Some starlikeness and convexity properties for two new p-valent integral operators

Erhan Deniz*, Esra Deniz and Nizami Mustafa

Abstract

In this paper, we define two new general p-valent integral operators in the unit disc \mathbb{U} and obtain the properties of p-valent starlikeness and p-valent convexity of these integral operators of p-valent functions on some classes of β-uniformly p-valent starlike and β-uniformly p-valent convex functions of complex order and type $\alpha(0 \leq \alpha<p)$. As special cases, the properties of p-valent starlikeness and p-valent convexity of the operators $\int_{0}^{z} p t^{p-1}\left(\frac{f(t)}{t^{p}}\right)^{\delta} d t$ and $\int_{0}^{z} p t^{p-1}\left(\frac{\left.g^{\prime} t\right)}{p t^{p-1}}\right)^{\delta} d t$ are given.

Keywords: Analytic functions; Integral operators; β-uniformly p-valent starlike and β-uniformly p-valent convex functions; Complex order.

2000 AMS Classification: $30 \mathrm{C} 80,30 \mathrm{C} 45$.

Received: 06.05.2015 Accepted: 19.11.2015 Doi: 10.15672/HJMS.20164514281

1. Introduction and Preliminaries

Let \mathcal{A}_{p} denote the class of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}=\{1,2, \ldots,\}), \tag{1.1}
\end{equation*}
$$

which are analytic in the open disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$.
A function $f \in \mathcal{S}_{p}^{*}(\gamma, \alpha)$ is p-valently starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $\alpha(0 \leq \alpha<p)$, that is, $f \in \mathcal{S}_{p}^{*}(\gamma, \alpha)$, if it is satisfies the following condition

$$
\begin{equation*}
\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)\right\}>\alpha \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

[^0]Furthermore, a function $f \in \mathcal{C}_{p}(\gamma, \alpha)$ is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $\alpha(0 \leq \alpha<p)$, that is, $f \in \mathcal{C}_{p}(\gamma, \alpha)$ if it satisfies the following condition;

$$
\begin{equation*}
\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right)\right\}>\alpha \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

In particular cases, for $p=1$ in the classes $\mathcal{S}_{p}^{*}(\gamma, \alpha)$ and $\mathcal{C}_{p}(\gamma, \alpha)$, we obtain the classes $\mathcal{S}^{*}(\gamma, \alpha)$ and $\mathcal{C}(\gamma, \alpha)$ of starlike functions of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $\alpha(0 \leq \alpha<1)$ and convex functions of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $\alpha(0 \leq \alpha<1)$, respectively, which were introduced and studied by Frasin [15]. Also, for $\alpha=0$ in the classes $\mathfrak{S}_{p}^{*}(\gamma, \alpha)$ and $\mathfrak{C}_{p}(\gamma, \alpha)$, we obtain the classes $\mathcal{S}_{p}^{*}(\gamma)$ and $\mathfrak{C}_{p}(\gamma)$, which are called p-valently starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$, respectively. Setting $p=1$ and $\alpha=0$, we obtain the classess $\mathcal{S}^{*}(\gamma)$ and $\mathcal{C}(\gamma)$. The class $\mathcal{S}^{*}(\gamma)$ of starlike functions of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ was defined by Nasr and Aouf (see [21]) while the class $\mathcal{C}(\gamma)$ of convex functions of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ was considered earlier by Wiatrowski (see [27]). Note that $\mathcal{S}_{p}^{*}(1, \alpha)=\mathcal{S}_{p}^{*}(\alpha)$ and $\mathcal{C}_{p}(1, \alpha)=\mathcal{C}_{p}(\alpha)$ are, respectively, the classes of p-valently starlike and p-valently convex functions of order $\alpha(0 \leq \alpha<p)$ in \mathbb{U}. In special cases, $\mathcal{S}_{p}^{*}(0)=\mathcal{S}_{p}^{*}$ and $\mathcal{C}_{p}(0)=\mathcal{C}_{p}$ are, respectively, the familiar classes of p-valently starlike and p-valently convex functions in \mathbb{U}. Also, we note that $\mathcal{S}_{1}^{*}(\alpha)=\mathcal{S}^{*}(\alpha)$ and $\mathcal{C}_{1}(\alpha)=\mathfrak{C}(\alpha)$ are, respectively, the usual classes of starlike and convex functions of order $\alpha(0 \leq \alpha<1)$ in \mathbb{U}. In special cases, $\mathcal{S}_{1}^{*}(0)=\mathcal{S}^{*}$ and $\mathcal{C}_{1}=\mathcal{C}$ are, respectively, the familiar classes of starlike and convex functions in \mathbb{U}.

A function $f \in \beta-\mathcal{U} \mathcal{S}_{p}(\alpha)$ is β-uniformly p-valently starlike of order $\alpha(0 \leq \alpha<p)$, that is, $f \in \beta-\mathcal{U} \mathscr{S}_{p}(\alpha)$ if it is satisfies the following condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|+\alpha \quad(\beta \geq 0, z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

Furthermore, a function $f \in \beta-\mathcal{U}_{p}(\alpha)$ is β-uniformly p-valently convex of order $\alpha(0 \leq \alpha<p)$, that is, $f \in \beta-\mathcal{U}_{p}(\alpha)$ if it satisfies the following condition

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right|+\alpha \quad(\beta \geq 0, z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

These classes generalize various other classes which are worthy to mention here. For example $p=1$, the classes $\beta-\mathcal{U S}(\alpha)$ and $\beta-\mathcal{U}(\alpha)$ introduced by Bharti, Parvatham and Swaminathan (see [2]). Also, the class $\beta-\mathcal{U}_{1}(0)=\beta-\mathcal{U C V}$ is the known class of β-uniformly convex functions [17]. Using the Alexander type relation, we can obtain the class $\beta-\mathcal{U} \mathcal{S}_{p}(\alpha)$ in the following way:

$$
f \in \beta-\mathcal{U} \mathfrak{C}_{p}(\alpha) \Leftrightarrow \frac{z f^{\prime}}{p} \in \beta-\mathcal{U} \mathcal{S}_{p}(\alpha)
$$

The class $1-\mathcal{U}_{1}(0)=U$ UV \mathcal{V} of uniformly convex functions was defined by Goodman [16] while the class $1-\mathcal{U} \mathcal{S}_{1}(0)=\mathcal{S P}$ was considered by Rønning [26].

