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Abstract

In this paper, the eigenvalue distribution of a family of relaxed mixed
constraint preconditioner (RMCP) for the generalized saddle point
problems is discussed in detail. Most of the bounds developed improve
those appeared in previously published work.
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1. Introduction

Consider the large, sparse and nonsingular linear system in saddle point form as

(1.1) Ax ≡
[
A BT

B −C

] [
u
p

]
=

[
f
g

]
≡ b,

where A ∈ Rn×n is symmetric positive de�nite (SPD), B ∈ Rm×n with m ≤ n (possibly
m� n) is of full rank and C ∈ Rm×m is symmetric semi-positive de�nite. Systems of the
form (1.1) arise in a variety of scienti�c and engineering applications, such as constrained
optimization, least squares and Stokes problems. We refer the reader to [10] for a more
detailed list of applications and numerical solution techniques of (1.1).

In recent years, considerable e�ort has been invested in developing e�cient solvers
for systems of form (1.1). Recent works on sparse direct methods for symmetric sad-
dle point problems have been developed, such as direct solver package [18] and LDLT -
factorization technique [19]. In fact, the memory and the computational requirements
for solving saddle point problems (1.1) may seriously challenge the most e�cient direct
solution method available today. In actual implements, many iterative methods have
to be recommended to solve saddle point problems (1.1), such as generalized successive
overrelaxation (GSOR) method [2], modi�ed SSOR (MSSOR) method [33], Hermitian
and skew-Hermitian splitting method [3�7, 11, 12] and so on. However, well established
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iterative methods such as Krylov subspace methods are very slow or even fail to con-
verge if not conveniently preconditioned, it follows that preconditioning technique is a
key ingredient for the success of Krylov subspace methods in applications. Most of the
recent work on saddle point problems has focused on the development of preconditioners
for Krylov subspace methods, especially block preconditioners and multilevel schemes.
We refer the reader to [10] for a comprehensive survey of existing approaches for solving
saddle point problems.

An important class of preconditioners is based on the block LU factorization of the
coe�cient matrix A [8, 9]. This class includes a variety of block diagonal and block
triangular preconditioners [8, 9, 20�26, 28�30, 39�43]. Based on the Hermitian and skew-
Hermitian splitting of the coe�cient matrix A, the HSS preconditioner is established
[3�6,12]. Based on the Dimensional Splitting (DS) of the coe�cient matrix A, a relaxed
dimensional factorization preconditioner for Navier-Stokes equations is proposed [13,14].
Based on the augmented Lagrangian (AL) reformulation of the saddle point problem,
AL-type preconditioners appear to be remarkably robust for a broad range of problem
parameters, and they are currently the focus of intense development in [15,16].

As is known to all, the major issue of preconditioning technique is to �nd a good
approximation of the inverse of the coe�cient matrix A. To accelerate Krylov solvers
for saddle point problems, constraint preconditioner is another type of preconditioning
techniques and has been �rst introduced in constrained optimization for C = 0 [31]. It
has been proved [31] that the eigenvalues of the preconditioned matrix are all real and
positive. The strategy of constraint preconditioner is that a suitable approximation of
the (1,1) block A instead of the (1,1) block A leads to a good approximation of the
inverse of the coe�cient matrix A. Dollar [32] has extended these results in [31] by
allowing the (2,2) block to be symmetric and positive semide�nite. Further, the general
symmetric (2,2) block has been discussed [1] and the nonsymmetric (1,1) block has been
discussed [27]. Constraint preconditioner can be written as the inverse of a matrix whose
non diagonal blocks are the same as those in A, but their application may be very costly
since it requires the solution of a linear system at each iteration with an appropriate Schur
complement S as the coe�cient matrix A. A computationally e�cient inexact constraint
preconditioner (ICP) is represented by an approximation of S (or of S−1) by means of an
incomplete Cholesky factorization or a sparse approximate inverse. The application of
ICP is cheaper with respect to the constraint preconditioner. An exhaustive analysis of
spectral properties of ICP together with development of eigenvalue bounds are performed
in [36]. ICP has been proved much more robust and performing than ILU preconditioners
with variable �ll-in, computed on the whole saddle point matrix from a number of realistic
coupled consolidation problems [38].

