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Some properties of AFG and CTF rings
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Abstract
R is said to be a right AFG ring if the right annihilator of every
nonempty subset of R is a finitely generated right ideal. R is called
a right CTF ring if every cyclic torsionless right R-module embeds in a
free module. In this paper, we first give new characterizations of AFG
rings and study some closure properties of AFG rings. Then we explore
the intimate relationships between AFG rings and CTF rings.
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1. Introduction
In [19], we introduced the concept of AFG rings, which is a generalization of Noe-

therian rings. R is said to be a right AFG ring in case the right annihilator of every
nonempty subset of R is a finitely generated right ideal, equivalently, every cyclic torsion-
less right R-module is finitely presented, where a right R-module M is called torsionless
ifM embeds in a direct product of copies of RR. The concept of AFG rings is very useful
in ring theory. For more details about AFG rings, we refer the reader to [19, 20, 21].

In this paper, we gave some new characterizations of AFG rings and further study
some properties of AFG rings, such as closure properties under finite direct products,
quotients and localizations. On the other hand, we explore the intimate connections
between AFG rings and CTF rings, where a ring R is called right CTF [27] if every
cyclic torsionless right R-module embeds in a free module.

The layout of the paper is as follows:
Section 2 is devoted to AFG rings. We first prove that R is a right AFG ring if

and only if the dual module HomR(M,R) of any cyclic torsionless left R-module M is
finitely generated if and only if every cyclic torsionless left R-module has a projective
preenvelope. It is also shown that R is a right AFG ring if R is a left singly injective left
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CF ring. Next we discuss the closure properties of AFG rings. We prove that: (1) R
and S are right AFG rings if and only if R × S is a right AFG ring. (2) If R is a right
AFG ring and I is an ideal which is a right annihilator in R, then R/I is a right AFG
ring. (3) If R is a commutative AFG ring and S a multiplicative subset of R without
zero-divisors, then S−1R is also an AFG ring. Finally we give some examples to clarify
the relationships among AFG rings, AC rings, Π-coherent rings and pseudo-coherent
rings.

In Section 3, we deal with some properties of CTF rings. For example, it is shown
that R is a right CTF ring if the dual module of every cyclic torsionless right R-module
is H-finitely generated, and the converse holds if R is a left f -injective ring. Furthermore,
we explore the close connections between AFG rings and CTF rings. We prove that:
(1) If R is a left AFG ring, then R is a right CTF ring. (2) If R is a right CTF right
pseudo-coherent ring, then R is a right AFG ring. (3) R is a left AFG ring if and only
if R is a right CTF ring and lr(S) is a finitely generated left ideal for any finite subset
S of R. (4) R is a two-sided AFG two-sided singly injective ring if and only if R is a
two-sided CTF two-sided FP -injective ring.

Throughout this paper, R is an associative ring with identity and all modules are
unitary. MR (resp. RM) denotes a right (resp. left) R-module. For an R-module M , the
dual module HomR(M,R) is denoted by M∗ and the character module M+ is defined
by M+ = HomZ(M,Q/Z). E(M) denotes the injective envelope of M . MI (resp. M (I))
stands for the direct product (resp. direct sum) of copies of M indexed by a set I. For
a subset X of R, the right (resp. left) annihilator of X in R is denoted by r(X) (resp.
l(X)). We refer to [1, 9, 15, 16, 24, 26] for all undefined notions in this article.

2. AFG rings
In [19], the author gave some characterizations of AFG rings. For example, R is a

right AFG ring if and only if the dual module M∗ of any cyclic left R-module M is
finitely generated if and only if every cyclic left R-module has a projective preenvelope.
The following theorem gives an improvement of the above result.

Recall that that a homomorphism f : M → P is called a projective preenvelope of
a left R-module M [9] if P is projective, and for any homomorphism g from M to any
projective left R-module P ′, there exists h : P → P ′ such that g = hf .

