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Classical completely prime submodules
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Abstract
We define and characterize classical completely prime submodules
which are a generalization of both completely prime ideals in rings and
reduced modules (as defined by Lee and Zhou in [18]). A comparison of
these submodules with other “prime” submodules in literature is done.
If Rad(M) is the Jacobson radical of M and βc

cl(M) the classical com-
pletely prime radical ofM , we show that for modules over left Artinian
rings R, Rad(M) ⊆ βc

cl(M) and Rad(RR) = βc
cl(RR).
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1. Introduction
All modules are left modules, the rings are associative but not necessarily unital. An

ideal P of a ring R is completely prime (completely semiprime) if for any a, b ∈ R (a ∈ R)
such that ab ∈ P (a2 ∈ P) we have, a ∈ P or b ∈ P (a ∈ P). A ring R is completely prime
if the zero ideal is completely prime. A ring R is completely semiprime (or reduced) if
and only if for all a ∈ R, a2 = 0⇒ a = 0. An R-moduleM is reduced if for all a ∈ R and
every m ∈ M , am = 0 implies 〈m〉 ∩ aM = 0, where 〈m〉 = Zm+ Rm is the submodule
of M generated by m ∈ M . It is worth noting that, if R is unital then 〈m〉 = Rm,
otherwise Rm ⊆ 〈m〉 but 〈m〉 6⊂ Rm in general. By (P : N) (resp. (P : m)) where P ,
N are submodules of an R-module M and m ∈ M , we mean {r ∈ R : rN ⊆ P} (resp.
{r ∈ R : rm ∈ P}). If a is an element of a ring R, by 〈a〉 we denote the ideal of R
generated by a. We write N ≤ M to mean N is a submodule of M . Our definition of a

∗Department of Mathematics and Applied Mathematics, Nelson Mandela Metropolitan Uni-
versity. P.O BOX 77000, Port Elizabeth, South Africa
Email: Nico.Groenewald@nmmu.ac.za
†Corresponding Author.
‡Department of Mathematics, Makerere University, P.O BOX 7062, Kampala, Uganda.

Email: ssevviiri@cns.mak.ac.ug



718

reduced module is a generalization of that in [18], where Rm is used in the place of 〈m〉.
We state an equivalent but more handy definition for a reduced module.

1.1. Definition. An R-moduleM is reduced if for all a ∈ R and everym ∈M , a2m = 0
implies a〈m〉 = 0.

This definition of a reduced (completely semiprime) module motivates the following
two definitions:

1.2. Definition. A proper submodule P of an R-module M is completely semiprime if
for all a ∈ R and every m ∈M , a2m ∈ P implies a〈m〉 ⊆ P .

1.3. Definition. A proper submodule P of an R-module M is classical completely
prime if for all a, b ∈ R and every m ∈M , abm ∈ P implies a〈m〉 ⊆ P or b〈m〉 ⊆ P .

An R-moduleM/P is a classical completely prime module if and only if P is a classical
completely prime submodule of M . Thus, an R-module M is classical completely prime
(completely semiprime) if and only if the zero submodule is a classical completely prime
(completely semiprime) submodule ofM . Although the phrase “completely prime" would
seem suitable in the place of classical completely prime in Definition 1.3, we reserve it
for a different meaning - one given by Tuganbaev in [24, p.1480] and discussed in [21] (in
which it is most suitable).

1.1. Example. A free module M over a domain R is classical completely prime.

Proof. Suppose abm = 0 for some a, b ∈ R and m ∈M . Then

abm = ab

n∑
i=1

(rimi) =

n∑
i=1

(abri)mi = 0

for some ri ∈ R and mi ∈ M . Since M is free abri = 0 for all i ∈ {1, · · ·n}. For m 6= 0,
there is atleast one j ∈ {1, · · ·n} such that rj 6= 0. Now abrj = 0 implies a = 0 or b = 0
(since R is a domain) such that a〈m〉 = 0 or b〈m〉 = 0. �

1.2. Example. A torsionfree module M over a domain R is classical completely prime.
It follows that flat modules over domains (and hence projective modules over domains)
are classical completely prime modules.

