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Abstract
In the article, some sharp Huygens and Wilker type inequalities involv-
ing trigonometric and hyperbolic functions are established.
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1. Introduction
The trigonometric and hyperbolic inequalities have been in recent years in the focus

of many researchers. For many results and a long list of references we quote the papers
[6, 10, 24], where many further references may be found. The following inequality

(1.1)
(
sinx

x

)2

+
tanx

x
> 2. 0 < x <

π

2

is due to Wilker [13]. It has attracted attention of several researchers(see, e. g.,[4],[7],
[8], [9],[14],[15],[21]). A hyperbolic counterpart of Wilker’s inequality

(1.2)
(
sinhx

x

)2

+
tanhx

x
> 2.

(x 6= 0) has been established by L. Zhu[16].
In [12], it was proved that

(1.3) 2 +
8

45
x3 tanx >

(
sinx

x

)2

+
tanx

x
> 2 +

(
2

π

)4

x3 tanx,

for 0 < x < π
2
. The constants 8

45
and

(
2
π

)4 in the inequality (1.3) are the best possible.
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The famous Huygens inequality[11] for the sine and tangent functions states that for
x ∈

(
0, π

2

)
(1.4) 2 sinx+ tanx > 3x.

The hyperbolic counterpart of (1.4) was established in [6] as follows: For x > 0

(1.5) 2 sinhx+ tanhx > 3x.

The inequalities (1.4) and (1.5) were respectively refined in [6, Theorem 2.6] as

(1.6) 2
sinx

x
+

tanx

x
> 2

x

sinx
+

x

tanx
> 3,

and

(1.7) 2
sinhx

x
+

tanhx

x
> 2

x

sinhx
+

x

tanhx
> 3, x 6= 0.

In the most recent paper [5], the inequalities (1.6) ,(1.7) and (1.1) were respectively
further refined as

(1.8) 2
sinx

x
+

tanx

x
>

sinx

x
+ 2

tan(x/2)

x/2
> 2

x

sinx
+

x

tanx
> 3.

and

(1.9) 2
sinhx

x
+

tanhx

x
>

sinhx

x
+ 2

tanh(x/2)

x/2
> 2

x

sinhx
+

x

tanhx
> 3.

and (
sinx

x

)2

+
tanx

x
>
( x

sinx

)2
+

x

tanx
>

sinx

x
+

(
tan(x/2)

x/2

)2

>
x

sinx
+

(
x/2

tan(x/2)

)2

> 2.(1.10)

The hyperbolic counterparts of the last two inequalities in (1.10) were also given in [5]
as follows:

(1.11)
sinhx

x
+

[
tanh(x/2)

x/2

]2
>

x

sinhx
+

[
x/2

tanh(x/2)

]2
> 2.

Inspired by (1.3), Jiang et al. [19] first proved

(1.12) 3 +
1

60
x3 sinx < 2

x

sinx
+

x

tanx
< 3 +

8π − 24

π3
x3 sinx.

and

2 +
17

720
x3 sinx <

x

sinx
+

( x
2

tan x
2

)2

< 2 +
π2 + 8π − 32

2π3
x3 sinx.(1.13)

holds for 0 < |x| < π
2
. Furthermore the constants 1

60
, 8π−24

π3 in (1.12) and the constants
17
720

, π
2+8π−32

2π3 in (1.13) are the best possible.
Recently, Chen and Sándor [20] proved that

3 +
3

20
x3 tanx < 2

(
sinx

x

)
+

tanx

x
< 3 +

(
2

π

)4

x3 tanx.

for 0 < |x| < π
2
. The constants 3

20
and

(
2
π

)4 are the best possible.
This paper is a continuation of our work [25] and is organized as follows. In Section

2, we give some lemmas and preliminary results. In Section 3, we prove some new sharp
Wilker- and Huygens-type inequalities for trigonometric and hyperbolic functions.
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2. some Lemmas
In order to establish our main result we need several lemmas, which we present in this

section.

2.1. Lemma. The Bernoulli numbers B2n for n ∈ N have the property

(2.1) (−1)n−1B2n = |B2n|,

where the Bernoulli numbers Bi for i ≥ 0 are defined by

(2.2)
x

ex − 1
=

∞∑
i=0

Bi
i!
xi = 1− x

2
+

∞∑
i=1

B2i
x2i

(2i)!
, |x| < 2π.