We also recall a right R-module M is FP -injective (or absolutely pure) [25, 17] if
Ext1R(N,M) = 0 for any finitely presented right R-module N . M is called A-injective
[18] if Ext1R(R/I,M) = 0 for any right annihilator I in R.

2.1. Theorem. The following are equivalent for a ring R:

(1) R is a right AFG ring.
(2) The dual module M∗ of any cyclic torsionless left R-module M is finitely gener-

ated.
(3) For any cyclic torsionless left R-module A and x ∈ A, the additive subgroup

HA,x = {f(x) : f ∈ HomR(A,R)} of R is a finitely generated right ideal.
(4) Every cyclic torsionless left R-module has a projective preenvelope.
(5) Every FP -injective right R-module is A-injective.

Proof. (1) ⇒ (2) and (1) ⇒ (4) are obvious by [19, Theorem 2.3].
(2) ⇒ (1) Let I be any right annihilator in R. Then the exact sequence

0→ I
i→ RR

f→ R/I → 0
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of right R-modules yields the exact sequence of left R-modules

0→ (R/I)∗
f∗→ (RR)∗

i∗→ I∗.

Let B = im(i∗). Then we get the exact sequence

0→ (R/I)∗
f∗→ (RR)∗ → B → 0,

which gives rise to the exactness of the sequence

0→ B∗ → (RR)∗∗ → (R/I)∗∗.

By [24, Exercise 2.7, p.27], there exists φ : I → B∗ such that the following diagram with
exact rows commutes.

0 // I //

φ

��

RR

σR

��

// R/I //

σR/I

��

0

0 // B∗ // (RR)∗∗ // (R/I)∗∗.

Since σR/I is a monomorphism, I ∼= B∗ by the Five Lemma. Note that I∗ is torsionless
by [1, Proposition 20.14], so B is a cyclic torsionless left R-module. Thus I ∼= B∗ is
finitely generated by (2), which implies that R is a right AFG ring.

(2) ⇒ (3) Let A be any cyclic torsionless left R-module and x ∈ A. Then there exist
f1, f2, · · · , fn ∈ A∗ such that

A∗ = f1R+ f2R+ · · ·+ fnR.

So HA,x =
n∑
k=1

fk(x)R is a finitely generated right ideal.

(3) ⇒ (2) Let A = Rx be a cyclic torsionless left R-module. Define a right R-
homomorphism β : A∗ → HA,x via f 7→ f(x). It is clear that β is an isomorphism. Thus
A∗ is a finitely generated right R-module by (3).

(4) ⇒ (2) Let M be a cyclic torsionless left R-module. Then M has a projective
preenvelope f : M → P . We may choose P to be finitely generated since M is cyclic. So
we get the exact sequence P ∗ →M∗ → 0. Thus M∗ is finitely generated.

(1) ⇒ (5) is clear.
(5) ⇒ (1) Let M be a cyclic torsionless right R-module. Then Ext1R(M,N) = 0 for

any FP -injective right R-module N by (5). Therefore M is finitely presented by [8], and
so R is a right AFG ring. �

Now we investigate AFG rings in terms of singly projective, singly injective and singly
flat modules.

Recall that a left R-module M is singly projective [2] in case for any cyclic submodule
N of M , the inclusion map N →M factors through a free module.

According to [22], a left R-module M (resp. right R-module N) is called singly in-
jective (resp. singly flat) if Ext1R(F/C,M) = 0 (resp. TorR1 (N,F/C) = 0) for any cyclic
submodule C of any finitely generated free left R-module F . R is called a left singly
injective ring if RR is a singly injective left R-module.

Recall that R is a left CF ring [13] if every cyclic left R-module embeds in a free
module.

2.2. Proposition. The following are true:
(1) R is a left singly injective ring if and only if every singly projective left R-module

is singly injective.
(2) R is a left CF ring if and only if every singly injective left R-module is singly

projective.
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(3) If R is a left singly injective left CF ring, then R is a right AFG ring.

