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Some starlikeness and convexity properties for two
new p—valent integral operators
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Abstract

In this paper, we define two new general p—valent integral operators in
the unit disc U and obtain the properties of p—valent starlikeness and
p—valent convexity of these integral operators of p—valent functions
on some classes of S—uniformly p—valent starlike and S—uniformly
p—valent convex functions of complex order and type o (0 < « < p).

As special cases, the properties of p—valent starlikeness and p—valent

s , 5
convexity of the operators [ pt?~! (%) dt and [ pt?~! (ptgp—t,)l) dt
are given.
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1. Introduction and Preliminaries

Let A, denote the class of the form

(L) )=+ 3wt peN={12..}),
k=p+1
which are analytic in the open disc U={z€ C: |z] < 1}.
A function f € 8;(v,a) is p—valently starlike of complex order ~ (y € C — {0}) and
type a (0 < a < p), that is, f € 8;(v, @), if it is satisfies the following condition

(12)  Re {p—&-% (Z;(S) —p)} Sa (z€U).
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Furthermore, a function f € C,(7v, a) is p—valently convex of complex order
v(y € C—{0}) and type o (0 < a < p), that is, f € C,(7, @) if it satisfies the following
condition;

1 2f"(z
(1.3) Re{p—&-;(l—k }c,(i))—p>}>a (€ U).

In particular cases, for p = 1 in the classes 8;(v,a) and €,(v, ), we obtain the
classes 8" (v, «) and C(y, ) of starlike functions of complex order v (y € C — {0}) and
type a (0 < a < 1) and convex functions of complex order v (y € C — {0}) and type
a (0 < a < 1), respectively, which were introduced and studied by Frasin [15]. Also,
for o = 0 in the classes 8, (v, ) and Cp(v,a), we obtain the classes 8;(y) and Cp(7),
which are called p—valently starlike of complex order v (y € C — {0}) and p—valently
convex of complex order v (v € C — {0}), respectively. Setting p = 1 and o = 0, we
obtain the classess 8*(y) and €(~). The class 8" () of starlike functions of complex order
v (v € C— {0}) was defined by Nasr and Aouf (see [21]) while the class C(v) of convex
functions of complex order v (v € C — {0}) was considered earlier by Wiatrowski (see
[27]). Note that 8§;(1,a) = 8,(c) and Cp(1, ) = Cp(cx) are, respectively, the classes of
p—valently starlike and p—valently convex functions of order o (0 < o < p) in U. In spe-
cial cases, §,(0) = 8; and €,(0) = €, are, respectively, the familiar classes of p—valently
starlike and p—valently convex functions in U. Also, we note that 8i(a) = 8"(«) and
C1(a) = C(a) are, respectively, the usual classes of starlike and convex functions of order
a(0 < a<1)in U. In special cases, 81(0) = 8" and €; = C are, respectively, the familiar
classes of starlike and convex functions in U.

A function f € f—US,(«) is B—uniformly p—valently starlike of order a (0 < « < p),
that is, f € 8 — US,(«) if it is satisfies the following condition

NN
4 Re{f(Z) }>/3 e F

Furthermore, a function f € 8 — UCy(«) is f—uniformly p—valently convex of order
a(0 < a < p),that is, f € B8 —UC, () if it satisfies the following condition

2f"(2) 2f"(2)
(1.5)  Re {1 + 702) } > 70 P
These classes generalize various other classes which are worthy to mention here. For
example p = 1, the classes f — US(«a) and f — UC(«) introduced by Bharti, Parvatham
and Swaminathan (see [2]). Also, the class § — UC1(0) = S — UCV is the known class
of f—uniformly convex functions [17]. Using the Alexander type relation, we can obtain
the class 8 — USy(«) in the following way:

feEB—UCHa) & %f/ € B —USp(a).

+a (8>0,2z€U).

1+ +a (820, z€U).