Proof. In [2, p. 16 and p. 56], it is listed that for q ≥ 1

(2.3) ζ(2q) = (−1)q−1 (2π)
2q

(2q)!

B2q

2
,

where ζ is the Riemann zeta function defined by

ζ(s) =

∞∑
n=1

1

ns
.

In [22, p.18, theorem 3.4], the following formula was given
∞∑
n=1

1

n2q
=

22q−1π2q|B2q|
(2q)!

.(2.4)

From (2.3) and (2.4), the formula (2.1) follows. �

2.2. Lemma. [17, 18] Let B2n be the even-indexed Bernoulli numbers. Then

2(2n)!

(2π)2n
1

1− 2−2n
< |B2n| <

2(2n)!

(2π)2n
1

1− 21−2n
,n = 1, 2, 3, · · · .

2.3. Lemma. For 0 < |x| < π, we have

(2.5)
x

sinx
= 1 +

∞∑
n=1

2
(
22n−1 − 1

)
|B2n|

(2n)!
x2n.

Proof. This is an easy consequence of combining the equality

(2.6)
1

sinx
= cscx =

1

x
+

∞∑
n=1

(−1)n−12
(
22n−1 − 1

)
B2n

(2n)!
x2n−1,

see [1, p. 75, 4.3.68], with Lemma 2.1. �

2.4. Lemma ([1, p. 75, 4.3.70]). For 0 < |x| < π,

(2.7) cotx =
1

x
−
∞∑
n=1

22n|B2n|
(2n)!

x2n−1.

The following Lemma 2.5 and Lemma 2.6 can be found in [25].

2.5. Lemma. For 0 < |x| < π,

(2.8)
1

sin2 x
=

1

x2
+
∞∑
n=1

22n(2n− 1)|B2n|
(2n)!

x2(n−1).
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2.6. Lemma. For 0 < |x| < π,

(2.9)
cosx

sin2 x
=

1

x2
−
∞∑
n=1

2(2n− 1)
(
22n−1 − 1

)
|B2n|

(2n)!
x2(n−1).

2.7. Lemma. For 0 < |x| < π,

1

sin3 x
=

1

x3
+

1

2

∞∑
n=2

22n − 2

(2n)!
|B2n|(2n− 1)(2n− 2)x2n−3

+
1

2x
+

1

2

∞∑
n=1

22n − 2

(2n)!
|B2n|x2n−1,(2.10)

and

(2.11)
cosx

sin3 x
=

1

x3
−
∞∑
n=2

(2n− 1)(n− 1)22n|B2n|
(2n)!

x2n−3.

Proof. Combining

1

sin3 x
=

1

2 sinx
− 1

2

(
cosx

sin2 x

)′
with Lemma 2.6, the identity (2.6), and Lemma 2.1 gives (2.10).

The equality (2.11) follows from combination of

cosx

sin3 x
= −1

2

(
1

sin2 x

)′
with Lemma 2.5. �

2.8. Lemma. [23, 3, 15] Let an and bn(n = 0, 1, 2, · · · ) be real numbers, and let the power
series A(t) =

∑∞
n=0 ant

n and B(t) =
∑∞
n=0 bnt

n be convergent for |t| < R. If bn > 0 for
n = 0, 1, 2, · · · , and if an

bn
is strictly increasing (or decreasing) for n = 0, 1, 2, · · · , then

the function A(t)
B(t)

is strictly increasing (or decreasing) on (0, R).

3. Main results
Now we are in a position to state and prove our main results.

3.1. Theorem. For 0 < |x| < π
2
, we have

(3.1) 2 +
23

720
x3 sinx <

sinx

x
+

(
tan x

2
x
2

)2

< 2 +
128− 16π2 + 16π

π5
x3 sinx.

The constants 23
720

and 128−16π2+16π
π5 in (3.1) are the best possible.