Proof. Suppose for a, b ∈ R and m ∈ M , abm = 0. If m = 0, a〈m〉 = 0 and b〈m〉 = 0.
Let m 6= 0, then ab = 0 sinceM is torsionfree. Hence, a = 0 or b = 0 since R is a domain.
Therefore, a〈m〉 = 0 or b〈m〉 = 0. The last part is due to the fact that flat modules are
torsionfree, see [23, Example 1, p.15] and projective modules are flat modules. �

1.3. Example. Every submodule P of a module M over a division ring R is a classical
completely prime submodule.

Proof. Suppose a, b ∈ R and m ∈ M such that abm ∈ P . If ab = 0, a = 0 or b = 0 such
that a〈m〉 ⊆ P or b〈m〉 ⊆ P . Suppose ab 6= 0, then, m ∈ (ab)−1P ⊆ P .§ Thus, a〈m〉 ⊆ P
and b〈m〉 ⊆ P . �

1.4. Example. Any prime (sub)module over a commutative ring is a classical completely
prime (sub)module.

Proposition 1.1 below and its corollaries provide more justification for our definition
of classical completely prime submodules.

§(ab)−1 is here used to mean the inverse of ab in R
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1.1. Proposition. If 1 ∈ R and P / R, then P is a completely prime ideal of R if and
only if P is a classical completely prime submodule of RR.

Proof. Suppose P is a completely prime ideal of R and for any a, b ∈ R and m ∈R R,
abm ∈ P . By definition of a completely prime ideal, a ∈ P or b ∈ P or m ∈ P . Thus,
a〈m〉 ⊆ P or b〈m〉 ⊆ P . Conversely, suppose the ideal P of R is a classical completely
prime submodule of RR. Let for any a, b ∈ R, ab ∈ P . Since 1 ∈ R by definition of
classical completely prime submodule, ab.1 ∈ P implies aR ∈ P or bR ∈ P such that
a ∈ P or b ∈ P . �

1.1. Corollary. If 1 ∈ R, then R is a domain if and only if RR is a classical completely
prime module.

1.2. Corollary. If 1 ∈ R and P /R, then P is a completely semiprime ideal of R if and
only if it is a completely semiprime submodule of RR.

1.3. Corollary. A unital ring R is reduced if and only if RR is a reduced module.

2. Investigation of properties
In this section, we investigate properties exhibited by classical completely prime

(semiprime) submodules. First, we introduce notions of symmetric and IFP submod-
ules that will prove useful later in the sequel. Lambek in [17, p.364] called a module M
symmetric if abm = 0 implies bam = 0 for a, b ∈ R and m ∈ M . We call a submodule
P of an R-module M symmetric if abm ∈ P implies bam ∈ P for a, b ∈ R and m ∈ M .
So, a module M is symmetric if its zero submodule is symmetric. From [8], a right (or
left) ideal I of a ring R is said to have the insertion-of-factor-property (IFP) if whenever
ab ∈ I for a, b ∈ R, we have aRb ⊆ I. We call a submodule N of an R-module M an IFP
submodule if whenever am ∈ N for a ∈ R and m ∈M , we have aRm ⊆ N . A module is
IFP if its zero submodule is IFP.

2.1. Proposition. For any submodule P of an R-module M ,

completely semiprime⇒ symmetric⇒ IFP.

Proof. Let abm ∈ P . (bab)2m ∈ P and P completely semiprime gives bab〈m〉 ⊆ P .
Thus, (ba)2m = bab(am) ∈ bab〈m〉 ⊆ P and again P completely semiprime gives bam ∈
ba〈m〉 ⊆ P . For the second implication, let am ∈ P for a ∈ R and m ∈ M . Then
Ram ⊆ P and P symmetric implies aRm ⊆ P . �

2.1. Example. A module M over a left duo ring R (a ring whose all left ideals are two
sided) is fully IFP (every submodule of M is IFP) but it need not be symmetric.