The class 1 — UC1(0) = UCV of uniformly convex functions was defined by Goodman
[16] while the class 1 — U81(0) = 8P was considered by Rgnning [26].

When the classes 8} (7, o) with 8 — U8, («) and Cp (7, @) with 8 — UC, () are thought
together, we define following classes. Let 0 < a < p, 8> 0 and v € C — {0} . A function
f € Ap is in the class 8 — US, (7, @) if and only if for all z € U

el 2 (500> (5 -2)

and in the class 8 — UC, (v, ) if and only if for all z € U

wlpod (R 1)} GRS v

+ «
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For f € A, given by (1.1) and ¢(z) given by

(1.6) g(z)=2"+ Z brz"

k=p+1

their convolution (or Hadamard product), denoted by (f * g), is defined as follows

(f*9)(z) =2 + Zakbkz (gx N)z) (z€0).
k=p+1
For a function f in A, in [13], the authors defined the multiplier transformations
Diix,y as follows.
1.1. Definition. Let f € A,. For the parameters A, € R; 0 < p < X and m € Ng =
NU {0}, define the multiplier transformations D", , on A, by the following:
‘Dp,)\,,u,f(z) = f(Z)

Dpruf(z) = Dprsuf(2)
% Mz (2) + (A= p+ (L= p)Ap) 2f'(2) + p(1 — A+ ) f(2)]

DA

Dg?/\,;;f(z) = Dpau (Dm )
for z€ Uand p e N:={1,2,...}.

If f(z) is given by (1.1), then from the definition of the multiplier transformations
Dy, uf(2), we can easily see that

Dpauf(z) =27 + Z m)\uakzk
k=p+1
where
kE—p)Quk+X—p)+p]™
@I;(m,)\,u): |:( p)( H 5 /.L) D

By using the operator D}y ,, f(2) (m € No), we introduce the new classes
B —USp(m, A, u, 7, ) and B UC, (m, A, 1,7, ) as follows:

/B_usp(m7)‘7u777a):{f€"qp: DA ,/,Lf( )GB—USP(%a)}

and

ﬂ - uep(m7 A,/L,’Y,OL) = {f S ‘AP : Dgf)\,uf(z) S /8 - uep(’%a)}

where f € A,,0< a<p, >0and vy C—{0}.

We note that by specializing the parameters m, p, 7, f and « in the classes 5 —
USp(m, A, i, v, ) and B — UCp(m, A, i, 7y, ), these classes are reduced to several well-
known subclasses of analytic functions. For example, for m = 0 the classes
B —USp(m, A, i, v, &) and B —UC,(m, A, i, y, ) are reduced to the classes 8 — US,(y, @)
and 8 — UC, (7, o), respectively. Someone can find more information about these classes
in Caglar [10], Deniz, Orhan and Sokol [11], Deniz, Caglar and Orhan [12] and Orhan,
Deniz and Raducanu [22].

1.2. Definition. Let | = (I1,l2,...,ln) € N§, § = (01,02,...,0,) € R} for all i = 1,n,
n € N. We define the following general integral operators
Tt (1, fay ey f) £ AL = Ay

n,p,l
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59\» 5,2,
n péL (f17 f27 ceey fn) = fT'Vn,p,’r(:‘}:)v

5;
L7 Fie) :/ P 1H< prl )> dt

5,
d ,p,u (917.927 . 'agn) ‘AZ — -Ap

PN 8.,
3npl (917927 . ~7.97L) = 9n,p,7(z)7

5;

/
z n DliA gi(t)>
(1.8) 92’,2’,7(2):/1975”’11_[ L dt
0 i=1

ptr—t

where f;, i € Ap for all i = I, and D, , , is defined in Definition 1.1.

