\int Hacettepe Journal of Mathematics and Statistics Volume 45 (5) (2016), 1367–1378

Some starlikeness and convexity properties for two new p-valent integral operators

Erhan Deniz^{*}, Esra Deniz and Nizami Mustafa

Abstract

In this paper, we define two new general p-valent integral operators in the unit disc \mathbb{U} and obtain the properties of p-valent starlikeness and p-valent convexity of these integral operators of p-valent functions on some classes of β -uniformly p-valent starlike and β -uniformly p-valent convex functions of complex order and type α ($0 \le \alpha < p$). As special cases, the properties of p-valent starlikeness and p-valent convexity of the operators $\int_0^z pt^{p-1} \left(\frac{f(t)}{t^p}\right)^{\delta} dt$ and $\int_0^z pt^{p-1} \left(\frac{g't}{pt^{p-1}}\right)^{\delta} dt$ are given.

Keywords: Analytic functions; Integral operators; β -uniformly p-valent starlike and β -uniformly p-valent convex functions; Complex order.

2000 AMS Classification: 30C80, 30C45.

 $Received: \ 06.05.2015 \quad Accepted: \ 19.11.2015 \quad Doi: \ 10.15672/HJMS.20164514281$

1. Introduction and Preliminaries

Let \mathcal{A}_p denote the class of the form

(1.1)
$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (p \in \mathbb{N} = \{1, 2, ..., \}),$$

which are analytic in the open disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$.

A function $f \in S_p^*(\gamma, \alpha)$ is *p*-valently starlike of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ and type $\alpha (0 \le \alpha < p)$, that is, $f \in S_p^*(\gamma, \alpha)$, if it is satisfies the following condition

(1.2)
$$\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{zf'(z)}{f(z)}-p\right)\right\} > \alpha \quad (z \in \mathbb{U}).$$

^{*}Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100, Kars, Turkey.

Email: edeniz36@gmail.com (Erhan Deniz)

Email : edeniz@atauni.edu.tr (Esra Deniz)

Email: nizamimustafa@gmail.com (Nizami Mustafa)

Furthermore, a function $f \in \mathcal{C}_p(\gamma, \alpha)$ is p-valently convex of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ and type $\alpha (0 \le \alpha < p)$, that is, $f \in \mathcal{C}_p(\gamma, \alpha)$ if it satisfies the following condition;

In particular cases, for p = 1 in the classes $S_p^*(\gamma, \alpha)$ and $\mathcal{C}_p(\gamma, \alpha)$, we obtain the classes $\mathcal{S}^*(\gamma, \alpha)$ and $\mathcal{C}(\gamma, \alpha)$ of starlike functions of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type α ($0 \le \alpha < 1$) and convex functions of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type $\alpha (0 \leq \alpha < 1)$, respectively, which were introduced and studied by Frasin [15]. Also, for $\alpha = 0$ in the classes $S_p^*(\gamma, \alpha)$ and $\mathcal{C}_p(\gamma, \alpha)$, we obtain the classes $S_p^*(\gamma)$ and $\mathcal{C}_p(\gamma)$, which are called *p*-valently starlike of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ and *p*-valently convex of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$, respectively. Setting p = 1 and $\alpha = 0$, we obtain the classess $S^*(\gamma)$ and $\mathcal{C}(\gamma)$. The class $S^*(\gamma)$ of starlike functions of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ was defined by Nasr and Aouf (see [21]) while the class $\mathcal{C}(\gamma)$ of convex functions of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ was considered earlier by Wiatrowski (see [27]). Note that $S_p^*(1,\alpha) = S_p^*(\alpha)$ and $C_p(1,\alpha) = C_p(\alpha)$ are, respectively, the classes of *p*-valently starlike and *p*-valently convex functions of order $\alpha (0 \le \alpha < p)$ in U. In special cases, $S_p^*(0) = S_p^*$ and $\mathcal{C}_p(0) = \mathcal{C}_p$ are, respectively, the familiar classes of p-valently starlike and p-valently convex functions in U. Also, we note that $S_1^*(\alpha) = S^*(\alpha)$ and $\mathcal{C}_1(\alpha) = \mathcal{C}(\alpha)$ are, respectively, the usual classes of starlike and convex functions of order $\alpha (0 \leq \alpha < 1)$ in U. In special cases, $S_1^*(0) = S^*$ and $C_1 = C$ are, respectively, the familiar classes of starlike and convex functions in U.

A function $f \in \beta - \mathfrak{US}_p(\alpha)$ is β -uniformly p-valently starlike of order α ($0 \le \alpha < p$), that is, $f \in \beta - \mathfrak{US}_p(\alpha)$ if it is satisfies the following condition

(1.4)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \beta \left|\frac{zf'(z)}{f(z)} - p\right| + \alpha \quad (\beta \ge 0, \ z \in \mathbb{U}).$$

Furthermore, a function $f \in \beta - \mathcal{UC}_p(\alpha)$ is β -uniformly *p*-valently convex of order $\alpha (0 \leq \alpha < p)$, that is, $f \in \beta - \mathcal{UC}_p(\alpha)$ if it satisfies the following condition

(1.5)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \beta \left|1 + \frac{zf''(z)}{f'(z)} - p\right| + \alpha \quad (\beta \ge 0, \ z \in \mathbb{U}).$$

These classes generalize various other classes which are worthy to mention here. For example p = 1, the classes $\beta - \mathcal{US}(\alpha)$ and $\beta - \mathcal{UC}(\alpha)$ introduced by Bharti, Parvatham and Swaminathan (see [2]). Also, the class $\beta - \mathcal{UC}_1(0) = \beta - \mathcal{UCV}$ is the known class of β -uniformly convex functions [17]. Using the Alexander type relation, we can obtain the class $\beta - \mathcal{US}_p(\alpha)$ in the following way:

$$f \in \beta - \mathfrak{UC}_p(\alpha) \Leftrightarrow \frac{zf'}{p} \in \beta - \mathfrak{US}_p(\alpha)$$

The class $1 - \mathcal{UC}_1(0) = \mathcal{UCV}$ of uniformly convex functions was defined by Goodman [16] while the class $1 - \mathcal{US}_1(0) = S\mathcal{P}$ was considered by Rønning [26].