Proof. Let P ≤ M , a ∈ R and m ∈ M such that am ∈ P , then a ∈ (P : m). (P : m)
is a left ideal of R but since R is left duo, we have (P : m) / R and aR ⊆ (P : m) such
that aRm ⊆ P . Hence, P is IFP. Z2 is a left quasi duo ring (i.e., every maximal left
ideal of Z2 is two sided). By [16, Prop. 2.1], any n-by-n upper triangular matrix ring R
over Z2 is left quasi duo. Hence, every submodule of the module RR is IFP. We show

that the zero submodule of RR is not symmetric. Take m =

(
1̄ 0̄
0̄ 1̄

)
, a =

(
1̄ 0̄
1̄ 0̄

)
, and

b =

(
0̄ 0̄
1̄ 0̄

)
∈ R; abm = 0 but bam 6= 0. �

2.2. Example. A submodule P of a moduleM over a commutative ring R is symmetric
but it need not be completely semiprime.
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2.1. Properties of underlying ring. We give information classical completely prime
(completely semiprime) submodules of RM reveal about the underlying ring R. Proposi-
tions 2.2 and 2.3 indicate that there is a one to one correspondence between completely
semiprime (classical completely prime) submodules P of the module RM and completely
semiprime (completely prime) ideals of R of the form (P : m) for all m ∈M \ P .

2.2. Proposition. For P ≤ RM , the following statements are equivalent:
(1) P is a completely semiprime submodule of M ;
(2) (P : m) = (P : 〈m〉) = (0̄ : m̄) is a completely semiprime ideal of R for every

m ∈M \ P , where m̄ = m+ P ;
(3) for all m ∈M \ P , (P : m) / R and for all a ∈ R if a2m ∈ P , then am ∈ P ;
(4) for all m ∈M \ P , (P : m) / R and for all a ∈ R if 〈a2m〉 ⊆ P , then 〈am〉 ⊆ P ;
(5) for all a ∈ R and every m ∈M , if 〈a2m〉 ⊆ P , then 〈a〈m〉〉 ⊆ P .

Proof. (1) ⇒ (2). Since (P : m) is always a left ideal of R for all m ∈ M \ P , we show
that if a ∈ (P : m), then aR ⊆ (P : m). Suppose a ∈ (P : m), then Ram ⊆ P and
from Proposition 2.1, we have aRm ⊆ P and therefore, aR ⊆ (P : m) as required. Let
m ∈ M \ P , (P : m) = {r ∈ R : rm ∈ P} = {r ∈ R : rm̄ = 0̄} = (0̄ : m̄). The
inclusion (P : 〈m〉) ⊆ (P : m) is clear. Suppose x ∈ (P : m), then xR ⊆ (P : m). Hence,
x〈m〉 ⊆ P and we have x ∈ (P : 〈m〉). Lastly, suppose a2 ∈ (P : m), i.e., a2m ∈ P . Then,
am ∈ a〈m〉 ⊆ P since P is a completely semiprime submodule of M . Thus, a ∈ (P : m).

(2) ⇒ (1). Let for all a ∈ R and m ∈ M , a2m ∈ P . Then, a2 ∈ (P : m) which
implies a ∈ (P : m) by definition of a completely semiprime ideal of a ring R. Thus,
aR ⊆ (P : m) and aRm ⊆ P . Therefore, a〈m〉 = Zam+aRm ⊆ P and P is a completely
semiprime submodule of M .

(2)⇔ (3)⇔ (4) and (5)⇔ (1) are trivial. �

2.1. Corollary. An R-module M is reduced if and only if for every 0 6= m ∈M , (0 : m)
is a completely semiprime two sided-ideal of R.