When the classes $\mathcal{S}_{p}^{*}(\gamma, \alpha)$ with $\beta-\mathcal{U} \mathcal{S}_{p}(\alpha)$ and $\mathfrak{C}_{p}(\gamma, \alpha)$ with $\beta-\mathcal{U} \mathfrak{C}_{p}(\alpha)$ are thought together, we define following classes. Let $0 \leq \alpha<p, \beta \geq 0$ and $\gamma \in \mathbb{C}-\{0\}$. A function $f \in \mathcal{A}_{p}$ is in the class $\beta-\mathcal{U} S_{p}(\gamma, \alpha)$ if and only if for all $z \in \mathbb{U}$

$$
\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)\right\}>\beta\left|\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)\right|+\alpha
$$

and in the class $\beta-\mathcal{U} \mathcal{C}_{p}(\gamma, \alpha)$ if and only if for all $z \in \mathbb{U}$

$$
\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1-p\right)\right\}>\beta\left|\frac{1}{\gamma}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1-p\right)\right|+\alpha .
$$

For $f \in \mathcal{A}_{p}$ given by (1.1) and $g(z)$ given by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=p+1}^{\infty} b_{k} z^{k} \tag{1.6}
\end{equation*}
$$

their convolution (or Hadamard product), denoted by $(f * g)$, is defined as follows

$$
(f * g)(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \quad(z \in \mathbb{U})
$$

For a function f in \mathcal{A}_{p}, in [13], the authors defined the multiplier transformations $\mathcal{D}_{p, \lambda, \mu}^{m}$ as follows.
1.1. Definition. Let $f \in \mathcal{A}_{p}$. For the parameters $\lambda, \mu \in \mathbb{R} ; 0 \leq \mu \leq \lambda$ and $m \in \mathbb{N}_{0}=$ $\mathbb{N} \cup\{0\}$, define the multiplier transformations $\mathcal{D}_{p, \lambda, \mu}^{m}$ on \mathcal{A}_{p} by the following:

$$
\begin{aligned}
\mathcal{D}_{p, \lambda, \mu}^{0} f(z)= & f(z) \\
\mathcal{D}_{p, \lambda, \mu}^{1} f(z)= & \mathcal{D}_{p, \lambda, \mu} f(z) \\
= & \frac{1}{p}\left[\lambda \mu z^{2} f^{\prime \prime}(z)+(\lambda-\mu+(1-p) \lambda \mu) z f^{\prime}(z)+p(1-\lambda+\mu) f(z)\right] \\
& \vdots \\
\mathcal{D}_{p, \lambda, \mu}^{m} f(z)= & \mathcal{D}_{p, \lambda, \mu}\left(\mathcal{D}_{p, \lambda, \mu}^{m-1}\right)
\end{aligned}
$$

for $z \in \mathbb{U}$ and $p \in \mathbb{N}:=\{1,2, \ldots\}$.
If $f(z)$ is given by (1.1), then from the definition of the multiplier transformations $\mathcal{D}_{p, \lambda, \mu}^{m} f(z)$, we can easily see that

$$
\mathcal{D}_{p, \lambda, \mu}^{m} f(z)=z^{p}+\sum_{k=p+1}^{\infty} \Phi_{p}^{k}(m, \lambda, \mu) a_{k} z^{k}
$$

where

$$
\Phi_{p}^{k}(m, \lambda, \mu)=\left[\frac{(k-p)(\lambda \mu k+\lambda-\mu)+p}{p}\right]^{m}
$$

By using the operator $\mathcal{D}_{p, \lambda, \mu}^{m} f(z)\left(m \in \mathbb{N}_{0}\right)$, we introduce the new classes $\beta-\mathcal{U} \mathcal{S}_{p}(m, \lambda, \mu, \gamma, \alpha)$ and $\beta-\mathcal{U} \complement_{p}(m, \lambda, \mu, \gamma, \alpha)$ as follows:

$$
\beta-\mathcal{U} \mathcal{S}_{p}(m, \lambda, \mu, \gamma, \alpha)=\left\{f \in \mathcal{A}_{p}: \mathcal{D}_{p, \lambda, \mu}^{m} f(z) \in \beta-\mathcal{U} \mathcal{S}_{p}(\gamma, \alpha)\right\}
$$

and

$$
\beta-\mathcal{U} \complement_{p}(m, \lambda, \mu, \gamma, \alpha)=\left\{f \in \mathcal{A}_{p}: \mathcal{D}_{p, \lambda, \mu}^{m} f(z) \in \beta-\mathcal{U} \bigodot_{p}(\gamma, \alpha)\right\}
$$