When the classes $S_p^*(\gamma, \alpha)$ with $\beta - \mathcal{U}S_p(\alpha)$ and $C_p(\gamma, \alpha)$ with $\beta - \mathcal{U}C_p(\alpha)$ are thought together, we define following classes. Let $0 \leq \alpha < p, \beta \geq 0$ and $\gamma \in \mathbb{C} - \{0\}$. A function $f \in \mathcal{A}_p$ is in the class $\beta - \mathcal{U}S_p(\gamma, \alpha)$ if and only if for all $z \in \mathbb{U}$

$$\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{zf'(z)}{f(z)}-p\right)\right\} > \beta \left|\frac{1}{\gamma}\left(\frac{zf'(z)}{f(z)}-p\right)\right| + c$$

and in the class $\beta - \mathcal{UC}_p(\gamma, \alpha)$ if and only if for all $z \in \mathbb{U}$

$$\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{zf''(z)}{f'(z)}+1-p\right)\right\} > \beta \left|\frac{1}{\gamma}\left(\frac{zf''(z)}{f'(z)}+1-p\right)\right|+\alpha.$$

For $f \in \mathcal{A}_p$ given by (1.1) and g(z) given by

(1.6)
$$g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k$$

their convolution (or Hadamard product), denoted by (f * g), is defined as follows

$$(f * g)(z) = z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k = (g * f)(z) \quad (z \in \mathbb{U}).$$

For a function f in \mathcal{A}_p , in [13], the authors defined the *multiplier transformations* $\mathcal{D}_{p,\lambda,\mu}^m$ as follows.

1.1. Definition. Let $f \in \mathcal{A}_p$. For the parameters $\lambda, \mu \in \mathbb{R}$; $0 \le \mu \le \lambda$ and $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, define the multiplier transformations $\mathcal{D}_{p,\lambda,\mu}^m$ on \mathcal{A}_p by the following:

$$\mathcal{D}_{p,\lambda,\mu}^{0}f(z) = f(z)$$

$$\mathcal{D}_{p,\lambda,\mu}^{1}f(z) = \mathcal{D}_{p,\lambda,\mu}f(z)$$

$$= \frac{1}{p} \left[\lambda\mu z^{2}f''(z) + (\lambda - \mu + (1-p)\lambda\mu)zf'(z) + p(1-\lambda+\mu)f(z)\right]$$

$$\vdots$$

$$\begin{split} \mathcal{D}_{p,\lambda,\mu}^m f(z) &= \mathcal{D}_{p,\lambda,\mu} \left(\mathcal{D}_{p,\lambda,\mu}^{m-1} \right) \\ \text{for } z \in \mathbb{U} \text{ and } p \in \mathbb{N} := \{1,2,\ldots\}. \end{split}$$

If f(z) is given by (1.1), then from the definition of the multiplier transformations $\mathcal{D}_{p,\lambda,\mu}^m f(z)$, we can easily see that

$$\mathcal{D}_{p,\lambda,\mu}^{m}f(z) = z^{p} + \sum_{k=p+1}^{\infty} \Phi_{p}^{k}(m,\lambda,\mu)a_{k}z^{k}$$

where

$$\Phi_p^k(m,\lambda,\mu) = \left[\frac{(k-p)(\lambda\mu k + \lambda - \mu) + p}{p}\right]^m.$$

By using the operator $\mathcal{D}_{p,\lambda,\mu}^m f(z)$ $(m \in \mathbb{N}_0)$, we introduce the new classes $\beta - \mathcal{US}_p(m,\lambda,\mu,\gamma,\alpha)$ and $\beta - \mathcal{UC}_p(m,\lambda,\mu,\gamma,\alpha)$ as follows:

$$\beta - \mathfrak{US}_p(m,\lambda,\mu,\gamma,\alpha) = \left\{ f \in \mathcal{A}_p: \ \mathfrak{D}_{p,\lambda,\mu}^m f(z) \in \beta - \mathfrak{US}_p(\gamma,\alpha) \right\}$$

 and

$$\beta - \mathfrak{UC}_p(m,\lambda,\mu,\gamma,\alpha) = \left\{ f \in \mathcal{A}_p : \mathcal{D}_{p,\lambda,\mu}^m f(z) \in \beta - \mathfrak{UC}_p(\gamma,\alpha) \right\}$$

where $f \in \mathcal{A}_p$, $0 \le \alpha < p$, $\beta \ge 0$ and $\gamma \in \mathbb{C} - \{0\}$.

We note that by specializing the parameters m, p, γ, β and α in the classes $\beta - \mathcal{US}_p(m, \lambda, \mu, \gamma, \alpha)$ and $\beta - \mathcal{UC}_p(m, \lambda, \mu, \gamma, \alpha)$, these classes are reduced to several well-known subclasses of analytic functions. For example, for m = 0 the classes

 $\beta - \mathfrak{US}_p(m, \lambda, \mu, \gamma, \alpha)$ and $\beta - \mathfrak{UC}_p(m, \lambda, \mu, \gamma, \alpha)$ are reduced to the classes $\beta - \mathfrak{US}_p(\gamma, \alpha)$ and $\beta - \mathfrak{UC}_p(\gamma, \alpha)$, respectively. Someone can find more information about these classes in Cağlar [10], Deniz, Orhan and Sokol [11], Deniz, Cağlar and Orhan [12] and Orhan, Deniz and Raducanu [22].