2.3. Proposition. For a proper submodule P of an R-module M , the following state-
ments are equivalent:

(1) P is a classical completely prime submodule of M ;
(2) for every m ∈M \ P , (P : m) = (P : 〈m〉) = (0̄ : m̄) is a completely prime ideal

of R;
(3) for all m ∈M \ P , (P : m) / R and if a, b ∈ R such that abm ∈ P , then am ∈ P

or bm ∈ P ;
(4) for all m ∈ M \ P , (P : m) / R and if a, b ∈ R such that 〈abm〉 ⊆ P , then
〈am〉 ⊆ P or 〈bm〉 ⊆ P ;

(5) for all a, b ∈ R and everym ∈M , if 〈abm〉 ⊆ P , then 〈a〈m〉〉 ⊆ P or 〈b〈m〉〉 ⊆ P .

Proof. (1) ⇒ (2). Every classical completely prime submodule of M is a completely
semiprime submodule of M . We have seen in Proposition 2.2 that (P : m) is an ideal
of R and (P : m) = (P : 〈m〉) = (0̄ : m̄). Let a, b ∈ R and 0 6= m ∈ M such
that ab ∈ (P : m), i.e., abm ∈ P . Now, P classical completely prime submodule gives
am ∈ a〈m〉 ⊆ P or bm ∈ b〈m〉 ⊆ P . Hence, a ∈ (P : m) or b ∈ (P : m).

(2) ⇒ (1). Let for a, b ∈ R and 0 6= m ∈ M , abm ∈ P , i.e., ab ∈ (P : m). (P : m)
a completely prime ideal of R gives a ∈ (P : m) or b ∈ (P : m). Hence, (am ∈ P and
aRm ⊆ P ) or (bm ∈ P and bRm ⊆ P ) such that a〈m〉 ⊆ P or b〈m〉 ⊆ P .
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(2)⇔ (3)⇔ (4) and (5)⇔ (1) are trivial. �

The zero divisor set of RM [3, p.316] is the set

Zd(M) := {r ∈ R : there exists 0 6= m ∈M, with rm = 0}.

The following proposition provides us with two other ways of constructing completely
prime ideals of a ring R from a submodule P of an R-module M .

2.4. Proposition. Let P be a classical completely prime submodule of an R-module
M . Then,

(1) for any m,n ∈M \ P either (P : n) ⊆ (P : m) or (P : m) ⊆ (P : n);
(2) Zd(M/P ) is a completely prime ideal of R;
(3) for all submodules K and L of M not contained in P , (P : L) ⊆ (P : K) or

(P : K) ⊆ (P : L);
(4) (P : K) is a completely prime ideal of R for all submodules K of M such that

K 6⊆ P .

Proof. (1) Assume n,m ∈ M \ P . Then, (P : n)(P : m) ⊆ (P : n) ∩ (P : m) ⊆ (P :
n+m). We know that, (P : n+m) is a completely prime ideal of R and hence
a prime ideal of R. So, we have (P : n) ⊆ (P : n+m) or (P : m) ⊆ (P : n+m).
If (P : n) ⊆ (P : n + m), then (P : n) = (P : n) ∩ (P : n + m) ⊆ (P : m).
Similarly, if (P : m) ⊆ (P : n+m), we get (P : m) ⊆ (P : n).

(2) By definition, Zd(M/P ) =
⋃

m∈M\P
(P : m). But {(P : m)}m∈M\P form a chain

of completely prime ideals of R. We see that Zd(M/P ) is the largest of all the
(P : m)’s and hence a completely prime ideal of R.

(3) (P : K)(P : L) ⊆ (P : K) ∩ (P : L) ⊆ (P : K + L). Hence, (P : K) ⊆ (P :
K + L) ⊆ (P : L) or (P : L) ⊆ (P : K + L) ⊆ (P : K).

(4) To show that (P : K) is a completely prime ideal of R, it is enough to show
that it is both prime and completely semiprime as an ideal of R. If P is classical
completely prime, by Theorem 3.1 it is classical prime (see definition 3.2) and
hence (P : K) is a prime ideal of R for all K ≤ M such that K 6⊆ P . Suppose
a2 ∈ (P : K) for a ∈ R and K ≤ M with K 6⊆ P , then a2k ∈ P for all k ∈ K.
By hypothesis, a〈k〉 ⊆ P for all k ∈ K. Thus, aK ⊆ P such that a ∈ (P : K).