Proof. Let

f(x) =

sin x
x

+
(

tan x
2

x
2

)2
− 2

x3 sinx

=
x sin3 x− 8 cosx− 4 sin2 x− 2x2 sin2 x+ 8

x5 sin3 x

=
1

x5

(
x+

8

sin3 x
− 8 cosx

sin3 x
− 4

sinx
− 2x2

sinx

)
for x ∈

(
0, π

2

)
. By virtue of (2.10), (2.11), and (2.6), we have
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f(x) =
1

x5

[
x+

8

x3
+

∞∑
n=2

4(2n− 1)(2n− 2)(22n − 2)

(2n)!
|B2n|x2n−3

+
4

x
+

∞∑
n=1

4(22n − 2)

(2n)!
|B2n|x2n−1

− 8

x3
+

∞∑
n=2

8 · 22n(2n− 1)(n− 1)

(2n)!
|B2n|x2n−3

− 4

x
−
∞∑
n=1

4(22n − 2)

(2n)!
|B2n|x2n−1

− 2x−
∞∑
n=1

2(22n − 2)

(2n)!
|B2n|x2n+1

]

=
1

x5

[
−x+

∞∑
n=2

16(2n− 1)(n− 1)(22n − 1)

(2n)!
|B2n|x2n−3 −

∞∑
n=1

2(22n − 2)

(2n)!
|B2n|x2n+1

]

=
1

x5

[
∞∑
n=3

16(2n− 1)(n− 1)(22n − 1)

(2n)!
|B2n|x2n−3 −

∞∑
n=1

2(22n − 2)

(2n)!
|B2n|x2n+1

]

=
1

x5

[
∞∑
n=1

16(2n+ 3)(n+ 1)(22n+4 − 1)

(2n+ 4)!
|B2n+4|x2n+1 −

∞∑
n=1

2(22n − 2)

(2n)!
|B2n|x2n+1

]

=

∞∑
n=2

[
16(2n+ 3)(n+ 1)(22n+4 − 1)

(2n+ 4)!
|B2n+4| −

2(22n − 2)

(2n)!
|B2n|

]
x2n−4.

Let an = 16(2n+3)(n+1)(22n+4−1)
(2n+4)!

|B2n+4| − 2(22n−2)
(2n)!

|B2n| for n ≥ 2.
By a simple computation, we have a2 = 23

720
.

Furthermore, when n ≥ 3, From Lemma 2.2 one can get

an =
16(2n+ 3)(n+ 1)(22n+4 − 1)

(2n+ 4)!
|B2n+4| −

2(22n − 2)

(2n)!
|B2n|

>
16(2n+ 3)(n+ 1)(22n+4 − 1)

(2n+ 4)!
· 2(2n+ 4)!

(2π)2n+4

1

1− 2−2n−4

− 2(22n − 2)

(2n)!
· 2(2n)!
(2π)2n

1

1− 21−2n

=
4

(π)2n

[
8(2n+ 3)(n+ 1)

π4
− 1

]
> 0.

So the function f(x) is strictly increasing on
(
0, π

2

)
. Moreover, it is easy to obtain

lim
x→0+

f(x) = a2 =
23

720
and lim

x→(π/2)−
f(x) =

128− 16π2 + 16π

π5
.

The proof of Theorem 3.1 is complete. �

3.2. Remark. Since f(x) is an even function we conclude that Theorem 3.1 holds for
all x which satisfy 0 < |x| < π

2
.

3.3. Theorem. For x 6= 0, we have

(3.2) 3 +
1

40
x3 tanhx <

sinhx

x
+ 2

(
tanh x

2
x
2

)
< 3 +

1

40
x3 sinhx.
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The constant 1
40

is the best possible.

Proof. Without loss of generality, we assume that x > 0.
We firstly prove the first inequality of (3.2).
Consider the function F (x) defined by

F (x) =

sinh x
x

+ 2
tanh x

2
x
2
− 3

x3 tanhx

=
cosh 3x− 17 coshx+ 8 cosh 2x− 6x sinh 2x+ 8

2x4(cosh 2x− 1)
.

and let

f(x) = cosh 3x−17 coshx+8 cosh 2x−6x sinh 2x+8 and g(x) = 2x4(cosh 2x−1).
From the power series expansions

(3.3) sinhx =

∞∑
n=0

x2n+1

(2n+ 1)!
and coshx =

∞∑
n=0

x2n

(2n)!
,

it follows that

f(x) = cosh 3x− 17 coshx+ 8 cosh 2x− 6x sinh 2x+ 8

=

∞∑
n=0

32nx2n

(2n)!
−
∞∑
n=0

17x2n

(2n)!
+

∞∑
n=0

22n+3x2n

(2n)!
−
∞∑
n=0

6 · 22n+1x2n+2

(2n+ 1)!
+ 8

=

∞∑
n=0

(
32n + 22n+3 − 17

)
x2n

(2n)!
−
∞∑
n=0

6 · 22n+1x2n+2

(2n+ 1)!
+ 8

=

∞∑
n=1

(
32n + 22n+3 − 17

)
x2n

(2n)!
−
∞∑
n=1

6n22nx2n

(2n)!