1.2. Definition. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$ for all $i = \overline{1, n}$, $n \in \mathbb{N}$. We define the following general integral operators

$$\mathcal{I}_{n,p,l}^{\delta,\lambda,\mu}\left(f_{1},f_{2},...,f_{n}\right):\mathcal{A}_{p}^{n}\to\mathcal{A}_{p}$$

1.7)
$$\mathcal{I}_{n,p,l}^{\delta,\lambda,\mu}(f_1, f_2, ..., f_n) = \mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z),$$
$$\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) = \int_0^z p t^{p-1} \prod_{i=1}^n \left(\frac{\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i(t)}{t^p}\right)^{\delta_i} dt$$

c 1

and

(

$$\mathcal{J}_{n,p,l}^{\delta,\lambda,\mu}\left(g_{1},g_{2},...,g_{n}\right):\mathcal{A}_{p}^{n}\to\mathcal{A}_{p}$$

$$\mathcal{J}_{n,p,l}^{\delta,\lambda,\mu}\left(g_{1},g_{2},...,g_{n}\right) = \mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$$

(1.8)
$$\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z) = \int_0^z p t^{p-1} \prod_{i=1}^n \left(\frac{\left(\mathcal{D}_{p,\lambda,\mu}^{l_i} g_i(t) \right)'}{p t^{p-1}} \right)^{\delta_i} dt$$

where $f_i, g_i \in \mathcal{A}_p$ for all $i = \overline{1, n}$ and $\mathcal{D}_{p,\lambda,\mu}^l$ is defined in Definition 1.1.

1.3. Remark. We note that if $l_1 = l_2 = ... = l_n = 0$, then the integral operator $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is reduced to the operator $F_p(z)$ which was studied by Frasin (see [14]). Upon setting p = 1 in the operator (1.7), we can obtain the integral operator $\mathbb{F}_n(z)$ which was studied by Oros G.I. and Oros G.A. (see [23]). For p = 1 and $l_1 = l_2 = ... = l_n = 0$ in (1.7), the integral operator $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is reduced to the operator $F_m(z)$ which was studied by Breaz D. and Breaz N. (see [6]). Observe that when p = n = 1, $l_1 = 0$ and $\delta_1 = \delta$, we obtain the integral operator $I_{\delta}(f)(z)$ which was studied by Pescar and Owa (see [24]), for $\delta_1 = \delta \in [0, 1]$ special case of the operator $I_{\delta}(f)(z)$ was studied by Miller, Mocanu and Reade (see [19]). For p = n = 1, $l_1 = 0$ and $\delta_1 = 1$ in (1.7), we have Alexander integral operator I(f)(z) in [1].

1.4. Remark. For $l_1 = l_2 = ... = l_n = 0$ in (1.8) the integral operator $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is reduced to the operator $G_p(z)$ which was studied by Frasin (see [14]). For p = 1 and $l_1 = l_2 = ... = l_n = 0$ in (1.8), the integral operator $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is reduced to the operator $G_{\delta_1,\delta_2,...,\delta_m}(z)$ which was studied by Breaz D., Owa and Breaz N. (see [8]). If p = n = 1, $l_1 = 0$ and $\delta_1 = \delta$, we obtain the integral operator G(z) which was introduced and studied by Pfaltzgraff (see [25]) and Kim and Merkes (see [18]).

In this paper, we consider the integral operators $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)$ and $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$ defined by (1.7) and (1.8), respectively, and study their properties on the classes $\beta - \mathcal{US}_p(m,\lambda,\mu,\gamma,\alpha)$ and $\beta - \mathcal{UC}_p(m,\lambda,\mu,\gamma,\alpha)$. As special cases, the order of p-valently convexity and p-valently starlikeness of the operators $\int_0^z pt^{p-1} \left(\frac{f(t)}{t^p}\right)^{\delta} dt$ and $\int_0^z pt^{p-1} \left(\frac{g't}{pt^{p-1}}\right)^{\delta} dt$ are given.

2. Convexity of the integral operators $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)$ and $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$

First, in this section we prove a sufficient condition for the integral operator $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)$ to be p-valently convex of complex order.

2.1. Theorem. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\gamma \in \mathbb{C} - \{0\}$ such that $0 < \sum_{i=1}^n \delta_i (p - \alpha_i) \le p$, $\beta_i \ge 0$ and $f_i \in \beta_i - \mathfrak{US}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. Then, the integral operator $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}$ defined by (1.7) is p-valently convex of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ and type $p - \sum_{i=1}^n \delta_i (p - \alpha_i)$, that is, $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu} \in \mathfrak{C}_p(\gamma, p - \sum_{i=1}^n \delta_i (p - \alpha_i))$.

Proof. From the definition (1.7), we observe that $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \in \mathcal{A}_p$. On the other hand, it is easy to see that

(2.1)
$$\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]' = p z^{p-1} \prod_{i=1}^{n} \left(\frac{\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i(z)}{z^p}\right)^{\delta_i}.$$

Now we differentiate (2.1) logarithmically and we easily obtain

$$p + \frac{1}{\gamma} \left(\frac{z \left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]''}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]'} + 1 - p \right) = p + \sum_{i=1}^{n} \delta_i \left(p + \frac{1}{\gamma} \left(\frac{z \left(\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i \right)'(z)}{\left(\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i \right)(z)} - p \right) \right) - p \sum_{i=1}^{n} \delta_i$$

Then, we calculate the real part of both sides of (2.2) and obtain

(2.3)
$$\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]''}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]'}+1-p\right)\right\}$$
$$=\sum_{i=1}^{n}\delta_{i}\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left(\mathcal{D}_{p,\lambda,\mu}^{l_{i}}f_{i}\right)'(z)}{\left(\mathcal{D}_{p,\lambda,\mu}^{l_{i}}f_{i}\right)(z)}-p\right)\right\}-p\sum_{i=1}^{n}\delta_{i}+p.$$

Since $f_i \in \beta_i - \mathfrak{US}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$ from (2.3), we have

(2.4)
$$\operatorname{Re}\left\{p + \frac{1}{\gamma} \left(\frac{z \left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]''}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]'} + 1 - p\right)\right\}$$
$$> \sum_{i=1}^{n} \frac{\delta_{i}\beta_{i}}{|\gamma|} \left|\frac{z \left(\mathcal{D}_{p,\lambda,\mu}^{l_{i}}f_{i}\right)'(z)}{\left(\mathcal{D}_{p,\lambda,\mu}^{l_{i}}f_{i}\right)(z)} - p\right| + p - \sum_{i=1}^{n} \delta_{i} \left(p - \alpha_{i}\right).$$

Because $\sum_{i=1}^{n} \frac{\delta_i \beta_i}{|\gamma|} \left| \frac{z \left(\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i \right)'(z)}{\left(\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i \right)^{(z)}} - p \right| > 0$, from (2.4), we obtain $\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]^{\prime\prime}}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]^{\prime\prime}}+1-p\right)\right\}>p-\sum_{i=1}^{n}\delta_{i}\left(p-\alpha_{i}\right).$

Therefore, the operator $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is p-valently convex of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ and type $p - \sum_{i=1}^{n} \delta_i (p - \alpha_i)$. The proof of Theorem 2.1 is completed.