Recently, drawing on the previous works: [34�36], Bergamaschi and Martínez [37]
discussed a family of relaxed mixed constraint preconditioner (RMCP) as follows:

Mω =

[
I 0

BP−1
A I

] [
PA 0
0 −ωPS

] [
I P−1

A BT

0 I

]
=

[
PA BT

B BP−1
A BT − ωPS

]
,

where ω is a real acceleration parameter, PA is a suitable approximation of the (1,1) block
A and PS is a suitable approximation of the Schur complement matrix S = BP−1

A BT +
C. A detailed spectral analysis of RMCP was presented in [37]. In this paper, we
focus on the relaxed mixed constraint preconditioner (RMCP) for symmetric saddle point
problems (1.1). The spectral properties of the preconditioned matrix are given and some
corresponding presented results in [36,37,44] are improved.

The paper is organized as follows. In Section 2, the spectral distribution of a class of
the parameterized saddle point problems is characterized, which extends the correspond-
ing theoretical results in [17, 36]. In Section 3, we discuss the eigenvalue distribution of
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M−1
ω A in detail and promote some corresponding presented results in [36, 37, 44]. The

conclusions are drawn in Section 4.

2. Eigenvalues of Aω

To make the spectral analysis of M−1
ω A easily, the spectral distribution of a class of

the parameterized saddle point matrix is characterized.
Given that A ∈ Rn×n is symmetric positive de�nite (SPD), B ∈ Rm×n (m ≤ n) is of

full rank and C ∈ Rm×m is symmetric positive de�nite. For ω > 0, we are interested in
the eigenvalues of

(2.1) Aωu ≡

[
A 1√

ω
BT

− 1√
ω
B 1

ω
C

][
u1

u2

]
= λ

[
u1

u2

]
≡ λu,

or

Au1 +
1√
ω
BTu2 = λu1,(2.2)

− 1√
ω
Bu1 +

1

ω
Cu2 = λu2.(2.3)

For the purposes of our discussion, the following notation regarding the eigenvalues of
SPD matrices A, BBT and C are required:

0 < αA = λmin(A), βA = λmax(A),

0 ≤ αS = λmin(BB
T ), βS = λmax(BB

T ),

0 < αC = λmin(C), βC = λmax(C).

Obviously, matrix Aω has at most n−m eigenvalues satisfying

αA ≤ λ ≤ βA
with eigenvectors u = (uT

1 , 0)
T and Bu1 = 0. One can see for instance Proposition 2.2

in [17].
Throughout this section, we de�ne, for some s, u2 6= 0,

ηA =
sTAs

sT s
∈ [αA, βA], ηC =

uT
2 Cu2

uT
2 u2

∈ [αC , βC ], ηS =
uT
2 BB

Tu2

uT
2 u2

∈ [αS , βS ].

The proof of Theorem 2.2 is based on the following Lemma 2.1, which is from [36].

2.1. Lemma. [36] Let λ /∈ [αA, βA]. Then, for every z 6= 0, there exists a vector s 6= 0
such that

zT (A− λI)−1z

zT z
= (

sTAs

sT s
− λ)−1 = (ηA − λ)−1.

2.2. Theorem. The real eigenvalues of Equation (2.1) not lying in [αA, βA] satisfy

1

ω

(
αC +

αS

βA

)
≤ 1

ω

(
ηC +

ηS
ηA

)
≤ λ ≤ max

{
ηA,

1

ω
ηC
}
≤ max

{
βA,

1

ω
βC
}
.

Proof. Let λ ∈ R with λ /∈ [αA, βA] and let u such that Bu1 6= 0 and BTu2 6= 0.
Since A− λI is invertible, from (2.2) we have

(2.4) u1 = − 1√
ω
(A− λI)−1BTu2.

Substituting (2.4) into (2.3) yields

(2.5)
1

ω
B(A− λI)−1BTu2 +

1

ω
Cu2 − λu2 = 0.
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Premultiplying (2.5) by
uT
2

uT
2 u2

leads to

(2.6)
1

ω

uT
2 B(A− λI)−1BTu2

uT
2 u2

+
1

ω
ηC − λ = 0.