where $f \in \mathcal{A}_{p}, 0 \leq \alpha<p, \beta \geq 0$ and $\gamma \in \mathbb{C}-\{0\}$.
We note that by specializing the parameters m, p, γ, β and α in the classes $\beta-$ $\mathcal{U} \mathcal{S}_{p}(m, \lambda, \mu, \gamma, \alpha)$ and $\beta-\mathcal{U} \complement_{p}(m, \lambda, \mu, \gamma, \alpha)$, these classes are reduced to several wellknown subclasses of analytic functions. For example, for $m=0$ the classes
$\beta-\mathcal{U} \mathcal{S}_{p}(m, \lambda, \mu, \gamma, \alpha)$ and $\beta-\mathcal{U} \complement_{p}(m, \lambda, \mu, \gamma, \alpha)$ are reduced to the classes $\beta-\mathcal{U} \mathcal{S}_{p}(\gamma, \alpha)$ and $\beta-\mathcal{U} \mathcal{C}_{p}(\gamma, \alpha)$, respectively. Someone can find more information about these classes in Cağlar [10], Deniz, Orhan and Sokol [11], Deniz, Cağlar and Orhan [12] and Orhan, Deniz and Raducanu [22].
1.2. Definition. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}$ for all $i=\overline{1, n}$, $n \in \mathbb{N}$. We define the following general integral operators

$$
\mathcal{J}_{n, p, l}^{\delta, \lambda, \mu}\left(f_{1}, f_{2}, \ldots, f_{n}\right): \mathcal{A}_{p}^{n} \rightarrow \mathcal{A}_{p}
$$

$$
\begin{align*}
& \mathcal{J}_{n, p, l}^{\delta, \lambda, \mu}\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z), \\
& \mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}(t)}{t^{p}}\right)^{\delta_{i}} d t \tag{1.7}
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{J}_{n, p, l}^{\delta, \lambda, \mu}\left(g_{1}, g_{2}, \ldots, g_{n}\right): \mathcal{A}_{p}^{n} \rightarrow \mathcal{A}_{p} \\
& \mathcal{J}_{n, p, l}^{\delta, \lambda, \mu}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z) \\
& \mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i}(t)\right)^{\prime}}{p t^{p-1}}\right)^{\delta_{i}} d t \tag{1.8}
\end{align*}
$$

where $f_{i}, g_{i} \in \mathcal{A}_{p}$ for all $i=\overline{1, n}$ and $\mathcal{D}_{p, \lambda, \mu}^{l}$ is defined in Definition 1.1.
1.3. Remark. We note that if $l_{1}=l_{2}=\ldots=l_{n}=0$, then the integral operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is reduced to the operator $F_{p}(z)$ which was studied by Frasin (see [14]). Upon setting $p=1$ in the operator (1.7), we can obtain the integral operator $\mathbb{F}_{n}(z)$ which was studied by Oros G.I. and Oros G.A. (see [23]). For $p=1$ and $l_{1}=l_{2}=\ldots=l_{n}=0$ in (1.7), the integral operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is reduced to the operator $F_{m}(z)$ which was studied by Breaz D. and Breaz N. (see [6]). Observe that when $p=n=1, l_{1}=0$ and $\delta_{1}=\delta$, we obtain the integral operator $I_{\delta}(f)(z)$ which was studied by Pescar and Owa (see [24]), for $\delta_{1}=\delta \in[0,1]$ special case of the operator $I_{\delta}(f)(z)$ was studied by Miller, Mocanu and Reade (see [19]). For $p=n=1, l_{1}=0$ and $\delta_{1}=1$ in (1.7), we have Alexander integral operator $I(f)(z)$ in [1].
1.4. Remark. For $l_{1}=l_{2}=\ldots=l_{n}=0$ in (1.8) the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is reduced to the operator $G_{p}(z)$ which was studied by Frasin (see [14]). For $p=1$ and $l_{1}=l_{2}=\ldots=l_{n}=0$ in (1.8), the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is reduced to the operator $G_{\delta_{1}, \delta_{2}, \ldots, \delta_{m}}(z)$ which was studied by Breaz D., Owa and Breaz N. (see [8]). If $p=n=1$, $l_{1}=0$ and $\delta_{1}=\delta$, we obtain the integral operator $G(z)$ which was introduced and studied by Pfaltzgraff (see [25]) and Kim and Merkes (see [18]).

In this paper, we consider the integral operators $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ and $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ defined by (1.7) and (1.8), respectively, and study their properties on the classes $\beta-\bigcup \mathcal{S}_{p}(m, \lambda, \mu, \gamma, \alpha)$ and $\beta-\mathcal{U} \mathcal{C}_{p}(m, \lambda, \mu, \gamma, \alpha)$. As special cases, the order of p-valently convexity and p-valently starlikeness of the operators $\int_{0}^{z} p t^{p-1}\left(\frac{f(t)}{t^{p}}\right)^{\delta} d t$ and $\int_{0}^{z} p t^{p-1}\left(\frac{\left.g^{\prime} t\right)}{p t^{p-1}}\right)^{\delta} d t$ are given.

2. Convexity of the integral operators $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ and $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$

First, in this section we prove a sufficient condition for the integral operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ to be p-valently convex of complex order.
2.1. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\gamma \in \mathbb{C}-\{0\}$ such that $0<\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right) \leq p, \beta_{i} \geq 0$ and $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{S}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. Then, the integral operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}$ defined by (1.7) is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)$, that is, $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu} \in \mathcal{C}_{p}(\gamma, p-$ $\left.\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)\right)$.

