=1

[Bi, Vi]) ∩

πZ (C (X,Y )) and h1 does not belong to [A, V ]. Assume that h1|Z admits another extension
h2 ∈ C(X,Y ). By continuity we have h1|Z̄ = h2|Z̄ . Thus h1(x) = h2(x) /∈ V , and so
h2 /∈ [A, V ]. This leads that no continuous extension of h1|Z over X belongs to [A, V ],

which contradicts the fact that (
n⋂
i=1

[Bi, Vi])∩πZ (C (X,Y )) ⊆ πZ ([A, V ]). Hence, we have

A ∩ Z = A ∩ Z for every A ∈ α. �
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Theorem 5.12. Let X be a topological space, Z a subspace of X, and Y is an equiconnected
T1-space with a base B consisting of Ψ-convex sets.Let α be a family of compact subsets
of X and β an admissible family of compact subsets of Z. If πZ is an open map from
Cα (X,Y ) onto the subspace πZ(Cα (X,Y )) of Cβ (Z, Y ), then β approximates α|Z .

Proof. Notice first that, from Lemma 5.11, we have A ∩ Z = A ∩ Z for every A ∈ α.
Furthermore, Cβ (Z, Y ) = CB

β (Z, Y ) because β is a functional refinement family. Let
A ∈ α, G an open subset of Z with A ∩ Z = A ∩ Z ⊆ G. let G1 be an open subset in X
with G1 ∩ Z = G. Now the subset G2 = G1 ∪

(
X\Z

)
, which is open in X, contains A

and verifies G2 ∩ Z = G1 ∩ Z = G. Let f : X → [0, 1] be a continuous function such that
f (A) = {1} and f (X\G2) = {0} . Let V = Y \ {p(0)}, where p is a path in Y , and put
g = p ◦ f . Then g−1(V ) ⊆ G2. Thus g−1

|Z (V ) ⊆ G. Consider in Cα (X,Y ) the subbasic
open subset [A, V ]. We have then g ∈ [A, V ] . Thus πZ (g) = g|Z belongs to πZ ([A, V ])
which is open in πZ (C (X,Y )) , by our assumption. Therefore, there exist B1, ..., Bn ∈ β
and open sets V1, ..., Vn ∈ B such that

g|Z ∈ (∩ni=1 [Bi, Vi]) ∩ πZ (C (X,Y )) ⊆ πZ ([A, V ]) .

By the same reasoning as in the proof of Lemma 5.11, we obtain that A ∩ Z = A ∩ Z ⊆
∪ni=1Bi. To continue our proof we will introduce the following notation. By B1 we denote
a subset B ⊆ X , and by B0 its complementary in X, i.e., Bc. Let I = {1, ..., n} and
define the following set

4 =

(δ1, δ2, ..., δn) ∈ {0, 1}n \ {(0, ..., 0)} :

⋂
i∈I
Bδi
i

 ∩ (A ∩ Z) 6= φ

 .
We have then

A ∩ Z = A ∩ Z ⊆
⋃{

n⋂
i=1

Bδi
i / (δ1, ..., δn) ∈ 4

}
.

Fixing an element (δ1, ..., δn) in 4 and let us show that
⋂
δi=1 Vi ⊆ V . Assume the

contrary. Let y0 ∈
⋂
δi=1 Vi \ V . Let x0 ∈

(⋂
i∈IB

δi
i

)
∩ (A ∩ Z), then x0 /∈ (

⋃
δi=0Bi)

and g(x0) ∈
⋂
δi=1 Vi. By continuity of g and the fact that x0 /∈ (∪δi=0Bi), we can take an

open neighborhood U of x0 such that g(U) ⊆
⋂
δi=1 Vi and U ∩ (

⋃
δi=0Bi) = ∅. Consider a

continuous function ϕ : X → [0, 1] such that ϕ(x0) = 0 and ϕ(U c) = {1}, and 0 ≤ ϕ(x) ≤ 1
for all x ∈ X. Then the function h : X → Y defined by h(x) = Ψ(y0, g(x), ϕ(x)), for all
x ∈ X, is continuous and h|Z does not belong to πZ ([A, V ]) because h(x0) = y0. But h|Z ∈
(∩ni=1 [Bi, Vi]) ∩ πZ (C (X,Y )) . In fact, if x ∈ Bi ∩ U then h(x) = Ψ(y0, g(x), ϕ(x)) ∈ Vi,
because Vi is Ψ-convex subset, for each 1 ≤ i ≤ n. If x ∈ Bi \U, then h(x) = g(x) ∈ Vi for
each i with 1 ≤ i ≤ n. This gives us a contradiction, so we have

⋂
δi=1 Vi ⊆ V. Moreover,

since
⋂
i∈IB

δi
i ⊆

⋂
δi=1Bi and A ⊆

⋃{⋂
i∈IB

δi
i / (δi) ∈ 4

}
we obtain that

A ∩ Z ⊆
⋃ ⋂

δi=1
Bi / (δi) ∈ 4

 ⊆ f−1
|Z (V ) .

Moreover, the admissibility of β gives us, by [4, Lemma 1] , that for each (δi) ∈ 4, there
exist β(δi) finite subfamily of β such that⋂

δi=1
Bi ⊆

⋃{
B : B ∈ β(δi)

}
⊆ f−1
|Z (V ) .

Hence
A ∩ Z = A ∩ Z ⊆

⋃
(δi)∈4

(
⋃

B∈β(δi)

B) ⊆ f−1
|Z (V ) ⊆ G.
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Thus, we have β approximates α|Z . �

Corollary 5.13. Let X be a topological space, Z a subspace of X, and Y is an equicon-
nected T1-space with a base B consisting of Ψ-convex sets.Let α be an admissible family
of compact subsets of X and β an admissible family of compact subsets of Z. Then πZ is
an open map from Cα (X,Y ) onto the subspace πZ(Cα (X,Y )) of Cβ (Z, Y ) if and only if
β approximates α|Z .
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