2.2. Remark.

- (1) Letting $\gamma = 1$ and $l_i = 0$ for all $i = \overline{1, n}$ in Theorem 2.1, we obtain Theorem 2.1 in [14].
- (2) Letting $p = 1, \gamma = 1$ and $l_i = 0$ for all $i = \overline{1, n}$ in Theorem 2.1, we obtain Theorem 1 in [4].
- (3) Letting p = 1, $\gamma = 1$ and $\alpha_i = l_i = 0$ for all $i = \overline{1, n}$ in Theorem 2.1, we obtain Theorem 2.5 in [7].
- (4) Letting $p = 1, \beta = 0$ and $l_i = 0$ for all $i = \overline{1, n}$ in Theorem 2.1, we obtain Theorem 1 in [3].
- (5) Letting $p = 1, \beta = 0, \alpha_i = \alpha$ and $l_i = 0$ for all $i = \overline{1, n}$ in Theorem 2.1, we obtain Theorem 1 in [9].

(6) Letting p = 1, $\beta = 0$, $\alpha_i = 0$ and $l_i = 0$ for all $i = \overline{1, n}$ in Theorem 2.1, we obtain Theorem 1 in [5].

Putting n = 1, $l_1 = 0$, $\delta_1 = \delta$, $\alpha_1 = \alpha$, $\beta_1 = \beta$ and $f_1 = f$ in Theorem 2.1, we have

2.3. Corollary. Let $\delta > 0$, $0 \le \alpha < p$, $\beta \ge 0$, $\gamma \in \mathbb{C} - \{0\}$ and $f \in \beta - \mathfrak{US}_p(\gamma, \alpha)$. If $\delta \in (0, p / (p - \alpha)]$, then $\int_0^z pt^{p-1} \left(\frac{f(t)}{t^p}\right)^{\delta} dt$ is convex of complex order $\gamma \ (\gamma \in \mathbb{C} - \{0\})$ and type $p - \delta \ (p - \alpha)$ in \mathbb{U} .

2.4. Theorem. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\beta_i \ge 0, \gamma \in \mathbb{C} - \{0\}$ and $f_i \in \beta_i - \mathfrak{US}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. If

(2.5)
$$\left| \frac{z \left(\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i \right)'(z)}{\left(\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i \right)(z)} - p \right| > -\frac{p + \sum_{i=1}^n \delta_i \left(\alpha_i - p \right)}{\sum_{i=1}^n \frac{\delta_i \beta_i}{|\gamma|}}$$

for all $i = \overline{1, n}$, then the integral operator $\mathfrak{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ defined by (1.7) is p-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$).

Proof. From (2.4) and (2.5), we easily get $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is p-valently convex of complex order γ .

From Theorem 2.4, we easily get

2.5. Corollary. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\beta_i \ge 0$, $\gamma \in \mathbb{C} - \{0\}$ and $f_i \in \beta_i - \mathfrak{US}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. If $\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i \in \mathcal{S}_p^*(\sigma)$, where $\sigma = p - (p - \sum_{i=1}^n \delta_i (p - \alpha_i)) / \sum_{i=1}^n \frac{\delta_i \beta_i}{|\gamma|}$; $0 \le \sigma < p$ for all $i = \overline{1, n}$, then the integral operator $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is p-valently convex of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$.

Putting $n = 1, l_1 = 0, \delta_1 = \delta, \alpha_1 = \alpha, \beta_1 = \beta$ and $f_1 = f$ in Corollary 2.5, we have

2.6. Corollary. Let $\delta > 0$, $0 \le \alpha < p$, $\beta > 0$, $\gamma \in \mathbb{C} - \{0\}$ and $f \in S_p^*(\rho)$ where $\rho = [\delta(p\beta + (p-\alpha)|\gamma|) - p|\gamma|] \not \delta\beta$; $0 \le \rho < p$, then the integral operator $\int_0^z pt^{p-1} \left(\frac{f(t)}{t^p}\right)^{\delta} dt$ is p-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) in \mathbb{U} .

Next, we give a sufficient condition for the integral operator $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$ to be p-valently convex of complex order.

2.7. Theorem. Let $l = (l_1, l_2, ... l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\gamma \in \mathbb{C} - \{0\}$ such that $0 < \sum_{i=1}^n \delta_i (p - \alpha_i) \le p$, $\beta_i \ge 0$ and $g_i \in \beta_i - \mathfrak{UC}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. Then, the integral operator $\mathfrak{S}_{n,p,l}^{\delta,\lambda,\mu}$ defined by (1.8) is p-valently convex of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ and type $p - \sum_{i=1}^n \delta_i (p - \alpha_i)$, that is, $\mathfrak{S}_{n,p,l}^{\delta,\lambda,\mu} \in \mathfrak{C}_p(\gamma, p - \sum_{i=1}^n \delta_i (p - \alpha_i))$.

