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One step iterative scheme for a pair of
nonexpansive mappings in a convex metric space
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Abstract
We propose and analyse a one step explicit iteration scheme for a pair
of nonexpansive mappings in a uniformly convex metric space. Our
results refine and generalize several recent and comparable results in
uniformly convex Banach spaces and CAT (0) spaces, simultaneously.
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1. Introduction and preliminaries
The fixed point theory of nonexpansive mappings proposed in the setting of Banach

spaces extremly depends on the linear structure of the underlying space. A nonlinear
framework for theory of iterative construction of fixed points of nonexpansive mappings
is a metric space embedded with a "convex structure". In the literature, different notions
of convexity in metric spaces are provided (see, for example, Kirk [10, 11], Penot [15] and
Takahashi [20]).

Takahashi [20] introduced the notion of a convex structure in a metric space X as a
mapping W : X2 × I → X satisfying

(1.1) d (u,W (x, y, α)) ≤ αd(u, x) + (1− α)d(u, y)
for all x, y, u ∈ X and α ∈ I = [0, 1]. A metric space X together with a convex structure
W is known as a convex metric space. For the sake of simplicity, we also denote a
convex metric space by X. A nonempty subset C of X is convex if W (x, y, α) ∈ C for all
x, y ∈ C and α ∈ I.There are many examples of convex metric spaces which cannot be
imbedded in any Banach space (see [20]). Some other examples of convex metric spaces
are Hadamard manifolds [3] and CAT (0) spaces [2, 9].
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A convex metric space X is uniformly convex [5, 19] if for any ε > 0, there exists
α > 0 such that d

(
z,W

(
x, y, 1

2

))
≤ r (1− α) < r for all r > 0 and x, y, z ∈ X with

d (z, x) ≤ r, d (z, y) ≤ r and d (x, y) ≥ rε.
A closed subset X of the unit ball S1 (0) = {x ∈ H : ‖x‖ ≤ 1} in a Hilbert space

H with diameter δ (X) ≤
√
2, turns out to be a uniformly convex metric space with

d (x, y) = cos−1 〈x, y〉 for all x, y ∈ X and W (x, y, α) = αx+(1−α)y
‖αx+(1−α)y‖ for all x, y ∈ X and

α ∈ I.
Amapping T on a subset C ofX is nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C.

A point x ∈ C is a fixed point of T if Tx = x. Denote by F (T ), the set of all fixed points
of T.

Ishikawa iterative scheme [6] is a two step iterative scheme and has been extensively
used to approximate common fixed points of nonexpansive mappings by a number of
researchers (see, for example, [7, 13, 21, 22]).

In order to reduce the computational cost of a two step iterative scheme, we propose a
one step iterative scheme for a pair of nonexpansive mappings S, T : C → C in a convex
metric space as follows:

(1.2) xn+1 =W

(
Txn,W

(
Sxn, xn,

βn
1− αn

)
, αn

)
where 0 < a ≤ αn, βn ≤ b < 1 and satisfy αn + βn < 1(see also [1]).

In Banach space setting, (1.2) becomes one step iterative scheme [23]:

(1.3) xn+1 = αnTxn + βnSxn + (1− αn − βn)xn.

When S = I in (1.2), it reduces to Mann iterative scheme [14]:

(1.4) xn+1 =W (Txn, xn, αn) .

One of the interesting and important aspect of approximation theory of fixed points is
to consider an iterative scheme with bounded error term and therefore such an iterative
scheme has been widely studied by a number of researchers in various frames of work;
see, for instance, [7] and references therein. It is remarked that the scheme (1.2) can
be reshaped as Mann iteration scheme with errors by replacing {Sxn} or {Txn} with
{un}(i.e., the error term).

Let {xn} be a bounded sequence in a metric space X. For x ∈ X, define r(x, {xn}) =
lim supn→∞ d(x, xn). Then (i) r({xn}) = inf{r(x, {xn}) : x ∈ C} is called the asymptotic
radius of {xn} with respect to C ⊆ X, (ii) For any y ∈ C, the set A({xn}) = {x ∈ X :
r(x, {xn} ≤ r(y, {xn})} is called the asymptotic center of {xn} with respect to C ⊆ X.