Proof. From the definition (1.7), we observe that $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z) \in \mathcal{A}_{p}$. On the other hand, it is easy to see that

$$
\begin{equation*}
\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}=p z^{p-1} \prod_{i=1}^{n}\left(\frac{\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}(z)}{z^{p}}\right)^{\delta_{i}} . \tag{2.1}
\end{equation*}
$$

Now we differentiate (2.1) logarithmically and we easily obtain

$$
\begin{equation*}
p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime \prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \mu, \mu}(z)\right]^{\prime}}+1-p\right)=p+\sum_{i=1}^{n} \delta_{i}\left(p+\frac{1}{\gamma}\left(\frac{z\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}\right)(z)}-p\right)\right)-p \sum_{i=1}^{n} \delta_{i} \tag{2.2}
\end{equation*}
$$

Then, we calculate the real part of both sides of (2.2) and obtain

$$
\begin{align*}
& \operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime \prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}+1-p\right)\right\} \tag{2.3}\\
= & \sum_{i=1}^{n} \delta_{i} \operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}\right)(z)}-p\right)\right\}-p \sum_{i=1}^{n} \delta_{i}+p .
\end{align*}
$$

Since $\left.f_{i} \in \beta_{i}-\mathcal{U} S_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)\right)$ for all $i=\overline{1, n}$ from (2.3), we have

$$
\begin{align*}
& \operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime \prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}+1-p\right)\right\} \tag{2.4}\\
> & \sum_{i=1}^{n} \frac{\delta_{i} \beta_{i}}{|\gamma|}\left|\frac{z\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}\right)(z)}-p\right|+p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right) .
\end{align*}
$$

Because $\sum_{i=1}^{n} \frac{\delta_{i} \beta_{i}}{|\gamma|}\left|\frac{z\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}\right)(z)}-p\right|>0$, from (2.4), we obtain

$$
\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime \prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}+1-p\right)\right\}>p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)
$$

Therefore, the operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)$. The proof of Theorem 2.1 is completed.

2.2. Remark.

(1) Letting $\gamma=1$ and $l_{i}=0$ for all $i=\overline{1, n}$ in Theorem 2.1, we obtain Theorem 2.1 in [14].
(2) Letting $p=1, \gamma=1$ and $l_{i}=0$ for all $i=\overline{1, n}$ in Theorem 2.1, we obtain Theorem 1 in [4].
(3) Letting $p=1, \gamma=1$ and $\alpha_{i}=l_{i}=0$ for all $i=\overline{1, n}$ in Theorem 2.1, we obtain Theorem 2.5 in [7].
(4) Letting $p=1, \beta=0$ and $l_{i}=0$ for all $i=\overline{1, n}$ in Theorem 2.1, we obtain Theorem 1 in [3].
(5) Letting $p=1, \beta=0, \alpha_{i}=\alpha$ and $l_{i}=0$ for all $i=\overline{1, n}$ in Theorem 2.1, we obtain Theorem 1 in [9].
(6) Letting $p=1, \beta=0, \alpha_{i}=0$ and $l_{i}=0$ for all $i=\overline{1, n}$ in Theorem 2.1, we obtain Theorem 1 in [5].

Putting $n=1, l_{1}=0, \delta_{1}=\delta, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $f_{1}=f$ in Theorem 2.1, we have
2.3. Corollary. Let $\delta>0,0 \leq \alpha<p, \beta \geq 0, \gamma \in \mathbb{C}-\{0\}$ and $f \in \beta-\mathcal{U} \mathcal{S}_{p}(\gamma, \alpha)$. If $\delta \in(0, p /(p-\alpha)]$, then $\int_{0}^{z} p t^{p-1}\left(\frac{f(t)}{t^{p}}\right)^{\delta} d t$ is convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p-\delta(p-\alpha)$ in \mathbb{U}.
2.4. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\beta_{i} \geq 0, \gamma \in \mathbb{C}-\{0\}$ and $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{S}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. If

$$
\begin{equation*}
\left|\frac{z\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i}\right)(z)}-p\right|>-\frac{p+\sum_{i=1}^{n} \delta_{i}\left(\alpha_{i}-p\right)}{\sum_{i=1}^{n} \frac{\delta_{i} \beta_{i}}{|\gamma|}} \tag{2.5}
\end{equation*}
$$

for all $i=\overline{1, n}$, then the integral operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ defined by (1.7) is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.

Proof. From (2.4) and (2.5), we easily get $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is p-valently convex of complex order γ.

From Theorem 2.4, we easily get
2.5. Corollary. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p, \beta_{i} \geq 0$, $\gamma \in \mathbb{C}-\{0\}$ and $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{S}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. If $\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i} \in \mathcal{S}_{p}^{*}(\sigma)$, where $\sigma=p-\left(p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)\right) / \sum_{i=1}^{n} \frac{\delta_{i} \beta_{i}}{|\gamma|} ; 0 \leq \sigma<p$ for all $i=\overline{1, n}$, then the integral operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is $p-$ valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.

Putting $n=1, l_{1}=0, \delta_{1}=\delta, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $f_{1}=f$ in Corollary 2.5, we have
2.6. Corollary. Let $\delta>0,0 \leq \alpha<p, \beta>0, \gamma \in \mathbb{C}-\{0\}$ and $f \in \mathcal{S}_{p}^{*}(\rho)$ where $\rho=$ $[\delta(p \beta+(p-\alpha)|\gamma|)-p|\gamma|] / \delta \beta ; 0 \leq \rho<p$, then the integral operator $\int_{0}^{z} p t^{p-1}\left(\frac{f(t)}{t^{p}}\right)^{\delta} d t$ is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ in \mathbb{U}.

Next, we give a sufficient condition for the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ to be p-valently convex of complex order.
2.7. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\gamma \in \mathbb{C}-\{0\}$ such that $0<\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right) \leq p, \beta_{i} \geq 0$ and $g_{i} \in \beta_{i}-\mathcal{U} \mathcal{C}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. Then, the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}$ defined by (1.8) is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)$, that is, $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu} \in \mathcal{C}_{p}(\gamma, p-$ $\left.\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)\right)$.