Based on Lemma 2.1, from (2.6) we have

1

ω
(ηA − λ)−1ηS +

1

ω
ηC − λ = 0.

or,

(2.7) ωλ2 − (ηC + ωηA)λ+ ηS + ηAηC = 0.

The lager solution of (2.7) is

λ2 =
ηC + ωηA +

√
(ηC + ωηA)2 − 4ω(ηS + ηAηC)

2ω

=
ηC + ωηA +

√
(ηC − ωηA)2 − 4ωηS

2ω

≤ max{ηA,
1

ω
ηC}.

The smaller solution of (2.7) is

λ1 =
ηC + ωηA −

√
(ηC + ωηA)2 − 4ω(ηS + ηAηC)

2ω

=
2(ηS + ηAηC)

ηC + ωηA +
√

(ηC − ωηA)2 − 4ωηS

≥ ηS + ηAηC
max{ωηA, ηC}

=
1

ω
(ηC +

ηS
ηA

).

The last equation follows from the inequality ηC < ωηA (otherwise we would have λ1 >
ηA > αA against the assumption). Hence,

λ1 ≥
1

ω
(ηC +

ηS
ηA

) ≥ 1

ω
(αC +

αS

βA
).

2.1. Corollary. The real eigenvalues of Equation (2.1) satisfy

min
{
αA,

1

ω
(αC +

αS

βA
)
}
≤ λ ≤ max

{
βA,

1

ω
βC
}
.

In the sequel, we will denote any complex eigenvalue as

λ = λR + iλI .

2.2. Corollary. The complex eigenvalues of Equation (2.1) satisfy

ωαA + αC

2ω
≤ λR ≤

ωβA + βC
2ω

, |λI | ≤
√
βS
ω
.

Proof. From (2.7), we have

λR =
ηC + ωηA

2ω
,(2.8)

λ2
R + λ2

I =
ηS + ηAηC

ω
(2.9)

By simple computations, from (2.8) we have

ωαA + αC

2ω
≤ λR ≤

ωβA + βC
2ω

.
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Combining (2.8) and (2.9), we have

|λI | =
√
ηS + ηAηC

ω
−
(ηC + ωηA

2ω

)2
=

√
4ω(ηS + ηAηC)− (ηC + ωηA)2

4ω2

=

√
ηS
ω
− (ηC − ωηA)2

4ω2
≤
√
ηS
ω
≤
√
βS
ω
.

Remark 2.1 When ω = 1, Theorem 2.2 reduces to Theorem 1 [36], Corollary 2.1
reduces to Corollary 1 [36] and Corollary 2.2 reduces to Proposition 1 [36]. Speci�cally,
this result in Corollary 2.1 with ω = 1 improves that of Proposition 2.12 in [17], which
provides a lower bound for λ ≥ min{αA, αC}.

Example 2.1

Aω =

 βA 0 1√
ω
× 1

0 αA
1√
ω
× 1

− 1√
ω
× 1 − 1√

ω
× 1 1

ω
× c

 , αS = βS = 2, ω = 4.

If βA = 3, αA = 2.9 and c = 1, the eigenvalues ofAω are λ(Aω) = {0.4501, 2.7372, 2.9627}.
Obviously, αC = βC = 1. From Corollary 2.1, we have

0.4167 < λ < 3.

If βA = 3, αA = 2 and c = 4, the eigenvalues of Aω are λ(Aω) = {2.8846, 1.5577 +
0.2949i, 1.5577− 0.2949i}. Obviously, αC = βC = 4. From Corollary 2.1, we have

7

6
< λ < 3.

From Corollary 2.2, we have

3

2
< λR < 2, |λI | ≤

√
2

2
.

Numerical results show that Corollary 2.1 provides some valid bounds for all the real
eigenvalues of Aω and Corollary 2.2 provides some valid bounds for all the complex
eigenvalues of Aω.

3. Spectral analysis of AM−1
ω

It is not di�cult to �nd that the spectral of M−1
ω A is equivalent to the spectral of

AM−1
ω . Here we focus on the bounds for the eigenvalues of AM−1

ω to obtain the bounds for
the eigenvalues of M−1

ω A. Making this strategy to discuss the bounds for the eigenvalues
of the corresponding preconditioned matrix, one can see [24, 25, 36, 40, 41, 43] for more
details.