Proof. From the definition (1.8), we observe that $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z) \in \mathcal{A}_p$. On the other hand, it is easy to see that

(2.6)
$$\left[\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]' = pz^{p-1} \prod_{i=1}^{n} \left(\frac{\left(\mathcal{D}_{p,\lambda,\mu}^{l_i}g_i(z)\right)'}{pz^{p-1}}\right)^{\sigma_i}$$

Now, we differentiate (2.6) logarithmically and then do some simple calculations, we have

(2.7)
$$\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(\frac{z\left[\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]''}{\left[\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]'}+1-p\right)\right\}$$
$$=\sum_{i=1}^{n}\delta_{i}\operatorname{Re}\left\{p+\frac{1}{\gamma}\left(1+\frac{z\left(\mathcal{D}_{p,\lambda,\mu}^{l_{i}}g_{i}\right)''(z)}{\left(\mathcal{D}_{p,\lambda,\mu}^{l_{i}}g_{i}\right)'(z)}-p\right)\right\}-p\sum_{i=1}^{n}\delta_{i}+p.$$

Since $g_i \in \beta_i - \mathcal{UC}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$ from (2.7), we have

$$(2.8) \qquad \operatorname{Re}\left\{p + \frac{1}{\gamma} \left(\frac{z \left[\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]''}{\left[\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)\right]'} + 1 - p\right)\right\}$$
$$> p - p \sum_{i=1}^{n} \delta_{i} + \sum_{i=1}^{n} \delta_{i} \left\{\beta_{i} \left|\frac{1}{\gamma} \left(\frac{z \left(\mathcal{D}_{p,\lambda,\mu}^{l_{i}}g_{i}\right)''(z)}{\left(\mathcal{D}_{p,\lambda,\mu}^{l_{i}}g_{i}\right)'(z)} + 1 - p\right)\right| + \alpha_{i}\right\}$$
$$= p - \sum_{i=1}^{n} \delta_{i} \left(p - \alpha_{i}\right) + \sum_{i=1}^{n} \frac{\delta_{i}\beta_{i}}{|\gamma|} \left|\frac{z \left(\mathcal{D}_{p,\lambda,\mu}^{l_{i}}g_{i}\right)''(z)}{\left(\mathcal{D}_{p,\lambda,\mu}^{l_{i}}g_{i}\right)'(z)} + 1 - p\right|$$
$$> p - \sum_{i=1}^{n} \delta_{i} \left(p - \alpha_{i}\right).$$

Therefore, the operator $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is p-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type $p - \sum_{i=1}^{n} \delta_i (p - \alpha_i)$. This evidently completes the proof of Theorem 2.7.

2.8. Remark.

- (1) Letting $\gamma = 1$ and $l_i = 0$ for all $i = \overline{1, n}$ in Theorem 2.7, we obtain Theorem 3.1 in [14].
- (2) Letting p = 1, $\beta = 0$ and $l_i = 0$ for all $i = \overline{1, n}$ in Theorem 2.7, we obtain Theorem 3 in [3].
- (3) Letting p = 1, $\beta = 0$, $\alpha_i = \mu$ and $l_i = 0$ for all $i = \overline{1, n}$ in Theorem 2.7, we obtain Theorem 3 in [9].
- (4) Letting p = 1, $\beta = 0$, $\alpha_i = 0$ and $l_i = 0$ for all $i = \overline{1, n}$ in Theorem 2.7, we obtain Theorem 2 in [5].

Putting $n = 1, l_1 = 0, \delta_1 = \delta, \alpha_1 = \alpha, \beta_1 = \beta$ and $g_1 = g$ in Theorem 2.7, we have

2.9. Corollary. Let $\delta > 0$, $0 \le \alpha < p$, $\beta \ge 0$, $\gamma \in \mathbb{C} - \{0\}$ and $g \in \beta - \mathcal{UC}_p(\gamma, \alpha)$. If $\delta \in (0, p \swarrow (p - \alpha)]$, then $\int_0^z pt^{p-1} \left(\frac{g't}{pt^{p-1}}\right)^{\delta} dt$ is p-valently convex of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ and type $p - \delta (p - \alpha)$ in \mathbb{U} .

2.10. Theorem. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\beta_i \ge 0, \gamma \in \mathbb{C} - \{0\}$ and $g_i \in \beta_i - \mathfrak{UC}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. If

(2.9)
$$\left| \frac{z \left(\mathcal{D}_{p,\lambda,\mu}^{l_i} g_i \right)^{\prime\prime}(z)}{\left(\mathcal{D}_{p,\lambda,\mu}^{l_i} g_i \right)^{\prime}(z)} + 1 - p \right| > -\frac{p + \sum_{i=1}^n \delta_i \left(\alpha_i - p \right)}{\sum_{i=1}^n \frac{\delta_i \beta_i}{|\gamma|}}$$

for all $i = \overline{1, n}$, then the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ defined by (1.8) is p-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$).

Proof. From (2.8) and (2.9), we easily get $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is p-valently convex of complex order γ .

From Theorem 2.10, we easily get

2.11. Corollary. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\beta_i \ge 0, \gamma \in \mathbb{C} - \{0\}$ and $g_i \in \beta_i - \mathfrak{UC}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. If $\mathcal{D}_{p,\lambda,\mu}^{l_i} g_i \in \mathfrak{C}_p(\sigma)$, where $\sigma = p - (p - \sum_{i=1}^n \delta_i (p - \alpha_i)) / \sum_{i=1}^n \frac{\delta_i \beta_i}{|\gamma|}$; $0 \le \sigma < p$ for all $i = \overline{1, n}$, then the integral operator $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is p-valently convex of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$.

Putting n = 1, $l_1 = 0$, $\delta_1 = \delta$, $\alpha_1 = \alpha$, $\beta_1 = \beta$ and $g_1 = g$ in Corollary 2.11, we have **2.12. Corollary.** Let $\delta > 0$, $0 \le \alpha < p$, $\beta > 0$, $\gamma \in \mathbb{C} - \{0\}$ and $g \in \mathbb{C}(\rho)$ where $\rho = [\delta(p\beta + (p-\alpha)|\gamma|) - p|\gamma|] \nearrow \delta\beta$; $0 \le \rho < p$, then the integral operator $\int_0^z pt^{p-1} \left(\frac{g't}{pt^{p-1}}\right)^{\delta} dt$ is convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) in \mathbb{U} .