Proof. From the definition (1.8), we observe that $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z) \in \mathcal{A}_{p}$. On the other hand, it is easy to see that

$$
\begin{equation*}
\left[\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}=p z^{p-1} \prod_{i=1}^{n}\left(\frac{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i}(z)\right)^{\prime}}{p z^{p-1}}\right)^{\delta_{i}} \tag{2.6}
\end{equation*}
$$

Now, we differentiate (2.6) logarithmically and then do some simple calculations, we have

$$
\begin{align*}
& \operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime \prime}}{\left[\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}+1-p\right)\right\} \tag{2.7}\\
& =\sum_{i=1}^{n} \delta_{i} \operatorname{Re}\left\{p+\frac{1}{\gamma}\left(1+\frac{z\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i}\right)^{\prime}(z)}-p\right)\right\}-p \sum_{i=1}^{n} \delta_{i}+p .
\end{align*}
$$

Since $g_{i} \in \beta_{i}-\mathcal{U} \bigodot_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$ from (2.7), we have

$$
\begin{align*}
& \operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime \prime}}{\left[\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}+1-p\right)\right\} \tag{2.8}\\
> & p-p \sum_{i=1}^{n} \delta_{i}+\sum_{i=1}^{n} \delta_{i}\left\{\beta_{i}\left|\frac{1}{\gamma}\left(\frac{z\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i}\right)^{\prime}(z)}+1-p\right)\right|+\alpha_{i}\right\} \\
= & p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)+\sum_{i=1}^{n} \frac{\delta_{i} \beta_{i}}{|\gamma|}\left|\frac{z\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i}\right)^{\prime}(z)}+1-p\right| \\
> & p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right) .
\end{align*}
$$

Therefore, the operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)$. This evidently completes the proof of Theorem 2.7.

2.8. Remark.

(1) Letting $\gamma=1$ and $l_{i}=0$ for all $i=\overline{1, n}$ in Theorem 2.7, we obtain Theorem 3.1 in [14].
(2) Letting $p=1, \beta=0$ and $l_{i}=0$ for all $i=\overline{1, n}$ in Theorem 2.7, we obtain Theorem 3 in [3].
(3) Letting $p=1, \beta=0, \alpha_{i}=\mu$ and $l_{i}=0$ for all $i=\overline{1, n}$ in Theorem 2.7, we obtain Theorem 3 in [9].
(4) Letting $p=1, \beta=0, \alpha_{i}=0$ and $l_{i}=0$ for all $i=\overline{1, n}$ in Theorem 2.7, we obtain Theorem 2 in [5].

Putting $n=1, l_{1}=0, \delta_{1}=\delta, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $g_{1}=g$ in Theorem 2.7, we have
2.9. Corollary. Let $\delta>0,0 \leq \alpha<p, \beta \geq 0, \gamma \in \mathbb{C}-\{0\}$ and $g \in \beta-\mathcal{U}_{p}(\gamma, \alpha)$. If $\delta \in(0, p /(p-\alpha)]$, then $\int_{0}^{z} p t^{p-1}\left(\frac{\left.g^{\prime} t\right)}{p t^{p-1}}\right)^{\delta} d t$ is $p-v a l e n t l y ~ c o n v e x ~ o f ~ c o m p l e x ~ o r d e r ~$ $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p-\delta(p-\alpha)$ in \mathbb{U}.
2.10. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\beta_{i} \geq 0, \gamma \in \mathbb{C}-\{0\}$ and $g_{i} \in \beta_{i}-\mathcal{U} \bigodot_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. If

$$
\begin{equation*}
\left|\frac{z\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i}\right)^{\prime}(z)}+1-p\right|>-\frac{p+\sum_{i=1}^{n} \delta_{i}\left(\alpha_{i}-p\right)}{\sum_{i=1}^{n} \frac{\delta_{i} \beta_{i}}{|\gamma|}} \tag{2.9}
\end{equation*}
$$

for all $i=\overline{1, n}$, then the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ defined by (1.8) is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.

Proof. From (2.8) and (2.9), we easily get $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is p-valently convex of complex order γ.

From Theorem 2.10, we easily get
2.11. Corollary. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\beta_{i} \geq 0, \gamma \in \mathbb{C}-\{0\}$ and $g_{i} \in \beta_{i}-\mathcal{U} \mathcal{C}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. If $\mathcal{D}_{p, \lambda, \mu}^{l_{i}} g_{i} \in \mathcal{C}_{p}(\sigma)$, where $\sigma=p-\left(p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)\right) / \sum_{i=1}^{n} \frac{\delta_{i} \beta_{i}}{|\gamma|} ; 0 \leq \sigma<p$ for all $i=\overline{1, n}$, then the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.

Putting $n=1, l_{1}=0, \delta_{1}=\delta, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $g_{1}=g$ in Corollary 2.11, we have
2.12. Corollary. Let $\delta>0,0 \leq \alpha<p, \beta>0, \gamma \in \mathbb{C}-\{0\}$ and $g \in \mathcal{C}(\rho)$ where $\rho=$ $[\delta(p \beta+(p-\alpha)|\gamma|)-p|\gamma|] / \delta \beta ; 0 \leq \rho<p$, then the integral operator $\int_{0}^{z} p t^{p-1}\left(\frac{\left.g^{\prime} t\right)}{p t^{p-1}}\right)^{\delta} d t$ is convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ in \mathbb{U}.