Proof. (1) “⇒ ” Let M be a singly projective left R-module. For any cyclic submodule
C of any finitely generated free left R-module F and any homomorphism f : C → M ,
there exist a finitely generated free left R-module G, g : C → G and h : G → M such
that f = hg. Note that G is singly injective, and so there exists ϕ : F → G such that
ϕλ = g, where λ : C → F is the inclusion. Hence (hϕ)λ = hg = f . Thus M is singly
injective.

“⇐ ” is clear.
(2) “⇒ ” Let M be a singly injective left R-module. For any cyclic submodule N of

M , there exists a monomorphism γ : N → Rn, n ∈ N. Thus there is θ : Rn → M such
that ι = θγ, where ι : N →M is the inclusion. So M is singly projective.

“⇐ ” is obvious by [19, Lemma 3.6].
(3) Let {Mi}i∈I be a family of singly projective left R-modules. Then each Mi is

singly injective by (1) and so MI
i is singly injective. Thus MI

i is singly projective by (2).
Hence R is a right AFG ring by [19, Theorem 2.3]. �

It is known that any singly projective R-module is singly flat for any ring R by [22,
Lemma 2.4] and any singly flat R-module is singly projective for any commutative domain
R by [22, Corollary 2.6]. Here we have the following result.

2.3. Proposition. The following are equivalent for a ring R:
(1) R is right AFG and every singly flat left R-module is singly projective.
(2) N+ is singly projective for every singly injective right R-module N .
(3) M++ is singly projective for every singly flat left R-module M .

Proof. (1) ⇒ (2) Since R is right AFG, N+ is singly flat by [22, Theorem 2.10] for any
singly injective right R-module N . So N+ is singly projective by (1).

(2) ⇒ (3) Let M be a singly flat left R-module. Then M+ is singly injective by [22,
Lemma 2.4]. So M++ is singly projective by (2).

(3)⇒ (1) Let {Mi}i∈I be a family of singly projective left R-modules, then the pure
exact sequence

0→ (M+
i )(I) → (M+

i )I

induces the split exact sequence

((M+
i )I)+ → ((M+

i )(I))+ → 0.

Thus ((M+
i )(I))+ is isomorphic to a direct summand of ((M+

i )I)+. Note that

((M+
i )(I))+ ∼= (M++

i )I , ((M+
i )I)+ ∼= (M

(I)
i )++.

Thus (M++
i )I is singly projective since (M

(I)
i )++ is singly projective by (3). Also MI

i is
a pure submodule of (M++

i )I by [6, Lemma 1(2)]. Hence MI
i is singly projective by [2,

Proposition 14], and so R is right AFG by [19, Theorem 2.3].
On the other hand, let M be any singly flat left R-module, then M++ is singly

projective by (3). Note thatM is a pure submodule ofM++, and soM is singly projective
by [2, Proposition 14]. �

Recall that R is a left dual ring if every left ideal is a left annihilator in R, equivalently,
every cyclic left R-module is torsionless.

2.4. Theorem. The following are equivalent for a ring R:
(1) R is a right AFG left dual ring.
(2) R is a right AFG ring and the injective envelope of every simple left R-module

is singly projective.
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(3) R is a right AFG ring and the injective envelope of every finitely cogenerated
left R-module is singly projective.

(4) R is a right AFG ring and (RR)+ is singly projective.
(5) Every cyclic left R-module has a projective preenvelope which is a monomor-

phism.

Proof. (1)⇒ (5) holds by [19, Theorem 3.7].
(5)⇒ (4) R is a right AFG ring by [19, Theorem 2.3]. Let N be a cyclic submodule of

(RR)+. Since N embeds in Rn, n ∈ N and (RR)+ is injective, the inclusion N → (RR)+

factors through Rn. So (RR)+ is singly projective.
(4)⇒ (2) Let M be a simple left R-module. Then there is a monomorphism E(M)→

((RR)+)I . So E(M) is isomorphic to a direct summand of ((RR)+)I . Since ((RR)+)I is
singly projective by [19, Theorem 2.3], E(M) is singly projective.