�

2.2. Homomorphic images.

2.5. Proposition. Let M be an R-module, N,P ≤ M such that N ⊆ P . If f : M →
M/N is a canonical epimorphism, then P is a classical completely prime submodule of
M if and only if f(P ) is a classical completely prime submodule of M/N .

The proof is elementary, if N 6⊆ P , P classical completely prime submodule ofM does
not in general imply f(P ) is a classical completely prime submodule of M/N (and hence
classical completely prime is not in general closed under homomorphic images).

2.3. Example. The Z-module Z is a classical completely prime module by Corollary
1.1 and N = 8Z is a submodule of M = ZZ. By [1, Example 2.5], M/N is not a reduced
module (i.e., not a completely semiprime module) and hence not a classical completely
prime module.

2.6. Proposition. Let f : R → A be a ring epimorphism and M an A-module, then
M is an R-module and AM is classical completely prime if and only if RM is classical
completely prime.
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Proof. Define a function from RM to AM by rm = f(r)m. This function turnsM into an
R-module wheneverM is an AM module. Suppose AM is classical completely prime and
for all r, s ∈ R and m ∈M , rsm = 0. Then, 0 = rsm = f(r)f(s)m. Since AM is classical
completely prime, f(r)〈m〉A = 0 or f(s)〈m〉A = 0. Then by structure of R-module, it
follows that r〈m〉R = 0 or s〈m〉R = 0. Thus, RM is classical completely prime. Assume
RM is classical completely prime and for all a, b ∈ R and m ∈ M , abm = 0. Then
since f is an epimorphism, there exists r, s ∈ A such that a = f(r) and b = f(s), i.e.,
f(r)f(s)m = rsm = 0. By assumption, r〈m〉R = 0 or s〈m〉R = 0. If r〈m〉R = 0 (resp.
s〈m〉R = 0), the fact that f is onto leads to a〈m〉A = 0 (resp. b〈m〉A = 0). Hence, AM
is classical completely prime. �

2.3. Properties of submodules and direct summands.

2.7. Proposition. If M is a classical completely prime module, then any submodule N
of M is also a classical completely prime module.

Proof. Elementary. �

2.8. Proposition. For an R-module M , the following statements are equivalent:
(1) M is a classical completely prime module,
(2) Each direct summand of M is a classical completely prime submodule of M .

Proof. (1) ⇒ (2). By Proposition 2.7 any submodule N of M is a classical completely
prime module. If M = K ⊕P where K and P are submodules, then M/K is isomorphic
to P which is a classical completely prime module and so K is a classical completely
prime submodule.

(2) ⇒ (1). If each direct summand of M is a classical completely prime submodule,
then so is the zero submodule and hence M is a classical completely prime module. �

2.4. Classical multiplicative systems.

2.1. Definition. Let R be a ring and M an R-module. A nonempty set S ⊆M \ {0} is
called a classical multiplicative system if, for all a, b ∈ R, m ∈M and for all submodules
K of M , if (K + a〈m〉) ∩ S 6= ∅ and (K + b〈m〉) ∩ S 6= ∅, then (K + abm) ∩ S 6= ∅.

2.9. Proposition. Let M be an R-module. A proper submodule P of M is classical
completely prime if and only if its complement M\P is a classical multiplicative system.