3. Starlikeness of the integral operators $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ and $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$

In this section, we will give the sufficient conditions for the integral operators $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}$ and $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ to be p-valently starlike of complex order.
Let

$$
\begin{aligned}
& H(\mathbb{U})=\{f: \mathbb{U} \rightarrow \mathbb{C}: f \text { analytic }\} \\
& H[a, n]=\left\{f \in H(\mathbb{U}): f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots, \quad z \in \mathbb{U}, a \in \mathbb{C}, n \in \mathbb{N}_{0}\right\} .
\end{aligned}
$$

In order to prove our main results, we shall need the following lemma due to S. S. Miller and P. T. Mocanu [20].
3.1. Lemma. Let the function $\psi: \mathbb{C}^{2} \times \mathbb{U} \rightarrow \mathbb{U}$ satisfy
$\operatorname{Re} \psi(i \rho, \sigma ; z) \leq 0$
for all $\rho, \sigma \in \mathbb{R}, n \geq 1$ with $\sigma \leq-\frac{n}{2}\left(1+\rho^{2}\right)$. If $P \in H[1, n]$ and $\operatorname{Re} \psi\left(P(z), z P^{\prime}(z) ; z\right)>0$ for every $z \in \mathbb{U}$, then
$\operatorname{Re} P(z)>0$.
3.2. Lemma. Let $n \in \mathbb{N}, \kappa \in \mathbb{R}, u, v \in \mathbb{C}$ such that $\operatorname{Im} v \leq 0, \operatorname{Re}(u-\kappa v) \geq 0$. Assume the following condition

$$
\operatorname{Re}\left\{P(z)+\frac{z P^{\prime}(z)}{u-v P(z)}\right\}>\kappa, \quad(z \in \mathbb{U})
$$

is satisfy such that $P \in H[P(0), n], P(0) \in \mathbb{R}$ and $P(0)>\kappa$. Then,
$\operatorname{Re} P(z)>\kappa, \quad(z \in \mathbb{U})$.
Proof. Firstly, we consider the function $R: \mathbb{U} \rightarrow \mathbb{C}$,

$$
R(z)=\frac{P(z)-\kappa}{P(0)-\kappa} .
$$

Then, $R(z) \in H[1, n]$. Furthermore, since $P(0)-\kappa>0$ and

$$
\operatorname{Re}\left\{P(z)+\frac{z P^{\prime}(z)}{u-v P(z)}\right\}>\kappa, \quad(z \in \mathbb{U})
$$

we have

$$
\operatorname{Re}\left\{R(z)+\frac{z R^{\prime}(z)}{u-v \kappa-v(P(0)-\kappa) R(z)}\right\}>0, \quad(z \in \mathbb{U})
$$

Now, we define the function ψ as follows

$$
\psi\left(R(z), z R^{\prime}(z) ; z\right)=R(z)+\frac{z R^{\prime}(z)}{u-v \kappa-v(P(0)-\kappa) R(z)} .
$$

Thus,

$$
\operatorname{Re} \psi\left(R(z), z R^{\prime}(z) ; z\right)>0
$$

Now, so then we can use Lemma 3.1, we must show that the following condition

$$
\operatorname{Re} \psi(i \rho, \sigma ; z) \leq 0
$$

is satisfied for $\rho \leq 0, \sigma \leq-\frac{1+\rho^{2}}{2}$ and $z \in \mathbb{U}$. Indeed, from hypothesis, we obtain

$$
\begin{aligned}
\operatorname{Re} \psi(i \rho, \sigma ; z) & =\operatorname{Re} \frac{\sigma}{u-v \kappa-v(P(0)-\kappa) \rho i} \\
& =\operatorname{Re} \frac{\sigma}{u_{1}+i u_{2}-\left(v_{1}+i v_{2}\right) \kappa-\left(v_{1}+i v_{2}\right)(P(0)-\kappa) \rho i} \\
& =\frac{\sigma\left[u_{1}-v_{1} \kappa+v_{2} \rho(P(0)-\kappa)\right]}{\left[u_{1}-v_{1} \kappa+v_{2} \rho(P(0)-\kappa)\right]^{2}+\left[u_{2}-v_{2} \kappa+v_{1} \rho(P(0)-\kappa)\right]^{2}} \leq 0 .
\end{aligned}
$$

Hence, from Lemma 3.1, we get $\operatorname{Re} R(z)>0$. Moreover, from the definition of $R(z)$, we obtain

$$
\operatorname{Re} P(z)>\kappa, \quad(z \in \mathbb{U})
$$

Now, we prove the following theorem using Lemma 3.2
3.3. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\gamma \in \mathbb{C}-\{0\}$ such that $0<\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right) \leq p, \operatorname{Im} \gamma \geq 0, \operatorname{Re} \gamma \leq \frac{p}{\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)}$, $\beta_{i} \geq 0$ and $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{S}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. Then, the integral operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}$ defined by (1.7) is p-valently starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)$, that is, $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu} \in \mathcal{S}_{p}^{*}\left(\gamma, p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)\right)$.
Proof. We define the analytic function $q: \mathbb{U} \rightarrow \mathbb{C}, q(0)=p$ as follows

$$
q(z)=p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]}-p\right)
$$

Thus, we obtain

$$
\begin{aligned}
& p+\gamma(q(z)-p)=\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]} \\
& \Rightarrow \frac{\gamma z q^{\prime}(z)}{p(1-\gamma)+\gamma q(z)}=1+\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime \prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}-\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}} \\
& \Rightarrow \quad p+\gamma(q(z)-p)+\frac{\gamma z q^{\prime}(z)}{p(1-\gamma)+\gamma q(z)}=1+\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime \prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}} \\
& \Rightarrow \quad q(z)+\frac{z q^{\prime}(z)}{p(1-b)+b q(z)}=p+\frac{1}{\gamma}\left[1-p+\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime \prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}\right]
\end{aligned}
$$