(2)⇒ (1) Let N be a cyclic left R-module. It is enough to show that for any 0 6= m ∈
N , there exists f : N → R such that f(m) 6= 0. In fact, there is a maximal submodule
K of Rm, and so Rm/K is simple. Let ι : Rm → N and i : Rm/K → E(Rm/K)
be the inclusions, and π : Rm → Rm/K be the natural map. Then there exists j :
N → E(Rm/K) such that jι = iπ. So j(m) = jι(m) = iπ(m) 6= 0. On the other
hand, since E(Rm/K) is singly projective by (2), there exist n ∈ N, g : N → Rn and
h : Rn → E(Rm/K) such that j = hg. Therefore g(m) = (x1, x2, · · · , xn) 6= 0. Let
xi 6= 0 and pi : Rn → R be the ith projection. Then pig(m) 6= 0. So N is torsionless.
Thus R is a left dual ring.

(2)⇔ (3) By [15, Theorem 9.4.3], a left R-module N is finitely cogenerated if and only
if E(N) = E(S1)⊕E(S2)⊕ · · ·⊕E(Sn), where S1, S2, · · · , Sn are simple left R-modules.
So (2)⇔ (3) follows. �

Next we discuss the closure properties of AFG rings.

2.5. Theorem. R and S are right AFG rings if and only if R×S is a right AFG ring.

Proof. “ ⇒ ” Let M be a cyclic torsionless right (R × S)-module. Then M has a
unique decomposition that M = A ⊕ B, where A = M(R, 0) is a right R-module and
B = M(0, S) is a right S-module via xr = x(r, 0) for x ∈ A, r ∈ R, and ys = y(0, s) for
y ∈ B, s ∈ S. It is easy to verify that A is a cyclic torsionless right R-module and B is a
cyclic torsionless right S-module. Thus A is a finitely presented right R-module and B
is a finitely presented right S-module by hypothesis. So there exist two exact sequences
P1 → P0 → A → 0 of right R-modules and Q1 → Q0 → B → 0 of right S-modules,
where each Pi is a finitely generated projective right R-module, and each Qi is a finitely
generated projective right S-module.

Regarding the above exact sequences as exact sequences of right (R×S)-modules, we
have an exact sequence of right (R× S)-modules

P1 ⊕Q1 → P0 ⊕Q0 → A⊕B → 0.

Note that each Pi ⊕ Qi is a finitely generated projective right (R × S)-module. So
M = A ⊕ B is a finitely presented right (R × S)-module. Thus R × S is a right AFG
ring.

“ ⇐ ” Let M be a cyclic torsionless right R-module. Note that M may be regarded
as a cyclic torsionless right (R × S)-module, so M is a finitely presented right (R × S)-
module by hypothesis. Thus there exists an exact sequence P1 → P0 → M → 0 of right
(R× S)-modules, where each Pi is a finitely generated projective right (R× S)-module.
Let Pi = Ai ⊕ Bi, where Ai is a right R-module and Bi is a right S-module, i = 0, 1.
Then we have the exact sequence A1 → A0 →M → 0 of right R-modules. Note that each
Ai is a finitely generated projective right (R× S)-module, and so is a finitely generated
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projective right R-module, whence M is a finitely presented right R-module. Thus R is
a right AFG ring. Similarly S is a right AFG ring. �

2.6. Proposition. Let R be a right AFG ring and I be an ideal which is a right anni-
hilator in R. Then R/I is also a right AFG ring.

Proof. Let MR/I be a cyclic torsionless right R/I-module. Then MR is clearly a cyclic
right R-module. Note that R/I is a torsionless right R-module since I is a right annihi-
lator in R. Thus MR is also a torsionless right R-module. So MR is a finitely presented
right R-module, i.e., there is an exact sequence of right R-modules

Rn → Rm →MR → 0.