1.3. Remark. We note that if [y =l = ... = [,, = 0, then the integral operator Stn i~ "(2)
is reduced to the operator Fj,(z) which was studied by Frasin (see [14]). Upon setting
p = 1 in the operator (1.7), we can obtain the integral operator F,(z) which was studied

by Oros G.I. and Oros G.A. (see [23]). For p=1and l; =1y = ... =1, = 0in (1.7),
the integral operator ?Z;f(z) is reduced to the operator F,,(z) which was studied by

Breaz D. and Breaz N. (see [6]). Observe that when p =n =1, 11 = 0 and §; = §, we
obtain the integral operator I5(f)(z) which was studied by Pescar and Owa (see [24]), for
01 = d € [0,1] special case of the operator I5(f)(z) was studied by Miller, Mocanu and
Reade (see [19]). For p=n=1,1; =0 and 6; = 1 in (1.7), we have Alexander integral
operator I(f)(z) in [1].

1.4. Remark. For [y =l = ... = I, = 0 in (1.8) the integral operator 9?127(2) is
reduced to the operator Gp(z) which was studied by Frasin (see [14]). For p = 1 and
li =10 =..=1,=0in (1.8), the integral operator Si/;’l‘(z) is reduced to the operator

G5,,64,....5m (#) which was studied by Breaz D., Owa and Breaz N. (see [8]). If p =n =1,
Iy = 0 and 61 = J, we obtain the integral operator G(z) which was introduced and studied
by Pfaltzgraff (see [25]) and Kim and Merkes (see [18]).

In this paper, we consider the integral operators ?fl 2 #(z) and Si;;‘(z) defined by (1.7)
and (1.8), respectively, and study their properties on the classes 3 —US,(m, A, i, 7, @) and
B—UCy(m, A, u,y, ). As special cases, the order of p—valently convexity and p—valently

5 N
starlikeness of the operators [~ pt?~"' (%) dt and [ pt?~" (pf,,t,)l) dt are given.

DA (2)

2. Convexity of the integral operators 3"6 ’”(z) and G, (2

First, in this section we prove a sufficient condition for the integral operator ?J’A’“(z)
to be p—valently convex of complex order.

2.1. Theorem. Letl = (l1,lg,...ln) € Ny, 6 = (81,02,...,0n) € R}, 0 < a; < p,
v € C— {0} such that 0 < 37 | 6: (p — au) <p, B; >0 and fi € B; — USp(li, A\, ity 7y, ;)
for all i = 1,n. Then, the integral operator Eanl defined by (1.7) is p—valently convex
ofsomple:c order y (y € C—{0}) and type p—>_7_, 6: (p — o), that is, S"Z’;f € Cp(vy,p—
Zi:l 8i (p — o).
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Proof. From the definition (1.7), we observe that ?fl;f(z) € Ap. On the other hand, it
is easy to see that

(2.1)

] =per I (Zaah9)

Now we differentiate (2.1) logarithmically and we easily obtain

(2.2)

Pt

L (=[Ee] 2(Dpanf) @ V) e
e e dGE Grme )R

Then, we calculate the real part of both sides of (2.2) and obtain

(2.3)

N

U\ e
SR (= (Phand) @ "5
;z‘ e p+; ( pkufl)() —p *p;zdrp.

Since f; € B; — USp(li, A, 1,7y, @) for all i = 1, n from (2.3), we have

(2.4)

. 2 i)
8iB; M
= (D) @)

+1—-p

M:

—p|+p— Zé _az .

p| > 0, from (2.4), we obtain

5,
Re p—l—% [[;;;:(i)]] +1-p >p— 25 D— ).

Therefore, the operator ?6’A’“( ) is p—valently convex of complex order

n,p,l

v (y € C—{0}) and type p—>_7_, 6 (b — i) . The proof of Theorem 2.1 is completed. I

2.2. Remark.

(1) Letting vy =1 and l; =0 for all { = 1,n in Theorem 2.1, we obtain Theorem 2.1
in [14].

(2) Letting p = 1,y = 1 and I; = 0 for all i = 1,n in Theorem 2.1, we obtain
Theorem 1 in [4].

(3) Lettingp=1,v=1and a; =1; =0 for all i = 1, n in Theorem 2.1, we obtain
Theorem 2.5 in [7].