When we consider this last equality and the inequality (2.2), we can write

$$
q(z)+\frac{z q^{\prime}(z)}{p(1-\gamma)+\gamma q(z)}=p+\sum_{i=1}^{n} \delta_{i}\left(p+\frac{1}{\gamma}\left(\frac{z\left(D_{p, \lambda, \mu}^{l_{i}} f_{i}\right)^{\prime}(z)}{D_{p, \lambda, \mu}^{l_{i}} f_{i}(z)}-p\right)\right)-p \sum_{i=1}^{n} \delta_{i}
$$

Similarly to the proof of Theorem 2.1, it can be easly seen that

$$
\operatorname{Re}\left\{q(z)+\frac{z q^{\prime}(z)}{p(1-\gamma)+\gamma q(z)}\right\}>p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)
$$

Here, $q(0)=p>p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)$ and the function q is analytic on \mathbb{U}. Also, when we write $\kappa=p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right), u=p(1-\gamma)$ and $v=-\gamma$, we find $\operatorname{Im} v \leq 0$ and $\operatorname{Re}(u-\kappa v) \geq 0$. Hence, all the conditions of Lemma 3.1 are satisfied and so

$$
\operatorname{Re} q(z)=\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]^{\prime}}{\left[\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)\right]}-p\right)\right\}>p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)
$$

Thus, the proof of the theorem is completed.
Putting $n=1, l_{1}=0, \delta_{1}=\delta, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $f_{1}=f$ in Theorem 3.3, we have
3.4. Corollary. Let $\delta>0,0 \leq \alpha<p, \beta \geq 0, \gamma \in \mathbb{C}-\{0\}$, $\operatorname{Im} \gamma \geq 0$, $\operatorname{Re} \gamma \leq \frac{p}{\delta(p-\alpha)}$ and $f \in \beta-\mathcal{U} \mathcal{S}_{p}(\gamma, \alpha)$. If $\delta \in\left(0, \frac{p}{p-\alpha}\right]$ then $\int_{0}^{z} p t^{p-1}\left(\frac{f(t)}{t^{p}}\right)^{\delta} d t \in \mathcal{S}_{p}^{*}(\gamma, p-\delta(p-\alpha))$.

From Theorem 3.3, we obtain the following result.
3.5. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\gamma \in \mathbb{C}-\{0\}$ such that $0<\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right) \leq p, \operatorname{Im} \gamma \geq 0, \operatorname{Re} \gamma \leq \frac{p}{\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)}, \beta_{i} \geq 0$ and $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{S}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. If the inequality (2.5) is satisfied for all $i=\overline{1, n}$, then the integral operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ defined by (1.7) is p-valently starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.
From Theorem 3.5, we get the following result.
3.6. Corollary. Let $l=\left(l_{1}, l_{2}, \ldots l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\gamma \in \mathbb{C}-\{0\}$ such that $0<\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right) \leq p$, $\operatorname{Im} \gamma \geq 0$, $\operatorname{Re} \gamma \leq \frac{p}{\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)}$, $\beta_{i} \geq 0$ and $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{S}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. If $\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i} \in \mathcal{S}_{p}^{*}(\sigma)$, where $\sigma=p-\left(p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)\right) / \sum_{i=1}^{n} \frac{\delta_{i} \beta_{i}}{|\gamma|} ; 0 \leq \sigma<p$ for all $i=\overline{1, n}$, then the integral operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is $p-$ valently starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.
Next, we give a sufficient condition for the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ to be p-valently starlike of complex order.
3.7. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\gamma \in \mathbb{C}-\{0\}$ such that $0<\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right) \leq p$, $\operatorname{Im} \gamma \geq 0$, $\operatorname{Re} \gamma \leq \frac{p}{\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)}$, $\beta_{i} \geq 0$ and $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{C}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. Then, the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}$ defined by (1.8) is p-valently starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)$, that is, $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu} \in \mathcal{S}_{p}^{*}\left(\gamma, p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)\right)$.
Proof. Let us define the analytic function $q: \mathbb{U} \rightarrow \mathbb{C}$ given by

$$
q(z)=p+\frac{1}{\gamma}\left(\frac{z\left(\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)\right)^{\prime}}{\left(\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)\right)}-p\right)
$$

Then, we follow the same steps as in the proof of Theorem 3.3, so we omit the details involved in this case.

Putting $n=1, l_{1}=0, \delta_{1}=\delta, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $g_{1}=g$ in Theorem 3.7, we have
3.8. Corollary. Let $\delta>0,0 \leq \alpha<p, \beta \geq 0, \gamma \in \mathbb{C}-\{0\}$, $\operatorname{Im} \gamma \geq 0, \operatorname{Re} \gamma \leq \frac{p}{\delta(p-\alpha)}$ and $f \in \beta-$ U $_{p}(\gamma, \alpha)$. If $\delta \in\left(0, \frac{p}{p-\alpha}\right]$, then $\int_{0}^{z} p t^{p-1}\left(\frac{g^{\prime}(t)}{p t^{p-1}}\right)^{\delta} d t \in \mathcal{S}_{p}^{*}(\gamma, p-\delta(p-\alpha))$.