A subset C of a metric space X is Chebyshev if for every x ∈ X, there exists z ∈ C
such that d (z, x) < d (c, x) for all c ∈ C and c 6= z. If C is a Chebyshev subset of a
metric space X, then we define the nearest point projection P : X → C by sending x
to z. This is consistent with the notion of orthogonal projection onto a subspace of a
Euclidean space. It has been shown in [4] that every closed convex subset of a uniformly
convex metric space is Chebyshev.

A sequence {xn} inX is said to4−converge to x ∈ X [12] if x is the unique asymptotic
center of {un} for every subsequence {un} of {xn}. In this case, we write4−limn xn = x.

It has been shown in the literature that the notion of 4−convergence and weak
convergence in Banach spaces share many useful properties.

In this manuscript, we approximate the common fixed points of two nonexpansive
mappings by one step iterative scheme (1.2) in a convex metric space.

For the development of our main results, some key results are listed in the form of
lemmas:
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1.1. Lemma. ([4]). Let C be a nonempty closed convex subset of a uniformly convex met-
ric space and {xn} a bounded sequence in C such that A({xn}) = {y} and r({xn}) = ρ. If
{ym} is another sequence in C such that limm→∞ r(ym, {xn}) = ρ, then limm→∞ ym = y.

1.2. Lemma. ([18]). Let X be a uniformly convex metric space with continuous convex
structure W. Then for any ε > 0 and r > 0, there exists δ > 0 such that

d (z,W (x, y, α)) ≤ r (1− 2min {α, 1− α} δ)

for all x, y, z ∈ X, d (z, x) ≤ r, d (z, y) ≤ r, d (x, y) ≥ rε and α ∈ I.

From now onwards, for a pair of nonexpansive mappings S, T : C → C , we set
F = F (T ) ∩ F (S).

2. Main Results
We start with the following lemma.

2.1. Lemma. Let C be a closed and convex subset of a convex metric space X and let
S, T be nonexpansive mappings on C such that F 6= φ. Then for the sequence {xn} defined
in (1.2), limn→∞ d(xn, p) exists for each p ∈ F.

Proof. Let p ∈ F. Applying (1.1) to (1.2), we have

d (xn+1, p) = d

(
W

(
Txn,W

(
Sxn, xn,

βn
1− αn

)
, αn

)
, p

)
≤ αnd (Txn, p) + (1− αn) d

(
W

(
Sxn, xn,

βn
1− αn

)
, p

)
≤ αnd (xn, p) + (1− αn)

[
βn

1− αn
d (Sxn, p) +

(
1− βn

1− αn

)
d (Sxn, p)

]
≤ αnd (xn, p) + (1− αn)

[
βn

1− αn
d (xn, p) +

(
1− βn

1− αn

)
d (xn, p)

]
= αnd (xn, p) + βnd (xn, p) + (1− αn − βn) d (xn, p)
= d (xn, p) .

That is,

(2.1) d (xn+1, p) ≤ d (xn, p) for all p ∈ F.

This gives that {xn} is a decreasing and bounded below sequence of nonnegative real
numbers, therefore limn→∞ d(xn, p) exists.

The following lemma provides an analogue of Schu Lemma [16] in the setting of convex
metric spaces and is needed in the next lemma.

2.2. Lemma. Let X be a uniformly convex metric space with continuous convex structure
W. Let x ∈ X and {an} be a sequence in [b, c] for some b, c ∈ (0, 1). If {un} and {vn}
are sequences in X such that lim supn−→∞ d(un, x) ≤ r, lim supn−→∞ d(vn, x) ≤ r and
limn−→∞ d(W (un, vn, an), x) = r for some r ≥ 0, then limn→∞ d(un, vn) = 0.

Proof. The case r = 0 is trivial. Suppose r > 0 and assume limn→∞ d(un, vn) 6= 0.
If n0 ≥ 1, then d(uni , vni) ≥ α

2
> 0 for some α ∈ (0, r] and for ni ≥ n0. Since

lim supi−→∞ d(uni , x) ≤ r and lim supn−→∞ d(vni , x) ≤ r, so max {d(uni , x), d(vni , x)} ≤
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r+ 1
ni

for ni ≥ n0 and d(uni , vni) ≥ α
2
=
(
r + 1

ni

)
αni

2(nir+1)
≥
(
r + 1

ni

)
α

2(r+1)
. Therefore

Lemma 1.2 gives that

d(W (uni , vni , ani) , x) ≤
(
r +

1

ni

)
(1− 2min {ani , 1− ani} δ)

≤
(
r +

1

ni

)
(1− 2ani (1− ani) δ)

≤
(
r +

1

ni

)
(1− 2b (1− c) δ) .