3. Starlikeness of the integral operators $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)$ and $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$

In this section, we will give the sufficient conditions for the integral operators $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}$ and $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$ to be *p*-valently starlike of complex order. Let

 $H(\mathbb{U}) = \{ f : \mathbb{U} \to \mathbb{C} : f \text{ analytic} \}$

 $H[a,n] = \left\{ f \in H(\mathbb{U}) : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, z \in \mathbb{U}, a \in \mathbb{C}, n \in \mathbb{N}_0 \right\}.$ In order to prove our main results, we shall need the following lemma due to S. S. Miller and P. T. Mocanu [20].

3.1. Lemma. Let the function $\psi : \mathbb{C}^2 \times \mathbb{U} \to \mathbb{U}$ satisfy

Re $\psi(i\rho,\sigma;z) \leq 0$

for all $\rho, \sigma \in \mathbb{R}$, $n \ge 1$ with $\sigma \le -\frac{n}{2}(1+\rho^2)$. If $P \in H[1,n]$ and $\operatorname{Re} \psi(P(z), zP'(z); z) > 0$ for every $z \in \mathbb{U}$, then

Re P(z) > 0.

3.2. Lemma. Let $n \in \mathbb{N}$, $\kappa \in \mathbb{R}$, $u, v \in \mathbb{C}$ such that $\text{Im } v \leq 0$, $\text{Re}(u - \kappa v) \geq 0$. Assume the following condition

$$\operatorname{Re}\left\{P(z) + \frac{zP'(z)}{u - vP(z)}\right\} > \kappa, \quad (z \in \mathbb{U})$$

is satisfy such that $P \in H[P(0), n]$, $P(0) \in \mathbb{R}$ and $P(0) > \kappa$. Then,

Re
$$P(z) > \kappa$$
, $(z \in \mathbb{U})$.

Proof. Firstly, we consider the function $R: \mathbb{U} \to \mathbb{C}$,

$$R(z) = \frac{P(z) - \kappa}{P(0) - \kappa} \,.$$

Then, $R(z) \in H[1, n]$. Furthermore, since $P(0) - \kappa > 0$ and

$$\operatorname{Re}\left\{P(z) + \frac{zP'(z)}{u - vP(z)}\right\} > \kappa, \quad (z \in \mathbb{U}),$$

we have

$$\operatorname{Re}\left\{R(z) + \frac{zR'(z)}{u - v\kappa - v\left(P(0) - \kappa\right)R(z)}\right\} > 0, \quad (z \in \mathbb{U}).$$

Now, we define the function ψ as follows

$$\psi(R(z), zR'(z); z) = R(z) + \frac{zR'(z)}{u - v\kappa - v(P(0) - \kappa)R(z)}$$

Thus,

 $\operatorname{Re}\psi(R(z), zR'(z); z) > 0.$

Now, so then we can use Lemma 3.1, we must show that the following condition

${\rm Re}\ \psi(i\rho,\sigma;z)\leq 0$

is satisfied for $\rho \leq 0, \, \sigma \leq -\frac{1+\rho^2}{2}$ and $z \in \mathbb{U}$. Indeed, from hypothesis, we obtain

$$\begin{aligned} \operatorname{Re} \psi(i\rho,\sigma;z) &= \operatorname{Re} \frac{\sigma}{u - v\kappa - v\left(P(0) - \kappa\right)\rho i} \\ &= \operatorname{Re} \frac{\sigma}{u_1 + iu_2 - (v_1 + iv_2)\kappa - (v_1 + iv_2)\left(P(0) - \kappa\right)\rho i} \\ &= \frac{\sigma\left[u_1 - v_1\kappa + v_2\rho\left(P(0) - \kappa\right)\right]}{\left[u_1 - v_1\kappa + v_2\rho\left(P(0) - \kappa\right)\right]^2 + \left[u_2 - v_2\kappa + v_1\rho\left(P(0) - \kappa\right)\right]^2} \leq 0. \end{aligned}$$

Hence, from Lemma 3.1, we get ReR(z)>0 . Moreover, from the definition of R(z), we obtain

$$\operatorname{Re} P(z) > \kappa, \quad (z \in \mathbb{U})$$

_

Now, we prove the following theorem using Lemma 3.2

3.3. Theorem. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\gamma \in \mathbb{C} - \{0\}$ such that $0 < \sum_{i=1}^n \delta_i (p - \alpha_i) \le p$, $\operatorname{Im} \gamma \ge 0$, $\operatorname{Re} \gamma \le \frac{p}{\sum_{i=1}^n \delta_i (p - \alpha_i)}$, $\beta_i \ge 0$ and $f_i \in \beta_i - \mathfrak{US}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. Then, the integral operator $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}$ defined by (1.7) is p-valently starlike of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ and type $p - \sum_{i=1}^n \delta_i (p - \alpha_i)$, that is, $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu} \in S_p^*(\gamma, p - \sum_{i=1}^n \delta_i (p - \alpha_i))$.

Proof. We define the analytic function $q: \mathbb{U} \to \mathbb{C}, q(0) = p$ as follows

$$q(z) = p + \frac{1}{\gamma} \left(\frac{z \left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]'}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]} - p \right)$$

Thus, we obtain

$$\begin{split} p + \gamma \left(q(z) - p \right) &= \frac{z \left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]'}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]'} \\ \Rightarrow \quad \frac{\gamma z q'(z)}{p(1-\gamma) + \gamma q(z)} = 1 + \frac{z \left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]''}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]'} - \frac{z \left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]'}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]} \\ \Rightarrow \quad p + \gamma \left(q(z) - p \right) + \frac{\gamma z q'(z)}{p(1-\gamma) + \gamma q(z)} = 1 + \frac{z \left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]''}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]'} \\ \Rightarrow \quad q(z) + \frac{z q'(z)}{p(1-b) + b q(z)} = p + \frac{1}{\gamma} \left[1 - p + \frac{z \left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]''}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]'} \right]. \end{split}$$