In fact, AM−1
ω z = λz can be expressed as

Aν = λMων, ν = M
−1
ω z.

To investigate the spectral properties ofM−1
ω A, PA and PS , respectively, are SPD approx-

imations of A and S = BP−1
A BT +C. P−1

A and P−1
S can also be viewed as preconditioners

for the corresponding matrices, so that we can de�ne the following SPD preconditioned
matrices:

P =

[
PA 0
0 PS

]
and SP = P

−1/2
S SP

−1/2
S .
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Since P is symmetric positive de�nite, the problem of �nding the eigenvalues of M−1
ω A

with u = P
1
2
+ν is equivalent to solving

P
− 1

2AP
− 1

2 u = λP−
1
2MωP

− 1
2 u.

That is,

(3.1)

[
AP RT

R −Ĉ

] [
u1

u2

]
= λ

[
I RT

R RRT − ωI

] [
u1

u2

]
,

where R = P
−1/2
S BP

−1/2
A , AP = P

−1/2
A AP

−1/2
A and Ĉ = P

−1/2
S CP

−1/2
S . Note that

RRT = SP − Ĉ and the inverse of the right side matrix product in (3.1) can be written
as [

I RT

R RRT − ωI

]−1

=

[[
I 0
R −

√
ωI

] [
I RT

0
√
ωI

] ]−1

=

[
I RT

0
√
ωI

]−1 [
I 0
R −

√
ωI

]−1

=

[
I − 1√

ω
RT

0 1√
ω
I

][
I 0
1√
ω
R − 1√

ω
I

]
≡ UL,

so that the eigenvalues of (3.1) are the same as those of LP−
1
2AP−

1
2Ux = λx which

reads:

(3.2)

[
AP

1√
ω
(I −AP )R

T

− 1√
ω
R(I −AP )

1
ω
(R(2I −AP )R

T + Ĉ)

] [
x1
x2

]
= λ

[
x1
x2

]
.

Let us assume that

0 < αA = λmin(AP ) < 1 < λmax(AP ) = βA,

0 < αS = λmin(SP ) < 1 < λmax(SP ) = βS ,

0 ≤ αC = λmin(Ĉ) < λmax(Ĉ) = βC .

Obviously, the eigenvalues of the projected matrix AR = (RRT )−1RAPR
T is also

important in the spectral analysis of the preconditioned matrices. In [36, 37, 44], it is
shown that [αR

A, β
R
A ] ⊂ [αA, βA], where α

R
A = λmin(AR) and β

R
A = λmax(AR).

Throughout this section, we will use the following notation:

θS =
xT2 SPx2
xT2 x2

, θRA =
xT2 RAPR

Tx2
xT2 RR

Tx2
, θA =

sTAP s

sT s
, θC =

xT2 Ĉx2
xT2 x2

,

for some s, x2 6= 0. It follows that θRA ∈ [αR
A, β

R
A ] and

xT
2 RRT x2

xT
2 x2

= θS − θC ≥ 0.

To obtain the bounds for the eigenvalues of M−1
ω A, we need the following lemma.

3.1. Lemma. Let H = R(2I −AP )R
T + Ĉ, P = R(I −AP )

2RT and βR
A < 2.

If αR
A < 1, then

λ(H) ∈ [αS(2− βR
A) + αC(β

R
A − 1), βS(2− αR

A)− αC(1− αR
A)],

λ(P ) ≤ (βS − αC)max
{
(1− αR

A)
2, (βR

A − 1)2
}
.

If αR
A ≥ 1, then

λ(H) ∈ [αS(2− βR
A) + αC(β

R
A − 1), βS(2− αR

A) + βC(α
R
A − 1)],

λ(P ) ≤ (βS − αC)max
{
(1− αR

A)
2, (βR

A − 1)2
}
.
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Proof. Based on the results in [36,44], here we only need prove that λ(H) ≤ βS(2−
αR
A) + βC(α

R
A − 1) for αR

A ≥ 1.
In fact, λ(H) ∈ [min q(x2, H),max q(x2, H)], where

q(x2, H) =
xT2 (R(2I −AP )R

T + Ĉ)x2
xT2 x2

= (θS − θC)(2− θRA) + θC .