(4) Letting p = 1, 3 = 0 and l; = 0 for all i = 1,n in Theorem 2.1, we obtain
Theorem 1 in [3].

(5) Letting p =1, 8 =0, &; = o and I; = 0 for all i = 1,n in Theorem 2.1, we

obtain Theorem 1 in [9].
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(6) Lettingp =1, 3 =0, a; =0and l; = 0 for all i = 1,n in Theorem 2.1, we
obtain Theorem 1 in [5].
Puttingn=1,1; =0,61 =9, a1 = a, f;, = B and f1 = f in Theorem 2.1, we have

2.3. Corollary. Let § > 0,0< a<p, 8>0,vy€ C—{0} and f € B —USp(y, ). If
5

§€(0,p/ (p— )], then [ pt’~" (%) dt is convezr of complex order v (y € C — {0})

and type p — 6 (p — «) in U.

2.4. Theorem. Letl = (l1,l2,...,ln) € N, 6 = (01,02,..,0n) € R}, 0 < o < p,
B, >0,veC—{0} and f; € B; — USp(Li, A\, b, 7y, as) for all i =1, n. If
I !
2 (Dpanfi) @) P+ XL, 0 (o)
(25) |l s P dia
( p)\,u,fl)( ) Zi:l [v]

for all i = 1,n, then the integral operator S"s”\’“( ) defined by (1.7) is p—wvalently convex
of complez order v (y € C — {0}).

Proof. From (2.4) and (2.5), we easily get 3’2 ;‘,;‘( ) is p—valently convex of complex order
7- 1

From Theorem 2.4, we easily get

2.5. Corollary. Letl = (l1,la,...,ln) € NG, 6 = (61,02,...,0,) ERT, 0< oy < p, B, >0,
v € C—{0} and f; € B, — USp(li, \, 1, v, ;) for all i = 1,n. If Di;)\,ufi € 8; (o), where

azp—(p— Tdilp—a) Y 16‘5'1;0§0<pf07‘ all i = 1,n, then the integral

operator F2 o1 (2) is p—valently convez of complex order v (y € C —{0}).

Puttingn=1,1; =0, 01 =9, o1 = a, B, = f and f1 = f in Corollary 2.5, we have
2.6. Corollary. Let 6 > 0,0 < a <p, 8>0,v€ C—{0} and f € S;(p) where p =
BB+ m—a)y]) —plv]/98; 0 < p < p, then the integral operator foz ptpfl <%)5 dt
is p—valently convez of complezx order v (v € C —{0}) in U.

[P

Next, we give a sufficient condition for the integral operator G, 7}

convex of complex order.

(2) to be p—valently

2.7. Theorem. Let [ = (ll,l2,...ln) € Ny, § = (61,02,...,0n) € R}, 0 < o < p,
v € C— {0} such that 0 < Y7, 6: (p — ozl)<p,6 >0and g € B, — UG p(Liy A,y 7y, @)
for all i = 1,n. Then, the 'mtegml operator Sn”p’f defined by (1.8) is p—uvalently conver
ofsomplez order v (v € C —{0}) and type p—>_7_, 6: (b — cu), that is, 9?1”2:‘1‘ € Cp(v,p—
Zi:l i (p — ).

Proof. From the definition (1.8), we observe that 95 A’”( ) € Ap. On the other hand, it
is easy to see that

1\ 05

oo [stareo] = I | L2t
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Now, we differentiate (2.6) logarithmically and then do some simple calculations, we have

S, "
(2.7) m3p+% Zgzif?,+lp
npil \Z
l; ) " n
: (;39) IS o
(Dyng) )

Since g; € 8; — UCH(Li, A\, pt, Y, ;) for all i = 1,n from (2.7), we have

96’)‘#" 1"
(2.8) Re{p+ - M
T\ [

n n 'Dl'i ) "
=1 i=1

K (Dp A HQZ) (2)

#(Dhe) @
(2%

SA ugl) Z

:Z(SiRe p+l 1+
— v

+1-p

V

= P*Z&(P*ai)ﬁLZ tl-p
=1 i=1

M

> p— Z(S D— ).