When we consider this last equality and the inequality (2.2), we can write

$$q(z) + \frac{zq'(z)}{p(1-\gamma) + \gamma q(z)} = p + \sum_{i=1}^{n} \delta_i \left(p + \frac{1}{\gamma} \left(\frac{z \left(D_{p,\lambda,\mu}^{l_i} f_i \right)'(z)}{D_{p,\lambda,\mu}^{l_i} f_i(z)} - p \right) \right) - p \sum_{i=1}^{n} \delta_i.$$

Similarly to the proof of Theorem 2.1, it can be easly seen that

$$\operatorname{Re}\left\{q(z) + \frac{zq'(z)}{p(1-\gamma) + \gamma q(z)}\right\} > p - \sum_{i=1}^{n} \delta_i \left(p - \alpha_i\right).$$

Here, $q(0) = p > p - \sum_{i=1}^{n} \delta_i (p - \alpha_i)$ and the function q is analytic on \mathbb{U} . Also, when we write $\kappa = p - \sum_{i=1}^{n} \delta_i (p - \alpha_i)$, $u = p(1 - \gamma)$ and $v = -\gamma$, we find $\operatorname{Im} v \leq 0$ and $\operatorname{Re}(u - \kappa v) \geq 0$. Hence, all the conditions of Lemma 3.1 are satisfied and so

$$\operatorname{Re} q(z) = \operatorname{Re} \left\{ p + \frac{1}{\gamma} \left(\frac{z \left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]'}{\left[\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z) \right]} - p \right) \right\} > p - \sum_{i=1}^{n} \delta_i \left(p - \alpha_i \right).$$

Thus, the proof of the theorem is completed.

Putting n = 1, $l_1 = 0$, $\delta_1 = \delta$, $\alpha_1 = \alpha$, $\beta_1 = \beta$ and $f_1 = f$ in Theorem 3.3, we have **3.4. Corollary.** Let $\delta > 0$, $0 \le \alpha < p$, $\beta \ge 0$, $\gamma \in \mathbb{C} - \{0\}$, Im $\gamma \ge 0$, Re $\gamma \le \frac{p}{\delta(p-\alpha)}$ and $f \in \beta - \mathfrak{US}_p(\gamma, \alpha)$. If $\delta \in \left(0, \frac{p}{p-\alpha}\right]$ then $\int_0^z pt^{p-1} \left(\frac{f(t)}{t^p}\right)^{\delta} dt \in S_p^*(\gamma, p - \delta(p - \alpha))$.

From Theorem 3.3, we obtain the following result.

3.5. Theorem. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\gamma \in \mathbb{C} - \{0\}$ such that $0 < \sum_{i=1}^n \delta_i (p - \alpha_i) \le p$, Im $\gamma \ge 0$, Re $\gamma \le \frac{p}{\sum_{i=1}^n \delta_i (p - \alpha_i)}$, $\beta_i \ge 0$ and $f_i \in \beta_i - \mathfrak{US}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. If the inequality (2.5) is satisfied for all $i = \overline{1, n}$, then the integral operator $\mathcal{F}_{n, p, l}^{\delta, \lambda, \mu}(z)$ defined by (1.7) is p-valently starlike of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$.

From Theorem 3.5, we get the following result.

3.6. Corollary. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\gamma \in \mathbb{C} - \{0\}$ such that $0 < \sum_{i=1}^n \delta_i (p - \alpha_i) \le p$, $\operatorname{Im} \gamma \ge 0$, $\operatorname{Re} \gamma \le \frac{p}{\sum_{i=1}^n \delta_i (p - \alpha_i)}$, $\beta_i \ge 0$ and $f_i \in \beta_i - \operatorname{US}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. If $\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i \in S_p^*(\sigma)$, where $\sigma = p - (p - \sum_{i=1}^n \delta_i (p - \alpha_i)) / \sum_{i=1}^n \frac{\delta_i \beta_i}{|\gamma|}; 0 \le \sigma < p$ for all $i = \overline{1, n}$, then the integral operator $\mathcal{F}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is p-valently starlike of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$.

Next, we give a sufficient condition for the integral operator $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$ to be *p*-valently starlike of complex order.

3.7. Theorem. Let $l = (l_1, l_2, ... l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\gamma \in \mathbb{C} - \{0\}$ such that $0 < \sum_{i=1}^n \delta_i (p - \alpha_i) \le p$, $\operatorname{Im} \gamma \ge 0$, $\operatorname{Re} \gamma \le \frac{p}{\sum_{i=1}^n \delta_i (p - \alpha_i)}$, $\beta_i \ge 0$ and $f_i \in \beta_i - \mathfrak{UC}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. Then, the integral operator $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}$ defined by (1.8) is p-valently starlike of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ and type $p - \sum_{i=1}^n \delta_i (p - \alpha_i)$, that is, $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu} \in \mathcal{S}_p^*(\gamma, p - \sum_{i=1}^n \delta_i (p - \alpha_i))$.

Proof. Let us define the analytic function $q: \mathbb{U} \to \mathbb{C}$ given by

$$q(z) = p + \frac{1}{\gamma} \left(\frac{z \left(\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z) \right)'}{\left(\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z) \right)} - p \right).$$

Then, we follow the same steps as in the proof of Theorem 3.3, so we omit the details involved in this case. \blacksquare

Putting n = 1, $l_1 = 0$, $\delta_1 = \delta$, $\alpha_1 = \alpha$, $\beta_1 = \beta$ and $g_1 = g$ in Theorem 3.7, we have **3.8. Corollary.** Let $\delta > 0$, $0 \le \alpha < p$, $\beta \ge 0$, $\gamma \in \mathbb{C} - \{0\}$, Im $\gamma \ge 0$, Re $\gamma \le \frac{p}{\delta(p-\alpha)}$ and $f \in \beta - \mathfrak{UC}_p(\gamma, \alpha)$. If $\delta \in \left(0, \frac{p}{p-\alpha}\right]$, then $\int_0^z pt^{p-1} \left(\frac{g'(t)}{pt^{p-1}}\right)^{\delta} dt \in \mathcal{S}_p^*(\gamma, p - \delta(p-\alpha))$.

From Theorem 3.7, we obtain the following result.