Because the function on the right hand side is decreasing in θRA, then

max q(x2, H) ≤ (θS − θC)(2− αR
A) + θC

= θS(2− αR
A) + θC(α

R
A − 1)

≤ βS(2− αR
A) + βC(α

R
A − 1).

The proof is completed.
Investigating the results in Lemma 2 [36,44], the bounds for the eigenvalues of R(2I−

AP )R
T + Ĉ and R(I − AP )

2RT are provided just when βR
A < 2 and αR

A < 1. In this
case, it is easy to see that the results in Lemma 3.1 perfect the corresponding theoretical
results in Lemma 2 [36, 44]. Based on Lemma 3.1, it is easy to obtain the following
results.

3.1. Corollary. Let H = 1
ω
(R(2I −AP )R

T + Ĉ), P = 1
ω
R(I −AP )

2RT and βR
A < 2.

If αR
A < 1, then

λ(H) ∈
[αS(2− βR

A) + αC(β
R
A − 1)

ω
,
βS(2− αR

A)− αC(1− αR
A)

ω

]
,

λ(P ) ≤ (βS − αC)

ω
max

{
(1− αR

A)
2, (βR

A − 1)2
}
.

If αR
A ≥ 1, then

λ(H) ∈
[αS(2− βR

A) + αC(β
R
A − 1)

ω
,
βS(2− αR

A) + βC(α
R
A − 1)

ω

]
,

λ(P ) ≤ (βS − αC)

ω
max

{
(1− αR

A)
2, (βR

A − 1)2
}
.

Obviously, Corollary 3.1 is a generalization of Lemma 3.1. When ω = 1, Corollary 3.1
reduces to Lemma 3.1.

Based on Theorem 3 in [36,44] and Corollary 3.1, we have the following results.

3.2. Theorem. Let βA < 2.
For αR

A < 1, the real eigenvalues of (3.2) satisfy

(3.3) min

{
αA,

αS + αC(βA − 1)

ωβA

}
≤ λ ≤ max

{
βA,

βS(2− αR
A)− αC(1− αR

A)

ω

}
.

And if λI 6= 0, then the complex eigenvalues of (3.2) satisfy

ωαA + αS(2− βR
A) + αC(β

R
A − 1)

2ω
≤λR ≤

ωβA + βS(2− αR
A)− αC(1− αR

A)

2ω
,(3.4)

|λI | ≤
√
βS − αC

ω
max{1− αR

A, |βR
A − 1|}.(3.5)

For αR
A ≥ 1, the real eigenvalues of (3.2) satisfy

(3.6) min

{
αA,

αS + αC(βA − 1)

ωβA

}
≤ λ ≤ max

{
βA,

βS(2− αR
A) + βC(α

R
A − 1)

ω

}
.
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And if λI 6= 0, then the complex eigenvalues of (3.2) satisfy

ωαA + αS(2− βR
A) + αC(β

R
A − 1)

2ω
≤λR ≤

ωβA + βS(2− αR
A) + βC(α

R
A − 1)

2ω
,(3.7)

|λI | ≤
√
βS − αC

ω
max{αR

A − 1, |βR
A − 1|}.(3.8)

Proof. The proof is similar to the proof of Theorem 3 in [36]. One can see [36] for
more details.

Obviously, when ω = 1, the following results are obtained.

3.2. Corollary. Let βA < 2.
For αR

A < 1, the real eigenvalues of (3.2) satisfy

min

{
αA,

αS

βA
+
αC(βA − 1)

βA

}
≤ λ ≤ max

{
βA, βS(2− αR

A)− αC(1− αR
A)

}
.

And if λI 6= 0, then the complex eigenvalues of (3.2) satisfy

αA + αS(2− βR
A) + αC(β

R
A − 1)

2
≤λR ≤

βA + βS(2− αR
A)− αC(1− αR

A)

2
,

|λI | ≤
√
βS − αC(β

R
A − 1).

For αR
A ≥ 1, the real eigenvalues of (3.2) satisfy

min

{
αA,

αS

βA
+
αC(βA − 1)

βA

}
≤ λ ≤ max

{
βA, βS(2− αR

A) + βC(α
R
A − 1)

}
.