From Theorem 3.7, we obtain the following result.
3.9. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\gamma \in \mathbb{C}-\{0\}$ such that $0<\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right) \leq p, \operatorname{Im} \gamma \geq 0, \operatorname{Re} \gamma \leq \frac{p}{\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)}, \beta_{i} \geq 0$ and $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{S}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. If the inequality (2.9) is satisfied for all $i=\overline{1, n}$, then the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ defined by (1.8) is p-valently starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.

We obtain the following corollary using Theorem 3.9.
3.10. Corollary. Let $l=\left(l_{1}, l_{2}, \ldots l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha_{i}<p$, $\gamma \in \mathbb{C}-\{0\}$ such that $0<\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right) \leq p, \operatorname{Im} \gamma \geq 0, \operatorname{Re} \gamma \leq \frac{p}{\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)}$, $\beta_{i} \geq 0$ and $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{S}_{p}\left(l_{i}, \lambda, \mu, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, n}$. If $\mathcal{D}_{p, \lambda, \mu}^{l_{i}} f_{i} \in \mathcal{C}_{p}(\sigma)$, where $\sigma=p-\left(p-\sum_{i=1}^{n} \delta_{i}\left(p-\alpha_{i}\right)\right) / \sum_{i=1}^{n} \frac{\delta_{i} \beta_{i}}{|\gamma|} ; 0 \leq \sigma<p$ for all $i=\overline{1, n}$, then the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ is $p-$ valently starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.

References

[1] Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics. 17 (1), 12-22, 1915.
[2] Bharti, R., Parvatham, R. and Swaminathan, A. On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1), 17-32, 1997.
[3] Bulut, S. A note on the paper of Breaz and Guney, J. Math. Ineq. 2(4), 549-553, 2008.
[4] Breaz, D. A convexity properties for an integral operator on the classes $S_{p}(\alpha)$, Gen. Math. 15 (2-3), 177-183, 2007.
[5] Breaz, D., Aouf, M. K. and Breaz, N. Some properties for integral operators on some analytic functions with complex order, Acta. Math. Acad. Paedagog. Nyhazi. 25, 39-43, 2009.
[6] Breaz, D. and Breaz, N. Two integral operators, Stud. Univ. Babes -Bolyai Math. 47 (3), 13-19, 2002.
[7] Breaz, D. and Breaz, N. Some convexity properties for a general integral operator, J. Ineq. Pure Appl. Math. 7 (5), Art. 177, 2006.
[8] Breaz, D., Owa, S. and Breaz, N. A new integral univalent operator, Acta Univ. Apulensis Math. Inform. 16, 11-16, 2008.
[9] Breaz, D. and Guney, H. C. The integral operator on the classes $S_{\alpha}^{*}(b)$ and $C_{\alpha}(b)$, J. Math. Ineq. 2 (1), 97-100, 2008.
[10] Cağlar, M. The relationships between p-valent functions and univalent functions, An. St. Univ. Ovidius Constanta. 23 (1), 65-72, 2015.
[11] Deniz, E., Orhan, H. and Sokol J. Classes of analytic functions defined by a differential operator related to conic domains. Ukrainan Mat. J. 67 (9), 1367-1385, 2016.
[12] Deniz, E., Cağlar M. and Orhan, H. Some convexity properties for two new p-valent integral, Hacet. J. Math. Stat. 40 (6), 829 - 837, 2011.
[13] Deniz, E. and Orhan, H. Certain subclasses of multivalent defined by new multiplier transformations, Arab. J. Sci. Eng. 36, 1091-1112, 2011.
[14] Frasin, B. A. Convexity of integral operators of p-valent functions, Math. Comput. Model. 51, 601-605, 2010.
[15] Frasin, B. A. Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny. 22, 179-191, 2006.
[16] Goodman, A.W. On uniformly convex functions, Ann. Polon. Math. 56, 87-92, 1991.
[17] Kanas, S. and Wisniowska, A. Conic regions and k-uniform convexity, Comput. Appl. Math. 105, 327-336, 1999.
[18] Kim, Y. J. and Merkes, E. P. On an integral of powers of a spirallike function, Kyungpook Math. J. 12, 249-252, 1972.
[19] Miller, S. S., Mocanu, P. T. and Reade, M. O. Starlike integral operators, Pacific J. Math. 79 (1), 157-168, 1978.
[20] S. S. Miller and P. T. Mocanu, Second order deferential inequalities in the complex plane, J. Math. Anal. Appl., 65, 289-305, 1978.
[21] Nasr, M. A. and Aouf, M. K. Starlike function of complex order, J. Natur. Sci. Math. 25 (1), 1-12, 1985.
[22] Orhan, H., Deniz, E. and Raducanu, D. The Fekete-Szego problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 59 (1), 283-295, 2010.
[23] Oros, G. I. and Oros, G. A convexity property for an Integral Operator \mathbb{F}_{m}, Stud. Univ. Babes -Bolyai Math. 55 (3), 169-177, 2010.
[24] Pescar, V. and Owa, S. Sufficient conditions for univalence of certain integral operators, Indian J. Math. 42 (3), 347-35, 2000.
[25] Pfaltzgraff, J. A. Univalence of the integral of $\left(f^{\prime}(z)\right)^{\lambda}$, Bull. London Math. Soc. 7 (3), 254-256, 1975.
[26] Rønning, F. On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-SkÃlodowska Sect. A. 45 (14), 117-122, 1991.
[27] Wiatrowski, P. The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw.Lodz. Nauki Mat. Pryrod. Ser. 3, 75-85, 1971.

[^0]: * Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100, Kars, Turkey.
 Email : edeniz36@gmail.com (Erhan Deniz)
 Email : edeniz@atauni.edu.tr (Esra Deniz)
 Email : nizamimustafa@gmail.com (Nizami Mustafa)