Then we get the exact sequence of right R/I-modules

Rn ⊗R R/I → Rm ⊗R R/I →M ⊗R R/I → 0,

which yields the exact sequence of right R/I-modules

(R/I)n → (R/I)m → MR/I → 0.

Hence MR/I is a finitely presented right R/I-module. It follows that R/I is a right AFG
ring. �

2.7. Theorem. Let R be a commutative AFG ring. If S is a multiplicative subset of R
without zero-divisors, then S−1R is also an AFG ring.

Proof. Let M be a cyclic S−1R-module. Then there exists a cyclic R-submodule N of
M such that S−1N = M . Since S contains no zero-divisors, we get the exact sequence
of R-modules

0→ R→ S−1R→ S−1R/R→ 0,

which induces the exact sequence

0→ HomR(N,R)→ HomR(N,S−1R)→ HomR(N,S−1R/R).

On the other hand, there exists an exact sequence R → N → 0, which induces the
exact sequence

0→ HomR(N,S−1R/R)→ HomR(R,S−1R/R) ∼= S−1R/R.

Since S−1(S−1R/R) = 0, we have S−1(HomR(N,S−1R/R)) = 0. Thus

HomS−1R(M,S−1R) ∼= HomS−1R(S−1R⊗R N,S−1R)

∼= HomR(N,S−1R) ∼= S−1HomR(N,S−1R) ∼= S−1HomR(N,R).

Since HomR(N,R) is a finitely generated R-module by [19, Theorem 2.3], we have
HomS−1R(M,S−1R) is a finitely generated S−1R-module. So R/I is an AFG ring by
[19, Theorem 2.3] again. �

At the end of this section, we consider several rings related to AFG rings.
Recall that R is said to be a right AC ring [18] if the right annihilator of each nonempty

subset of R is a cyclic right ideal. R is called a right Π-coherent ring [4] in case every
finitely generated torsionless right R-module is finitely presented. R is called a right
coherent ring [5] if every finitely generated right ideal is finitely presented. R is called
a right pseudo-coherent ring [3] if the right annihilator of each finite subset of R is a
finitely generated right ideal.

Obviously, we have the following implications:
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right Π− coherent rings

��

+3 right coherent rings

��
right AC rings +3 right AFG rings +3 right pseudo− coherent rings.

But these are not generally reversible as shown by the following examples.

2.8. Example. Let F be a field with an isomorphism x 7→ x̄ from F to a subfield F̄ 6= F .
Let R denote the right F -space on a basis {1, c} where c2 = 0 and cx = x̄c for all x ∈ F .
Then by [3, Example] or [28, Example 2.7], R is right Artinian, and so is right AFG.
But R is not right AC. Otherwise, suppose that R is a right AC ring. Let t 6= 0 be
an element of the Jacobson radical J = Rc = Fc, then J ⊆ r(t) 6= R. Since R is local,
J = r(t). Thus J = aR and so a = bc for some b ∈ R. Note that b is a unit since b 6∈ J .
So cR = b−1aR = b−1J = J = Fc. But cR = F̄ c, and so F̄ c = Fc, which contradicts the
fact that F̄ 6= F .

In fact, we have the following result.

2.9. Proposition. R is a right AC ring if and only if R is a right AFG ring and rl(S)
is a cyclic right ideal for any finite subset S of R.

Proof. “⇐ ” Let r(T ) be a right annihilator in R for T ⊆ R. Then r(T ) = a1R+ a2R+
· · ·+ anR. By [1, Proposition 2.15], we have

r(T ) = rl(r(T )) = rl{a1, a2, · · · , an}

is a cyclic right ideal of R. So R is a right AC ring.
“⇒ ” is trivial. �

2.10. Example. Let F be a field and R the subring of FN consisting of “sequences"
(a1, a2, · · · ) ∈ FN that are eventually constant. Then R is a commutative von Neumann
regular ring (see [16, Example 7.54]) and so is pseudo-coherent.