Therefore, the operator Sn 1 (2) is p—valently convex of complex order v (y € C — {0})
and type p— >, §; (p — ) . This evidently completes the proof of Theorem 2.7. I

2.8. Remark.

(1) Letting y=1and l; =0 for all ¢ = 1,n in Theorem 2.7, we obtain Theorem 3.1
in [14].

(2) Letting p = 1, 8 =0 and [; = 0 for all 4+ = 1,n in Theorem 2.7, we obtain
Theorem 3 in [3].

(3) Letting p =1, 8 =0, a; = pand l; = 0 for all + = 1,n in Theorem 2.7, we
obtain Theorem 3 in [9].

(4) Lettingp =1, 8 =0, a; = 0and l; = 0 for all i = 1,n in Theorem 2.7, we
obtain Theorem 2 in [5].

Puttingn=1,1; =0, 01 =9, 1 = a, f; = f and g1 = g in Theorem 2.7, we have
2.9. Corollary. Let 6 > 0,0 < a<p, f>0,v€ C—{0} and g € B —UC,(7, ).

5
If 6 € (0,p/ (p — )], then [ ptP~ ! ( fpt)l) dt is p—wvalently convex of complex order
v(y€C—{0}) and type p— (p — @) in U.

2.10. Theorem. Letl = (l1,l2,...,ln) € N, 6 = (d1,92,...,0n) € R}, 0 < a; < p,
B, >0,veC—{0} and g; € B, — UC,(I;, \, u, v, ;) for all i =1,n. If

Dli ‘ "
z2( Dy 9 (%)

P+, bi(ai—p)

(2.9) +1—p| >

l; 4 n 0,B;
(Dp%ugi) (2) >io1 Bl
or all i = 1,n, then the integral operator GOMHE () defined by (1.8) is p—valently convez
n,p,l

of complez order ~ (v € C — {0}).
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Proof. From (2.8) and (2.9), we easily get 9‘2’;‘;(7:) is p—valently convex of complex order
oo |

From Theorem 2.10, we easily get
2.11. Corollary. Let | = (l1,l2,...,ln) € Ny, 6 = (81,02,...,0,) € R}, 0 < o < p,
B;>0,7€C—{0} and g; € B; — UCy(Li, A, p1, v, i) for all i = T,n. If D}y gi € Cp(0),

where o =p— (p— >, 0i(p— ) />, é‘ﬁi; 0 <o <pforali=1,n, then the
5,
il

integral operator G (2) is p—walently convez of complex order v (v € C — {0}).
Puttingn=1,1; =0, 01 =9, o1 = a, f; = f and g1 = g in Corollary 2.11, we have
2.12. Corollary. Let 6 > 0,0 < a<p, 8>0,v € C—{0} and g € C(p) where

p =
IS
[6(pB+ (p— @) [7]) = pIn]] /08; 0 < p < p, then the integral operator [ ptP~1 (pfptjl) dt
is convex of complex order v (y € C — {0}) in U.

3. Starlikeness of the integral operators Srri;f(z) and 92’2’,7(@

In this section, we will give the sufficient conditions for the integral operators ?i’;:;t
and 92’;’,7 (2) to be p—valently starlike of complex order.
Let

H(U)={f:U—=C: fanalytic}
Hilan)={f € HU): f(2) =a+anz" +ant12"' +..., 2€U, a€C, neNo}.

In order to prove our main results, we shall need the following lemma due to S. S. Miller
and P. T. Mocanu [20].