=

∞∑
n=3

32n + 22n+3 − 17− 6n22n

(2n)!
x2n

,
∞∑
n=3

anx
2n

and

g(x) = 2x4(cosh 2x− 1)

=

∞∑
n=1

22n+1x2n+4

(2n)!

=

∞∑
n=3

4n(n− 1)(2n− 3)(2n− 1)22n−3x2n

(2n)!

,
∞∑
n=3

bnx
2n.

It is easy to see that the quotient

cn =
an
bn

=
32n + 22n+3 − 17− 6n22n

4n(n− 1)(2n− 3)(2n− 1)22n−3

satisfies c3 = 1
40
, c4 = 51

1120
, c5 = 507

8960
and

cn+1 − cn =
f1 + f2 + f3

2n(2n+ 3)
(
4n2 − 1

)(
n2 − 1

) , (n ≥ 6),



737

where

f1 =

(
9

4

)n (
10n2 − 57n+ 23

)
=

(
9

4

)n
(10n(n− 6) + 3(n− 6) + 41) > 0,

f2 =
1

4n
(102n2 + 298n+ 17) > 0,

f3 =144n2 − 184n− 8 = 144n(n− 6) + 680(n− 6) + 4072 > 0.

for n ≥ 6. This means that the sequence cn is increasing. By Lemma 2.8, the function
F (x) is increasing on (0,∞). Moreover, it is not difficult to obtain limx→0+ F (x) = c3 =
1
40
. Therefore, the first inequality in (3.2) holds.
Finally, we prove the second inequality of (3.2).
Define a function G(x) by

G(x) =

sinh x
x

+ 2
tanh x

2
x
2
− 3

x3 sinhx

=
cosh 2x+ 8 coshx− 6x sinhx− 9

x4(cosh 2x− 1)
.

and let

f(x) = cosh 2x+ 8 coshx− 6x sinhx− 9 and g(x) = x4(cosh 2x− 1).

By using (3.3), it follows that

f(x) = cosh 2x+ 8 coshx− 6x sinhx− 9

=

∞∑
n=0

22nx2n

(2n)!
+

∞∑
n=0

8x2n

(2n)!
−
∞∑
n=0

6x2n+2

(2n+ 1)!
− 9

=

∞∑
n=1

(
22n + 8

)
x2n

(2n)!
−
∞∑
n=0

6x2n+2

(2n+ 1)!

=

∞∑
n=1

(
22n + 8

)
x2n

(2n)!
−
∞∑
n=1

12nx2n

(2n)!

=

∞∑
n=3

(
22n + 8− 12n

)
x2n

(2n)!

,
∞∑
n=3

anx
2n

and

g(x) = x4(cosh 2x− 1)

=

∞∑
n=1

22nx2n+4

(2n)!

=
∞∑
n=3

4n(n− 1)(2n− 1)(2n− 3)22n−4x2n

(2n)!

,
∞∑
n=3

bnx
2n.

Let

cn =
an
bn

=
22n − 12n+ 8

4n(n− 1)(2n− 1)(2n− 3)22n−4
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satisfies c3 = 1
40
. Furthermore, when n ≥ 3, by a simple computation, we have

cn+1 − cn = −4(8n− 2)4n − (18n3 + 33n2 − 16n− 11)

n(2n− 3)
(
4n2 − 1

)
(n2 − 1)4n

,

for n ≥ 3.
Since

(8n− 2)4n − (18n3 + 33n2 − 16n− 11)

> (8n− 2)4n2 − (18n3 + 33n2 − 16n− 11)

= 14n3 − 41n2 + 16n+ 11

= 14n(n− 3)2 + 43n(n− 3) + 19(n− 3) + 68 > 0.

This means that the sequence cn is decreasing. By Lemma 2.8, the function G(x) is
decreasing on (0,∞). Moreover, it is not difficult to obtain limx→0+ G(x) = c3 = 1

40
.

This completes the proof of Theorem 3.3 .
�

3.4. Remark. Since F (x) and G(x) both are even functions, we conclude that Theorem
3.3 holds for all x 6= 0.

3.5. Theorem. For x 6= 0,

(3.4) 2 +
23

720
x3 tanhx <

sinhx

x
+

[
tanh(x/2)

x/2

]2
< 2 +

23

720
x3 sinhx.