Let ei ∈ R denote the ith unit vector (0, · · · , 1, 0, · · · ) and S = {e1, e3, e5, · · · }. Then
r(S) consists of sequences (a1, a2, · · · ) that are eventually zero and such that an = 0 for
n odd. Clearly, r(S) is not a finitely generated ideal of R. Thus R is not an AFG ring.

Björk proved that R is a right AFG ring if R is a right pseudo-coherent left perfect
ring (see [3, Proposition 4.3]).

2.11. Example. Let x, y1, y2, · · · be indeterminates over a field K, S = K[x, yi] and
R = K[x2, x3, yi, xyi]. Then R is a subring of the commutative domain S. Hence R is
also a commutative domain, and so is an AFG ring. But R is not a Π-coherent ring (see
[12, p.110]).

It is known that R is a right Π-coherent ring if and only if every n × n matrix ring
Mn(R) (n ≥ 1) is a right AFG ring (see [20, Corollary 2.5]). Although being right
Π-coherent ring is Morita invariant, it is false for right AFG rings.

3. CTF rings
In [27], Xue introduced the concept of right CTF rings. He called a ring R right

CTF if every cyclic torsionless right R-module embeds in a free module. This concept
is a generalization of right FGTF rings introduced by Faith [11]. Recall that a ring R
is right FGTF if every finitely generated torsionless right R-module embeds in a free
module.

3.1. Lemma. The following are true:
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(1) R is a right CTF ring if and only if every right annihilator in R is a right
annihilator of a finite subset of R.

(2) A ring R is right FGTF if and only if every n× n matrix ring Mn(R) is right
CTF for every n ≥ 1.

Proof. (1) “ ⇒ ” Let I be a right annihilator in R. Then there is a monomorphism
f : R/I → Rn, n ∈ N. Put f(1) = (a1, a2, · · · , an). It is easy to check that I =
r{a1, a2, · · · , an}.

“ ⇐ ” Let I be a right annihilator in R. Then I = r{b1, b2, · · · , bn} by hypothesis.
Define g : R/I → Rn by

g(r) = (b1r, b2r, · · · , bnr).
It is easy to verify that g is a monomorphism. So R is a right CTF ring.

(2) follows from (1) and [11, Theorem 1.1]. �

3.2. Remark. (1) Although being right FGTF is Morita invariant, being right CTF is
not Morita invariant by Lemma 3.1(2).

(2) If R has the a.c.c. on left annihilators, then R is a right CTF ring by Lemma
3.1(1) and [10, Corollary 2].

(3) Clearly, any right CF ring is right CTF . But the converse is not true in general.

3.3. Example. Let k be a division ring and Vk be a right k-vector space of infinite
dimension. Let R = End(Vk). Then R is a right self-injective von Neumann regular ring
but not semisimple Artinian (see [16, Example 3.74B]). Note that R is a Baer ring, so R
is a right CTF ring. Clearly R is not a right CF ring.

In fact, we have the following easy observation.

3.4. Proposition. R is a right CF ring if and only if R is a right CTF right dual ring.

Recall that a left R-moduleM is H-finitely generated [7] if there is a finitely generated
submodule N of M such that (M/N)∗ = 0.
R is called a left f-injective ring if Ext1R(R/I,R) = 0 for any finitely generated left

ideal I.

3.5. Theorem. If the dual module of every cyclic torsionless right R-module is H-finitely
generated, then R is a right CTF ring. The converse holds if R is a left f-injective ring.

Proof. Let M be a cyclic torsionless right R-module. Then there exists a finitely gener-
ated submodule N of M∗ such that (M∗/N)∗ = 0 by hypothesis.

Let N = Rf1 +Rf2 + · · ·+Rfn. Define α : M → Rn by

α(x) = (f1(x), f2(x), · · · , fn(x)), x ∈M.