3.1. Lemma. Let the function ¢ : C2 x U — U satisfy

Re ¥ (ip,0;2) <0
forallp,c €R, n > 1 witho < —2(14p°). If P € H[1,n] and Re ¢(P(z), zP'(2);z) > 0
for every z € U, then

Re P(z) > 0.
3.2. Lemma. Letn € N, k € R, u,v € C such that Im v <0, Re (u — kv) > 0. Assume
the following condition

/

Re {P(z) + %} >k, (z€D)
is satisfy such that P € H [P(0),n], P(0) € R and P(0) > k. Then,

Re P(z) >k, (z€U).

Proof. Firstly, we consider the function R: U — C,

_ P(z)—k
RG) = B0 =%
Then, R(z) € H [1,n]. Furthermore, since P(0) — x > 0 and

Re{P(Z)-F#EDZ()Z)} >k, (z€0),
we have

2R/ (2)
u_UH_U(P(O)—H)R(z)} >0, (z€l).

Re {R(z) +
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Now, we define the function v as follows
2R/ (2)
u—vk —v(P(0)— k) R(2)’

Y(R(2), 2R (2); 2) = R(2) +
Thus,

Re(R(z), 2R/ (2);2) > 0.
Now, so then we can use Lemma 3.1, we must show that the following condition

Re ¢ (ip,0;2) <0

is satisfied for p < 0,0 < — HZPQ and z € U. Indeed, from hypothesis, we obtain

u— vk — v (P(0) — k) pi

© U+ iup — (v1 + iv2) K — (v1 + iv2) (P(0) — K) pi
o |ur — vik + v2p (P(0) — K)]
[ur — vik +v2p (P(0) — k)] + [uz — var + v1p (P(0) — )]
Hence, from Lemma 3.1, we get Re R(z) > 0. Moreover, from the definition of R(z), we
obtain

Re ¢(ip,0;2) = Re

5 <0

ReP(z) >k, (z€U).
|

Now, we prove the following theorem using Lemma 3.2

3.3. Theorem. Let | = (l1,l2,...ln) € Ny, § = (61,82,...,0,) € R}, 0 < «a; < p,
v € C— {0} such that 0 < 37 di(p—a;) < p, Im~vy > 0, Rey < m,

B; >0 and fi € B, — USp(Li, \, i1, v, ;) for all i = 1,n. Then, the integral operator
FOMU defined by (1.7) is p—valently starlike of complex order v (v € C—{0}) and type

n,p,l

p— > i 0i(p— ), that is, S"i’;\):f € 8p(v,p— D0, 0s (p— ).

Proof. We define the analytic function ¢ : U — C, ¢(0) = p as follows

L (= [Fre)]

q(z) =p+ - -p
T\ )
Thus, we obtain
!
2 [T ()]
p+(e(z) —p) =
[?n’,p:l (Z)]
1"
I 4 O N Tat@] = [T
-+l ] e
' z 3”6’&“(2)]”
724’ (2) [ ..l
4 — =1
prylal) —p)+ gy =1 [&"5’*’7(2) ;
P,
5N, "
IR = N | PO L i)
p(1 —b) + ba(2) v
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When we consider this last equality and the inequality (2.2), we can write

24/(2) 2 (D ufi) )
Q(Z)+m—p+z§ p—&-; W_p —p;&.

Similarly to the proof of Theorem 2.1, it can be easly seen that

w%)

Here, ¢(0) =p > p — E?Zl 0; (p— oz,-) and the functlon q is analytic on U. Also, when
we write Kk = p— > " di(p—ou), u=p(l—~)andv = —v, we find Im v < 0 and
Re (u — kv) > 0. Hence, all the conditions of Lemma 3.1 are satisfied and so

g«é,)\,u ! n
: Aliidﬂlfp >p=) 6ip
=1

Req(z) =Re ¢ p+ —
iz
Thus, the proof of the theorem is completed. i

n,p,l

Puttingn=1,1; =0,61 =9, a1 =, f;, = f and f1 = f in Theorem 3.3, we have

3.4. Corollary. Let§ >0,0<a<p, #>0,v€C—{0}, Im~y >0, Refy<5(p )

and f € B —USp(v,a). If§ € (o, p_%] then [ pt?~! (&) dt € 85(v,p— 6 (p— ).
From Theorem 3.3, we obtain the following result.
3.5. Theorem. Let | = (I1,l2,...ln) € Ny, § = (81,02,...,0n) € R}, 0 < a; < p,
v € C—{0} such that 0 < > 7" 6 (p— o) <p,Im~ >0, Rey < W7 B; >0
i=1"7 T