And if λI 6= 0, then the complex eigenvalues of (3.2) satisfy

αA + αS(2− βR
A) + αC(β

R
A − 1)

2
≤λR ≤

βA + βS(2− αR
A) + βC(α

R
A − 1)

2
,

|λI | ≤
√
βS − αC(β

R
A − 1).

Remark 3.1 From Corollary 3.2, we know that for αR
A < 1 and λI 6= 0, the upper

bound of λR is sharper than the upper bound of λR in [36, 44]. In fact, one can easily
see the following result, that is,

0 <
βA + βS(2− αR

A)− αC(1− αR
A)

2
≤ βA + βS(2− αR

A) + αC(1− αR
A)

2
.

If C ≡ 0, then Ĉ = P
−1/2
S CP

−1/2
S = 0. It follows that αC = βC = 0. Then the

bounds of Theorem 3.2 simplify is stated in the following.

3.3. Corollary. Let βA < 2 and C = 0. Then the real eigenvalues of (3.2) satisfy

min

{
αA,

αS

ωβA

}
≤ λ ≤ max

{
βA,

βS(2− αR
A)

ω

}
.

And if λI 6= 0, then the complex eigenvalues of (3.2) satisfy

ωαA + αS(2− βR
A)

2ω
≤ λR ≤

ωβA + βS(2− αR
A)

2ω
, |λI | ≤

√
βS
ω

max{1− αR
A, |βR

A − 1|}.

To develop eigenvalue bounds for RMCP we will use Theorem 3.2, and particularly
the results regarding the real eigenvalues of M−1

ω A. The following theorem gives very
simple estimates of the eigenvalues of the RMCP preconditioned matrix in terms of ω.
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3.3. Theorem. Let 1 ≤ βR
A ≤ βA < 2.

For αR
A < 1, any real eigenvalue λ of M−1

ω A satis�es

min
{
αA,

αS

2ω

}
≤ λ ≤ max

{
βA,

2βS
ω

}
.

Moreover, the complex eigenvalues λ of M−1
ω A satisfy

αA

2
≤ λR ≤

βA
2

+
2βS − αC

2ω
, |λI | ≤

√
βS
ω
.

For αR
A ≥ 1, any real eigenvalue λ of M−1

ω A satis�es

min
{
αA,

αS

2ω

}
≤ max

{
βA,

2(βS + βC)

ω

}
.

Moreover, the complex eigenvalues λ of M−1
ω A satisfy

αA

2
≤ λR ≤

βA
2

+
βS + βC

ω
, |λI | ≤

√
βS
ω

(βR
A − 1).

Proof. For αR
A < 1, from (3.3) we have

min

{
αA,

αS + αC(βA − 1)

ωβA

}
≤ λ ≤ max

{
βA,

βS(2− αR
A)− αC(1− αR

A)

ω

}
.

Using αC ≥ 0, 1 < βA < 2 and αR
A < 1, we have

min
{
αA,

αS

2ω

}
≤ λ ≤ max

{
βA,

2βS
ω

}
.

Using 1 < βR
A < 2 and αR

A < 1, from (3.4) and (3.5) we have

αA

2
≤ λR ≤

ωβA + βS(2− αR
A)− αC(1− αR

A)

2ω

=
βA
2

+
βS + (βS − αC)(1− αR

A)

2ω

≤ βA
2

+
2βS − αC

2ω
and

|λI | ≤
√
βS
ω

(βR
A − 1).

For αR
A ≥ 1, from (3.6) we have

min

{
αA,

αS + αC(βA − 1)

ωβA

}
≤ λ ≤ max

{
βA,

βS(2− αR
A) + βC(α

R
A − 1)

ω

}
.

Using αC ≥ 0, 1 < βA < 2 and αR
A ≥ 1, we have

min
{
αA,

αS

2ω

}
≤ λ ≤ max

{
βA,

2βS + βCα
R
A

ω

}
≤ max

{
βA,

2(βS + βC)

ω

}
.