We next prove that α is a monomorphism.
Let α(x) = 0, define β : M∗/N → R by

β(g) = g(x), g ∈M∗.
It is easy to check that β is well defined, and so β = 0. Thus x ∈

⋂
g∈M∗ ker(g). Since

M is torsionless, we have x = 0. So α is a monomorphism and hence R is a right CTF
ring.

Conversely, suppose that R is a right CTF ring and R is left f -injective. For any cyclic
torsionless right R-module M , there exists an exact sequence 0 → M

γ→ Rn → L → 0.
Let πi : Rn → R be the ith projection, ϕi = πiγ ∈M∗ and N = Rϕ1 +Rϕ2 + · · ·+Rϕn.
We claim that (M∗/N)∗ = 0. Otherwise, if there exists 0 6= ξ ∈ (M∗/N)∗, then there
exists θ ∈ M∗ such that ξ(θ) 6= 0. Write λ : N → Rθ + N and ι : Rθ + N → M∗ to be
the inclusions. Since M is cyclic, there is an exact sequence R ρ→M → 0, which induces



65

the exact sequence 0→ M∗
ρ∗→ R∗. Since R is a left f -injective ring, the exact sequence

0 → N
ρ∗ιλ→ R∗ induces the exact sequence R∗∗ λ∗ι∗ρ∗∗→ N∗ → 0. Thus λ∗ι∗σMρ =

λ∗ι∗ρ∗∗σR is epic, and so λ∗ι∗σM is epic. We next show that λ∗ι∗σM is also monic. In
fact, if λ∗ι∗σM (x) = 0, then σM (x)ιλ = 0, and so σM (x)ιλ(ϕi) = 0, i = 1, 2, · · · , n. Thus
ϕi(x) = 0, and so γ(x) = 0. Since γ is monic, x = 0. Hence λ∗ι∗σM is an isomorphism.

Similarly, the exact sequence 0→ Rθ+N
ρ∗ι→ R∗ induces the exact sequence R∗∗ ι

∗ρ∗∗→
(Rθ+N)∗ → 0. Then ι∗σMρ = ι∗ρ∗∗σR is an epimorphism. So ι∗σM is an epimorphism.
Also ι∗σM is a monomorphism. Thus ι∗σM is an isomorphism. Hence λ∗ : (Rθ+N)∗ →
N∗ is an isomorphism. Note that the exact sequence

0→ N
λ→ Rθ +N → (Rθ +N)/N → 0

induces the exact sequence

0→ ((Rθ +N)/N)∗ → (Rθ +N)∗
λ∗
→ N∗.

So ((Rθ + N)/N)∗ = 0. But ξ|(Rθ+N)/N 6= 0, a contradiction. Thus (M∗/N)∗ = 0.
Therefore M∗ is H-finitely generated. �

3.6. Corollary. R is a quasi-Frobenius ring if and only if R is a two-sided dual ring and
the dual module of every cyclic right R-module is H-finitely generated.

Proof. It follows from Theorem 3.5 and [13, Theorem 2.1]. �

Next we consider the relationships between AFG rings and CTF rings.

3.7. Lemma. The following are true:
(1) If R is a left AFG ring, then R is a right CTF ring.
(2) If R is a right CTF right pseudo-coherent ring, then R is a right AFG ring.

Proof. (1) By Theorem 2.1, the dual module of every cyclic torsionless right R-module is
finitely generated and so is H-finitely generated. Thus R is a right CTF ring by Theorem
3.5.

(2) is clear by Lemma 3.1(1). �

In general, a right or left CTF ring need not be a left AFG ring.

3.8. Example. LetK be a field with a subfield L such that dimLK =∞, and there exists
a field isomorphism ϕ : K → L (for instance, K = Q(x1, x2, x3, · · · ), L = Q(x2, x3, · · · )).
Let R = K ×K with multiplication

(x, y)(x′, y′) = (xx′, ϕ(x)y′ + yx′), x, y, x′, y′ ∈ K.
Then it is easy to see that R has exactly three right ideals: 0, R and (0,K). Therefore R
has the a.c.c and the d.c.c on right annihilators and so has the a.c.c. on left annihilators.
Thus R is a two-sided CTF ring by Remark 3.2(2).