The both constants 23
720

in (3.4) are the best possible.

Proof. The left-hand side of inequality in (3.4) has been proved in [19], so we only need
to prove the right-hand side of the inequality in (3.4).

Without loss of generality, we assume that x > 0.
Consider the function H(x) defined by

H(x) =

sinh x
x

+
[ tanh(x/2)

x/2

]2 − 2

x3 sinhx

=
x sinhx coshx+ x sinhx+ 4 coshx− 2x2 coshx− 2x2 − 4

x5 sinhx(1 + coshx)

and let

f(x) = x sinhx coshx+ x sinhx+ 4 coshx− 2x2 coshx− 2x2 − 4

and

g(x) = x5 sinhx(1 + coshx).

By the power series expansions in (3.3), we obtain
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f(x) = x sinhx coshx+ x sinhx+ 4 coshx− 2x2 coshx− 2x2 − 4

=

∞∑
n=0

22n

(2n+ 1)!
x2n+2 +

∞∑
n=0

x2n+2

(2n)!
+

∞∑
n=0

4x2n

(2n)!
−
∞∑
n=0

2x2n+2

(2n)!
− 2x2 − 4

=

∞∑
n=0

22n + 1− 2(2n+ 1)

(2n+ 1)!
x2n+2 +

∞∑
n=2

4

(2n)!
x2n

=

∞∑
n=1

22n−2 + 1− 2(2n− 1)

(2n− 1)!
x2n +

∞∑
n=2

4

(2n)!
x2n

=

∞∑
n=3

2n

(
22n−2 − 4n+ 3

)
+ 4

(2n)!
x2n

,
∞∑
n=3

anx
2n

and

g(x) = x5
[
1

2
sinh(2x) + sinhx

]
=

∞∑
n=0

1 + 22n

(2n+ 1)!
x2n+6 =

∞∑
n=3

1 + 22n−6

(2n− 5)!
x2n

=

∞∑
n=3

(
1 + 22n−6

)
(2n− 4)(2n− 3)(2n− 2)(2n− 1)2n

(2n)!
x2n

,
∞∑
n=3

bnx
2n.

Let

cn =
an
bn

=

2n

(
22n−2 − 4n+ 3

)
+ 4(

1 + 22n−6
)
(2n− 4)(2n− 3)(2n− 2)(2n− 1)2n

satisfies

c3 =
23

720
= 0.031 . . . , c4 =

17

336
= 0.01226 . . . .

Furthermore, when n ≥ 4, by a simple computation, we have

cn+1 − cn = −4 f1(n) + f2(n) + f3(n)

n(16 + 4n)(64 + 4n)(n− 2)(2n− 3)
(
4n2 − 1

)
(n2 − 1)

,

where

f1(n) = 16n
(
8n2 + 2n− 6

)
f2(n) = 4n

(
−24n4 − 138n3 + 391n2 + 153n− 382

)
f3(n) = −1536n3 − 256n2 + 2944n− 256

Since n ≥ 4, one can easily check that 4n ≥ 16n2, this implies that

f1(n) + f2(n) > 4n16n2(8n2 + 2n− 6) + 4n
(
−24n4 − 138n3 + 391n2 + 153n− 382

)
= 4n(104n4 − 106n3 + 295n2 + 153n− 382)
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By a simple computation, one has

104n4 − 106n3 + 295n2 + 153n− 382

= 104n(n− 4)3 + 1142n(n− 4)2 + 4439n(n− 4) + 6293(n− 4) + 24790 > 0.

On the other hand, when n ≥ 4, one has 4n > 16, Hence

f1(n) + f2(n) + f3(n)

> 4n(104n4 − 106n3 + 295n2 + 153n− 382)− 1536n3 − 256n2 + 2944n− 256

> 16(104n4 − 106n3 + 295n2 + 153n− 382)− 1536n3 − 256n2 + 2944n− 256

= 1664n4 − 3232n3 + 4464n2 + 5392n− 6368

= 1664n(n− 4)3 + 16736n(n− 4)2 + 58480n(n− 4) + 78032(n− 4) + 305760 > 0.

This means that the sequence cn is decreasing. By Lemma 2.8, the function H(x) is
decreasing on (0,∞). Moreover, it is not difficult to obtain limx→0+ H(x) = c3 = 23

720
.
�

3.6. Remark. Since H(x) is an even function, we conclude that Theorem 3.5 holds for
all x 6= 0.
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