Using 1 < βR
A < 2 and αR

A ≥ 1, from (3.7) and (3.8) we have

αA

2
≤λR ≤

βA
2

+
2βS + αR

AβC
2ω

≤ βA
2

+
βS + βC

ω
,

|λI | ≤
√
βS
ω

(βR
A − 1).

Remark 3.2 Theorem 2 in [37] also gives very simple estimates of the eigenvalues
of the RMCP preconditioned matrix in terms of ω, but this result in Theorem 2 is
not generally true. In fact, by investigating the proof of Theorem 2, the bound of the
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eigenvalue λ of the preconditioned matrix M−1
ω A not only depends on whether αR

A is
smaller or larger than 1, but depends on whether βR

A is smaller or larger than 1. However
in [37] it is not specify whether αR

A < 1 or αR
A > 1. It is only stated that 0 < αA ≤ αR

A

from [αR
A, β

R
A ] ⊂ [αA, βA]. Similarly, the conditions in Theorem 2 [37] do not also specify

whether βR
A < 1 or βR

A > 1. It is only stated that βR
A ≤ βA from [αR

A, β
R
A ] ⊂ [αA, βA]. In

this case, Theorem 3.3 perfects the results in Theorem 2 in [37].
Example 3.1 Let

A =

 0.5 0 0
0 1.5 0
0 0 1

 , B =

[
1 0 1
0 1 0

]
, C =

[
0.5 0
0 0.6

]
.

For convenience, we can choose PA = I and PS = 2I. Then AP = P
−1/2
A AP

−1/2
A = A,

S = BP−1
A BT + C =

[
2.5 0
0 1.6

]
, SP = P

−1/2
S SP

−1/2
S =

[
1.25 0
0 0.8

]
and

Ĉ = P
−1/2
S CP

−1/2
S =

[
0.25 0
0 0.3

]
.

Therefore, αA = λmin(AP ) = 0.5, βA = λmax(AP ) = 1.5, αS = λmin(SP ) = 0.8, βS =

λmax(SP ) = 1.25, αC = λmin(Ĉ) = 0.25 and βC = λmax(Ĉ) = 0.3.

Since R = P
−1/2
S BP

−1/2
A = P

−1/2
S B,

AR = (RRT )−1RAPR
T =

[
0.75 0
0 1.5

]
,

This shows that αR
A = λmin(AR) = 0.75, βR

A = λmax(AR) = 1.5 < 2.
If ω = 2, all the eigenvalues of M−1

ω A are λ(M−1
ω A) = {0.3283, 1, 1.4467, 0.6250 ±

0.2165i}. From Theorem 3.3, any real eigenvalue λ of M−1
ω A satis�es

0.2 < λ < 1.5,

and the complex eigenvalue λ of M−1
ω A satis�es

0.25 < λR < 1.3125, |λI | < 0.7906.

Obviously, 0.3283,1 and 1.4467 lie in (0.2, 1.5), 0.6250 ∈ (0.25, 1.3125) and | ± 0.2165| <
0.7906.

Based on Theorem 2 in [37], any real eigenvalue λ of M−1
ω A satis�es

0.5 < λ < 6,

and the complex eigenvalue λ of M−1
ω A satis�es

0.25 < λR < 2.75, |λI | < 1.5811.

Obviously, 0.3283 /∈ (0.5, 6), 0.6250 ∈ (0.25, 2.75) and | ± 0.2165| < 1.5811.
If ω = 1

2
, all the eigenvalues ofM−1

ω A are λ(M−1
ω A) = {0.6044, 1, 2.8956, 1.3±0.4583i}.

From Theorem 3.3, any real eigenvalue λ of M−1
ω A satis�es

0.5 < λ < 5,

and the complex eigenvalue λ of M−1
ω A satis�es

0.25 < λR < 3, |λI | < 1.5811.

Obviously, 0.6044 ,1, 2.8956 lie in (0.5, 5), 1.3 ∈ (0.25, 3) and | ± 0.4583| < 1.5811.
Based on Theorem 2 in [37], any real eigenvalue λ of M−1

ω A satis�es

0.2 < λ < 1.5,
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and the complex eigenvalue λ of M−1
ω A satis�es

0.25 < λR < 1.8125, |λI | < 0.7906.