On the other hand, let a = (0, 1) ∈ R. Then l(a) is not finitely generated (see [16,
Example 4.46 (e)]). Thus R is not a left AFG ring.

However we have the following result.

3.9. Proposition. Let R be a two-sided pseudo-coherent ring. Then the following are
equivalent:

(1) R is a left AFG ring.
(2) R is a right AFG ring.
(3) R is a left CTF ring.
(4) R is a right CTF ring.
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Proof. (1) ⇒ (4) and (2) ⇒ (3) follow from Lemma 3.7(1).
(4) ⇒ (2) and (3) ⇒ (1) hold by Lemma 3.7(2). �

3.10. Corollary. The following are true for a ring R:
(1) R is a two-sided AFG ring if and only if R is a two-sided CTF two-sided pseudo-

coherent ring.
(2) R is a two-sided Π-coherent ring if and only if R is a two-sided FGTF two-sided

coherent ring.

Proof. (1) is an immediate consequence of Proposition 3.9.
(2) follows from (1), Lemma 3.1(2) and [20, Corollary 2.5]. �

Recall that R is a right FP -injective ring if RR is an FP -injective right R-module.
Clearly, any right FP -injective ring is right singly injective.

3.11. Proposition. The following are true:
(1) R is a left AFG ring if and only if R is a right CTF ring and lr(S) is a finitely

generated left ideal for any finite subset S of R.
(2) A right singly injective ring R is left AFG if and only if R is right CTF .
(3) [27, Corollary 3.4] A right FP -injective ring R is left Π-coherent if and only if

R is right FGTF .

Proof. (1) By Lemma 3.7(1), it is enough to show the sufficiency.
Let l(T ) be a left annihilator in R for T ⊆ R. By Lemma 3.1(1), rl(T ) = r(S) for

a finite subset S of R. So by [1, Proposition 2.15], l(T ) = lrl(T ) = lr(S) is a finitely
generated left ideal. Hence R is a left AFG ring.

(2) For any finite subset S = {r1, r2, · · · , rn} of R, Rr1 +Rr2 + · · ·+Rrn = l(T ) for
some T ⊆ R by [22, Proposition 2.8] since R is a right singly injective ring. So

lr(S) = lr(Rr1 +Rr2 + · · ·+Rrn) = lrl(T ) = l(T )

is a finitely generated left ideal. Thus the result holds by (1).
(3) By [23, Theorem 5.41 and Corollary 5.42], R is a right FP -injective ring if and

only if every n × n matrix ring Mn(R) is right singly injective for every n ≥ 1. So (3)
follows from (2), Lemma 3.1(2) and [20, Corollary 2.5]. �

3.12. Corollary. The following are equivalent for a ring R:
(1) R is a two-sided AFG two-sided singly injective ring.
(2) R is a two-sided AFG two-sided FP -injective ring.
(3) R is a two-sided CTF two-sided FP -injective ring.

Proof. (1) ⇒ (2) We first prove that R is a right coherent ring. Let I and J be two
finitely generated right ideals of R. Then I = r(X) and J = r(Y ) for some finitely
generated left ideals X and Y of R by [22, Proposition 2.8] and Proposition 3.11. Thus
I ∩ J = r(X + Y ) is finitely generated. Also r(a) is finitely generated for any a ∈ R. So
R is a right coherent ring by [5, Theorem 2.2].

On the other hand, l(I ∩ J) = l(r(X) ∩ r(Y )) = l(r(X + Y )) = X + Y = l(I) + l(J).
Thus R is a right f -injective ring by [14, Theorem 1]. So R is a right FP -injective ring
by [25, Lemma 3.1]. Similarly, R is a left FP -injective ring.

(2) ⇒ (3)⇒ (1) follow from Proposition 3.11. �
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