Thus, by letting i→∞, we obtain

lim
i→∞

d(W (uni , vni , ani) , x) ≤ (1− 2b (1− c) δ) r < r,

a contradiction.

2.3. Lemma. Let C be a nonempty, closed and convex subset of a uniformly convex met-
ric space X with continuous convex structure W and let S, T be nonexpansive mappings
on C such that F 6= φ. Then for the sequence {xn} in (1.2), we have

lim
n→∞

d (xn, Sxn) = 0 = lim
n→∞

d (xn, Txn) .

Proof. It follows from Lemma 2.1 that limn→∞ d(xn, p) exists for each p ∈ F. Assume
that limn→∞ d(xn, p) = c. If c = 0, the result is trivial. For c > 0, limn→∞ d(xn+1, p) = c
gives that

(2.2) lim
n→∞

d

(
W

(
Txn,W

(
Sxn, xn,

βn
1− αn

)
, αn

)
, p

)
= c.

Nonexpansiveness of T gives that

(2.3) lim sup
n→∞

d(Txn, p) ≤ lim sup
n→∞

d(xn, p) = c.

Since

d

(
W

(
Sxn, xn,

βn
1− αn

)
, p

)
≤ βn

1− αn
d(Sxn, p) +

(
1− βn

1− αn

)
d(xn, p)

≤ d(xn, p),

therefore

(2.4) lim sup
n→∞

d

(
W

(
Sxn, xn,

βn
1− αn

)
, p

)
≤ c.

Using Lemma 2.2
(
with x = p, r = c, an = αn, un = Txn, vn =W

(
Sxn, xn,

βn
1−αn

))
to-

gether with (2.2-2.4), we get

(2.5) lim
n→∞

d

(
Txn,W

(
Sxn, xn,

βn
1− αn

))
= 0.

Now the estimate

d(xn+1, Txn) ≤ d

(
W

(
Txn,W

(
Sxn, xn,

βn
1− αn

)
, αn

)
, Txn

)
≤ (1− αn)d

(
W

(
Sxn, xn,

βn
1− αn

)
, Txn

)
≤ (1− b)d

(
W

(
Sxn, xn,

βn
1− αn

)
, Txn

)
,
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together with (2.5) implies that

(2.6) lim
n→∞

d(xn+1, Txn) = 0.

Since S is nonexpansive, lim supn→∞ d(Sxn, p) ≤ c.
By triangle inequality, we have

d(xn+1, p) ≤ d(xn+1, Txn) + d

(
Txn,W

(
Sxn, xn,

βn
1− αn

))
+d

(
W

(
Sxn, xn,

βn
1− αn

)
, p

)
.

Taking lim infn→∞ on both sides in the above inequality, we have

c ≤ lim inf
n→∞

d

(
W

(
Sxn, xn,

βn
1− αn

)
, p

)
.

Therefore

(2.7) lim
n→∞

d

(
W

(
Sxn, xn,

αn
1− βn

)
, p

)
= c.

Again by Lemma 2.2 (with x = p, r = c, an = αn
1−βn , un = Snxn, vn = xn), we get

(2.8) lim
n→∞

d(xn, Sxn) = 0.

Further note that

d(xn+1, xn) ≤ d(xn+1, Txn) + d

(
Txn,W

(
Sxn, xn,

αn
1− βn

))
+d

(
W

(
Sxn, xn,

αn
1− βn

)
, xn

)
≤ d(xn+1, Txn) + d

(
Txn,W

(
Sxn, xn,

αn
1− βn

))
+(1− αn

1− βn
)d(xn, Sxn)

≤ d(xn+1, Txn) + d

(
Txn,W

(
Sxn, xn,

αn
1− βn

))
+

(
1− 2a

1− b

)
d(xn, Sxn).

Letting n→∞ in the above estimate, we have

(2.9) lim
n→∞

d(xn+1, xn) = 0.

As a direct consequence of (2.6) and (2.9), the inequality

d(xn, Txn) ≤ d (xn, xn+1) + d (xn+1, Txn)

provides that

lim
n→∞

d(xn, Txn) = 0.