Obviously, 2.8956 /∈ (0.2, 1.5), 1.3 ∈ (0.25, 1.8125) and | ± 0.4583| < 0.7906.
Example 3.2 Let

A =

 0.5 0 0
0 1.5 0
0 0 0.25

 , B =

[
−1 0 −1
0 1 0

]
, C =

[
0 0
0 0.2

]
.

For convenience, we can choose PA = I and PS = 5
3
I. Then AP = P

−1/2
A AP

−1/2
A = A,

S = BP−1
A BT + C =

[
2 0
0 1.2

]
, SP = P

−1/2
S SP

−1/2
S =

[
1.2 0
0 0.72

]
and

Ĉ = P
−1/2
S CP

−1/2
S =

[
0 0
0 0.12

]
.

Therefore, αA = λmin(AP ) = 0.25, βA = λmax(AP ) = 1.5, αS = λmin(SP ) = 0.72,

βS = λmax(SP ) = 1.2, αC = λmin(Ĉ) = 0 and βC = λmax(Ĉ) = 0.12.

Since R = P
−1/2
S BP

−1/2
A = P

−1/2
S B,

AR = (RRT )−1RAPR
T =

[
0.375 0
0 1.5

]
,

This shows that αR
A = λmin(AR) = 0.375, βR

A = λmax(AR) = 1.5 < 2.
If ω = 3, all the eigenvalues of M−1

ω A are λ(M−1
ω A) = {0.2147, 0.3927, 1.4533, 0.5687±

0.3675i}. From Theorem 3.3, any real eigenvalue λ of M−1
ω A satis�es

0.12 < λ < 1.5,

and the complex eigenvalue λ of M−1
ω A satis�es

0.125 < λR < 1.15, |λI | < 0.6325.

Obviously, 0.2147, 0.3927 and 1.4533 lie in (0.12, 1.5), 0.5687 ∈ (0.125, 1.15) and | ±
0.3675| < 0.6325.

Based on Theorem 2 in [37], any real eigenvalue λ of M−1
ω A satis�es

0.25 < λ < 7.2,

and the complex eigenvalue λ of M−1
ω A satis�es

0.125 < λR < 3.3, |λI | < 1.8974.

Obviously, 0.2147 /∈ (0.25, 7.2), 0.5687 ∈ (0.125, 3.3) and | ± 0.3675| < 1.8974.
If ω = 1

3
, all the eigenvalues of M−1

ω A are λ(M−1
ω A) = {0.3649, 0.6642, 5.571, 1.38 ±

0.66i}. From Theorem 3.3, any real eigenvalue λ of M−1
ω A satis�es

0.25 < λ < 7.2,

and the complex eigenvalue λ of M−1
ω A satis�es

0.125 < λR < 4.35, |λI | < 1.8974.

Obviously, 0.3649, 0.6642 and 5.571 lie in (0.25, 7.2), 1.38 ∈ (0.125, 4.35) and | ± 0.66| <
1.8974.

Based on Theorem 2 in [37], any real eigenvalue λ of M−1
ω A satis�es

0.12 < λ < 1.5,

and the complex eigenvalue λ of M−1
ω A satis�es

0.125 < λR < 1.7, |λI | < 0.6325.
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Obviously, 5.571 /∈ (0.12, 1.5), 1.38 ∈ (0.125, 1.7) and | ± 0.66| ≮ 0.6325.
Numerical results of Examples 3.1 and 3.2 show that the eigenvalue distribution of

the preconditioned matrix M−1
ω A in Theorem 3.3 is more tighter than that of Theorem 2

in [37]. This shows that Theorem 3.3 provide valid bounds for all the real eigenvalues of
the preconditioned matrixM−1

ω A and also provide valid bounds for the real and imaginary
parts of all the complex eigenvalues of the preconditioned matrix M−1

ω A.

4. Conclusion

In this paper, our goal is to discuss the eigenvalue distribution of a family of relaxed
mixed constraint preconditioner (RMCP) for saddle point problems. Some valid bounds
for all the eigenvalues of the corresponding preconditioned matrix are obtained and some
corresponding theoretical results in [36, 37, 44] have been improved. With regard to the
application of RMCP, one can see [34,36,37] for more details.
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