3.9. Theorem. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\gamma \in \mathbb{C} - \{0\}$ such that $0 < \sum_{i=1}^n \delta_i (p - \alpha_i) \le p$, Im $\gamma \ge 0$, Re $\gamma \le \frac{p}{\sum_{i=1}^n \delta_i (p - \alpha_i)}$, $\beta_i \ge 0$ and $f_i \in \beta_i - \mathfrak{US}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. If the inequality (2.9) is satisfied for all $i = \overline{1, n}$, then the integral operator $\mathcal{G}_{n, p, l}^{\delta, \lambda, \mu}(z)$ defined by (1.8) is p-valently starlike of complex order γ ($\gamma \in \mathbb{C} - \{0\}$).

We obtain the following corollary using Theorem 3.9.

3.10. Corollary. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha_i < p$, $\gamma \in \mathbb{C} - \{0\}$ such that $0 < \sum_{i=1}^n \delta_i (p - \alpha_i) \le p$, $\operatorname{Im} \gamma \ge 0$, $\operatorname{Re} \gamma \le \frac{p}{\sum_{i=1}^n \delta_i (p - \alpha_i)}$, $\beta_i \ge 0$ and $f_i \in \beta_i - \mathfrak{US}_p(l_i, \lambda, \mu, \gamma, \alpha_i)$ for all $i = \overline{1, n}$. If $\mathcal{D}_{p,\lambda,\mu}^{l_i} f_i \in \mathcal{C}_p(\sigma)$, where $\sigma = p - (p - \sum_{i=1}^n \delta_i (p - \alpha_i)) / \sum_{i=1}^n \frac{\delta_i \beta_i}{|\gamma|}$; $0 \le \sigma < p$ for all $i = \overline{1, n}$, then the integral operator $\mathcal{G}_{n,p,l}^{\delta,\lambda,\mu}(z)$ is p-valently starlike of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$.

References

- Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics. 17 (1), 12-22, 1915.
- Bharti, R., Parvatham, R. and Swaminathan, A. On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1), 17-32, 1997.
 D. b. t. G. A. et al. (1), 17-32, 1997.
- [3] Bulut, S. A note on the paper of Breaz and Guney, J. Math. Ineq. 2(4), 549-553, 2008.
- [4] Breaz, D. A convexity properties for an integral operator on the classes $S_p(\alpha)$, Gen. Math. 15 (2-3), 177-183, 2007.
- [5] Breaz, D., Aouf, M. K. and Breaz, N. Some properties for integral operators on some analytic functions with complex order, Acta. Math. Acad. Paedagog. Nyhazi. 25, 39-43, 2009.
- [6] Breaz, D. and Breaz, N. Two integral operators, Stud. Univ. Babes -Bolyai Math. 47 (3), 13-19, 2002.
- [7] Breaz, D. and Breaz, N. Some convexity properties for a general integral operator, J. Ineq. Pure Appl. Math. 7 (5), Art. 177, 2006.
- [8] Breaz, D., Owa, S. and Breaz, N. A new integral univalent operator, Acta Univ. Apulensis Math. Inform. 16, 11-16, 2008.
- [9] Breaz, D. and Guney, H. C. The integral operator on the classes S^{*}_α(b) and C_α(b), J. Math. Ineq. 2 (1), 97-100, 2008.
- [10] Cağlar, M. The relationships between p-valent functions and univalent functions, An. St. Univ. Ovidius Constanta. 23 (1), 65-72, 2015.
- [11] Deniz, E., Orhan, H. and Sokol J. Classes of analytic functions defined by a differential operator related to conic domains. Ukrainan Mat. J. 67 (9), 1367-1385, 2016.
- [12] Deniz, E., Cağlar M. and Orhan, H. Some convexity properties for two new p-valent integral, Hacet. J. Math. Stat. 40 (6), 829 - 837, 2011.
- [13] Deniz, E. and Orhan, H. Certain subclasses of multivalent defined by new multiplier transformations, Arab. J. Sci. Eng. 36, 1091-1112, 2011.
- [14] Frasin, B. A. Convexity of integral operators of p-valent functions, Math. Comput. Model. 51, 601-605, 2010.
- [15] Frasin, B. A. Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny. 22, 179-191, 2006.

- [16] Goodman, A.W. On uniformly convex functions, Ann. Polon. Math. 56, 87-92, 1991.
- [17] Kanas, S. and Wisniowska, A. Conic regions and k-uniform convexity, Comput. Appl. Math. 105, 327-336, 1999.
- [18] Kim, Y. J. and Merkes, E. P. On an integral of powers of a spirallike function, Kyungpook Math. J. 12, 249-252, 1972.
- [19] Miller, S. S., Mocanu, P. T. and Reade, M. O. Starlike integral operators, Pacific J. Math. 79 (1), 157-168, 1978.
- [20] S. S. Miller and P. T. Mocanu, Second order deferential inequalities in the complex plane, J. Math. Anal. Appl., 65, 289-305, 1978.
- [21] Nasr, M. A. and Aouf, M. K. Starlike function of complex order, J. Natur. Sci. Math. 25 (1), 1-12, 1985.
- [22] Orhan, H., Deniz, E. and Raducanu, D. The Fekete-Szego problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 59 (1), 283-295, 2010.
- [23] Oros, G. I. and Oros, G. A convexity property for an Integral Operator \mathbb{F}_m , Stud. Univ. Babes Bolyai Math. **55** (3), 169-177, 2010.
- [24] Pescar, V. and Owa, S. Sufficient conditions for univalence of certain integral operators, Indian J. Math. 42 (3), 347-35, 2000.
- [25] Pfaltzgraff, J. A. Univalence of the integral of $(f'(z))^{\lambda}$, Bull. London Math. Soc. 7 (3), 254–256, 1975.
- [26] Rønning, F. On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-SkÃlodowska Sect. A. 45 (14), 117-122, 1991.
- [27] Wiatrowski, P. The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw.Lodz. Nauki Mat. Pryrod. Ser. 3, 75-85, 1971.