Hence

lim
n→∞

d(xn, Sxn) = 0 = lim
n→∞

d(xn, Txn).
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The conclusion of Lemma 2.3 is interesting because the sequence generated by (1.2)
gives an approximate fixed point sequence for both S and T without assuming that these
mappings commute.

Now we state a result concerning 4−convergence of the iterative scheme (1.2). The
method of proof is closely related to Theorem 3.1 in [8].

2.4. Theorem. Let C be a nonempty, closed and convex subset of a uniformly convex
complete metric space X with continuous convex structure W and S, T : C → C be
nonexpansive mappings with F 6= φ. Then the sequence {xn} in (1.2), 4−converges to
an element of F.

Proof. In the proof of Lemma 2.1, it has been shown that {xn} is bounded. There-
fore {xn} has a unique asymptotic centre, that is, A({xn}) = {x}. Let {un} be any
subsequence of {xn} such that A({un}) = {u}. First, we show that u ∈ C. Suppose
u /∈ C. As C is a Chebyshev set, we can define a nearest point projection P : X →
C.Therefore d (Pu, un) < d (u, un) =⇒ r (Pu, {un}) < r (u, {un}) =⇒ u is not the as-
ymptotic center of {un}, a contradiction. Hence u ∈ C. Also by Lemma 2.2, we have
limn→∞ d(un, Tun) = 0 = limn→∞ d(un, Sun). Define {zm} in C by zm = Tmu.
Observe that

d(zm, un) ≤ d(Tmu, Tmun) +

m∑
j=1

d(T jun, T
j−1un)

≤ d(u, un) +md(Tun, un).

Therefore, we have

r(zm, {un}) = lim sup
n→∞

d(zm, un) ≤ lim sup
n→∞

d(u, un) = r(u, {un}).

This implies that |r(zm, {un})− r(u, {un})| → 0 as m→∞. It follows from Lemma 1.1
that limm→∞ T

mu = u. Since C is closed, so limm→∞ T
mu = u ∈ C and limm→∞ T

m+1u =
Tu.That is, Tu = u. Similarly we have Su = u. Therefore limn→∞ d(xn, u) exists by
Lemma 2.1. If x 6= u, then by the uniqueness of asymptotic centres, we have

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u)

= lim sup
n→∞

d(un, u),

a contradiction. Hence x = u.
Therefore, A({un}) = {u} for all subsequences {un} of {xn}. This proves that {xn}
4−converges to x.

Using the concept of near point projection, we establish the following theorem.

2.5. Theorem. Let C be a nonempty, closed and convex subset of a complete uniformly
convex metric space X and S, T : C → C be nonexpansive mappings. Let P be the nearest
point projection of C onto F. For an initial value x1, define {xn} as given in (1.2) where
αn, βn ∈ [a, b] for some a, b ∈ R with 0 < a ≤ b < 1. Then {Pxn} converges strongly to
a point of F.

Proof. It follows from (2.1) that, for any n ≥ 1,m ≥ 1, we have

d (Pxn, xn+m) ≤ d (Pxn, xn+m−1) ≤ d (Pxn, xn+m−2) ≤ ... ≤ d (Pxn, xn+1) .
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That is,

(2.10) d (Pxn, xn+m) ≤ d (Pxn, xn) for n ≥ 1,m ≥ 1.

In order to prove the result, we show that {Pxn} is a Cauchy sequence. By definition of
nearest point projection and (2.10), we have

d (Pxn+1, xn+1) ≤ d (Pxn, xn+1) ≤ d (Pxn, xn) .

Hence d (Pxn, xn)→ c(say). If c = 0, then for an arbitrary ε > 0, there exists an integer
n0 ≥ 1 such that

(2.11) d (Pxn, xn) < ε for all n ≥ n0.

By (2.11), for m > n ≥ n0,we have

d (Pxn, Pxm) ≤ d (Pxn, Pxn0) + d (Pxn0 , Pxm)

≤ d (Pxn, xn) + d (xn, Pxn0) + d (Pxn0 , xm) + d (xm, Pxm)

< 4ε.

This proves that {Pxn} is a Cauchy sequence. Assume that c > 0 and {Pxn} is not a
Cauchy sequence. Then there exists ε > 0 and two subsequences {Pxni} and {Pxmi}
of {Pxn} such that d (Pxni , Pxmi) ≥ ε for all i ≥ 1. Since {d (Pxn, xn)} is a decreasing
sequence and d (Pxn, xn)→ c, therefore we have

c ≤ d (Pxn, xn) ≤ c+
1

n
for n ≥ n0.