and fi € B, — USp(li, \, i, 7y, ;) for all i = 1,n. If the inequality (2.5) is satisfied for
all i = 1,n, then the integral operator S"fb;\)’l‘(z) defined by (1.7) is p—valently starlike of
complez order v (v € C — {0}).

From Theorem 3.5, we get the following result.

3.6. Corollary. Let I = (l1,l2,..In) € Ny, 6 = (d1,02,...,0n) € R}, 0 < oy < p,
v € C— {0} such that 0 < > 7 1 di(p—as) < p, Im~y > 0, Rey < m,

B; >0 and fi € B; — USp(liy A\, 1,7y, i) for all i = 1,n. If Dp/\ufl € 8,(0), where
o=p— (p— v 0 ( — oy )/ZZ 16‘;3"; 0 <o <p for all i = 1,n, then the integral
operator ?n 1 (2) is p—valently starlike of complez order v (y € C — {0}).

Next, we give a sufficient condition for the integral operator Sn 1 (2) to be p—valently
starhke of complex order.

3.7. Theorem. Let | = (l1,l2,...ln) € Ny, § = (01,82,...,0n) € R}, 0 < «a; < p,
v € C—{0} such that 0 < >0 di(p—as) < p, Im~vy > 0, Rey < m,
B; > 0 and fi € B; — UCy(Li, A\, 1,7y, i) for all i = 1,n. Then, the integral operator
G defined by (1.8) is p—valently starlike of complex order ~(y € C — {0}) and type

n,p,l
P— 0, 0 (p— ou), that is, GO € Sp(v,p— Y00, 6i (p — ai)).
Proof. Let us define the analytic function ¢ : U — C given by
6, 7 ’
NECHO)
q(z) =p+ = SN P
(gny,p:l (Z))
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Then, we follow the same steps as in the proof of Theorem 3.3, so we omit the details
involved in this case. [}

Puttingn=1,1; =0, 01 =9, o1 = a, f; = f and g1 = g in Theorem 3.7, we have

3.8. Corollary. Let§d >0,0<a<p, 8>0,vy€C—{0},Im~vy>0,Rey < B(plia)

, s
and f € B—UCH(y, ). Ifd € (0, p,%} , then fozpl‘/pi1 (pip(f>1) dt € 8;(v,p—6(p— ).
From Theorem 3.7, we obtain the following result.

3.9. Theorem. Let | = (l1,l2,...ln) € Ny, § = (61,82,...,0,) € R}, 0 < «a; < p,
v € C— {0} such that 0 < >."  6; (p— o) <p, Im~ >0, Rey < m, B; >0
and f; € B, — USp(li, A\, 11,7y, ;) for all i = 1,n. If the inequality (2.9) is satisfied for
all i = 1,n, then the integral operator 9;5127(2) defined by (1.8) is p—valently starlike of
complez order v (y € C — {0}).

We obtain the following corollary using Theorem 3.9.

3.10. Corollary. Let |l = (I1,l2,..1n) € Ng, § = (01,02,...,0n) € R}, 0 < a; < p,
v € C—{0} such that 0 < >0 di(p—as) < p, Im~vy > 0, Rey < m,

B; >0 and fi € B; — USp(liy A\, i, v, i) for all i = 1,n. If Dl f e Cp(o), where

A1
c=p—(p=Yr,0i(p—ai) />, i’fli; 0 <o < p for all i = 1,n, then the integral
operator Sii‘)f (2) is p—walently starlike of complex order ~ (v € C — {0}).
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