Let n0 ≤ ni,mi ≤ l. By (2.10), we have

d (Pxni , xl) ≤ d (Pxni , xni) < c+
1

n
and d (Pxmi , xl) ≤ d (Pxmi , xmi) < c+

1

n
.

Moreover,

d (Pxni , Pxmi) ≥
(

ε

c+ 1
n

)(
c+

1

n

)
≥
(

ε

c+ 1

)(
c+

1

n

)
.

By uniform convexity of X, there exists δ
(

ε
c+1

)
> 0 such that

d

(
xl,

1

2
Pxni ⊕

1

2
Pxmi

)
≤
(
c+

1

n

)(
1− δ

(
ε

c+ 1

))
.

Let n→∞ in the above inequality, we have

c ≤ d (Pxl, xl) ≤ d
(
xl,

1

2
Pxni ⊕

1

2
Pxmi

)
≤ c

(
1− δ

(
ε

c+ 1

))
< c,

a contradiction.
This proves that {Pxn} is a Cauchy sequence in F. As F is closed, therefore it con-

verges to a point of F.

Recall that a mapping T : C → C is semi-compact if every bounded sequence {xn}
has a convergent subsequence whenever d(xn, Txn)→ 0.

Let f : [0,∞) → [0,∞) be a nondecreasing function with f(0) = 0 and f(t) > 0 for
all t ∈ (0,∞).The mappings S, T : C → C with F 6= φ, satisfy Condition (I) [7] (see also
[17]) if

1

2
[d (x, Tx) + d (x, Sx)] ≥ f(d(x, F )) for x ∈ C,

where d(x, F ) = infp∈F d (x, p) .
Using Lemma 2.3, we obtain the following strong convergence theorem.
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2.6. Theorem. Let C be a nonempty, closed and convex subset of a uniformly convex
complete metric space with continuous convex structure W and let S, T : C → C be
nonexpansive mappings with F 6= φ. If S and T satisfy Condition (I), then the sequence
{xn} defined in (1.2), converges strongly to an element of F.

Proof. By Lemma 2.3, we have

lim
n→∞

d(xn, Sxn) = 0 = lim
n→∞

d(xn, Txn).

Using Condition (I), we get that that limn→∞ d(xn, F ) = 0. For a given ε > 0, there
exists Nε ≥ 1 and yε ∈ F such that d (xn, yε) < ε for all n ≥ Nε.Thus, if εk = 2−k

for k ≥ 1, then corresponding to each εk, there exist Nk ≥ 1 and yk ∈ F such that
d (xn, yk) ≤ εk

4
for all n ≥ Nk. On choosing Nk+1 ≥ Nk for any k ≥ 1,we have that

d (yk, yk+1) ≤ d
(
yk, xNk+1

)
+ d

(
xNk+1 , yk+1

)
<

εk
4

+
εk+1

4
=

3

4
εk+1.

If x ∈ S [yk+1, εk+1] , then

d (x, yk) ≤ d (x, yk+1) + d (yk+1, yk)

< εk+1 +
3

4
εk+1 =

7

4
εk+1 < 2εk+1 = εk.

That is, x ∈ S [yk, εk] .Hence {S [yk, εk] : k ≥ 1} is a decreasing sequence of nonempty,
bounded, closed and convex subsets in a uniformly convex complete metric space and so
∩∞k=1S [yk, εk] 6= ∅ by Theorem 1([19], p. 200). Now there exists a p ∈ X such that

d (yk, p) ≤
1

2k
→ 0 as k →∞.

That is, yk → p. Since F is closed, therefore p ∈ F.
In view of the inequality

d (xn, yk) ≤
εk
4

for all n ≥ Nk,

we get that xn → p.

We can also prove the following strong convergence theorem.

2.7. Theorem. Let C be a closed and convex subset of a uniformly convex complete
metric space X and let S, T : C → C be nonexpansive mappings with F 6= φ. If, either S
or T is semi-compact, then the sequence {xn} defined in (1.2), converges strongly to an
element of F.

2.8. Remark. (1) Our results can be extended for two finite families of nonexpansive
mappings (2) Our results are valid in uniformly convex Banach spaces and CAT (0)
spaces, simultaneously.

Acknowledgement. The author is grateful to King Fahd University of Petroleum &
Minerals for supporting the research project IN121023.
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