Proof. Suppose S := M\P . Let a, b ∈ R, m ∈ M and K be a submodule of M such
that (K + a〈m〉) ∩ S 6= ∅ and (K + b〈m〉) ∩ S 6= ∅. If (K + {abm}) ∩ S = ∅, then
abm ∈ P . Since P is classical completely prime , a〈m〉 ⊆ P or b〈m〉 ⊆ P . It follows that
(K + a〈m〉) ∩ S = ∅ or (K + b〈m〉) ∩ S = ∅, a contradiction. Therefore, S is a classical
multiplicative system in M . For the converse, let S := M\P be a classical multiplicative
system in M . Suppose for a, b ∈ R and m ∈ M , abm ∈ P . If a〈m〉 6⊆ P and b〈m〉 6⊆ P ,
then a〈m〉 ∩ S 6= ∅ and b〈m〉 ∩ S 6= ∅. Thus, abm ∈ S, a contradiction. Therefore, P is
a classical completely prime submodule of M . �

2.10. Proposition. Let M be an R-module, P be a proper submodule of M , and
S := M\P . Then, the following statements are equivalent:

(1) P is a classical completely prime submodule of M ;
(2) S is a classical multiplicative system of M ;
(3) for all a, b ∈ R and m ∈M , if a〈m〉 ∩ S 6= ∅ and b〈m〉 ∩ S 6= ∅, then abm ∈ S;
(4) for all a, b ∈ R and m ∈ M , if 〈a〈m〉〉 ∩ S 6= ∅ and 〈b〈m〉〉 ∩ S 6= ∅, then
〈abm〉 ∩ S 6= ∅.
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2.1. Lemma. Let M be an R-module, S ⊆ M a classical multiplicative system of M
and P a submodule of M maximal with respect to the property that P ∩ S = ∅. Then,
P is a classical completely prime submodule of M .

Proof. Suppose a ∈ R and m ∈M such that 〈abm〉 ⊆ P . If 〈a〈m〉〉 6⊆ P and 〈b〈m〉〉 6⊆ P
then (〈a〈m〉〉 + P ) ∩ S 6= ∅ and (〈b〈m〉〉 + P ) ∩ S 6= ∅. By definition of a classical
multiplicative system S ofM , (〈abm〉+P )∩S 6= ∅. Since 〈abm〉 ⊆ P , we have P ∩S 6= ∅,
a contradiction. Hence, P must be a classical completely prime submodule. �

2.2. Definition. Let R be a ring and M an R-module. For N ≤ M , if there is a
classical completely prime submodule of M containing N , we define clc.

√
N := {m ∈

M : every classical multiplicative system containing
m meets N}. We write clc.

√
N = M when there are no classical completely prime sub-

modules of M containing N .

2.1. Theorem. Let M be an R-module and N ≤ M . Then, either clc.
√
N = M

or clc.
√
N equals the intersection of all classical completely prime submodules of M

containing N , which is denoted by βc
cl(N).

Proof. Suppose clc.
√
N 6= M . Both clc.

√
N and N are contained in the same classical

completely prime submodules. By definition of clc.
√
N it is clear that N ⊆ clc.

√
N .

Hence, any classical completely prime submodule of M which contains clc.
√
N must

necessarily contain N . Suppose P is a classical completely prime submodule of M such
that N ⊆ P , and let t ∈ clc.

√
N . If t 6∈ P , then the complement of P , C(P ) in M is a

classical multiplicative system containing t and therefore we would have C(P ) ∩N 6= ∅.
However, since N ⊆ P , C(P ) ∩ P = ∅ and this contradiction shows that t ∈ P . Hence
clc.
√
N ⊆ P as we wished to show. Thus, clc.

√
N ⊆ βco(N). Conversely, assume

s 6∈ clc.
√
N , then there exists a classical multiplicative system S such that s ∈ S and

S∩N = ∅. From Zorn’s Lemma, there exists a submodule P ⊇ N which is maximal with
respect to P ∩ S = ∅. From Lemma 2.1, P is a classical completely prime submodule of
M and s 6∈ P . �

2.5. Complete systems.

2.3. Definition. Let R be a ring and M an R-module. A nonempty set T ⊆ M \ {0}
is called a complete system if, for all a ∈ R, m ∈ M and for all submodules K of M , if
(K + a〈m〉) ∩ T 6= ∅, then (K + {a2m}) ∩ T 6= ∅.

2.2. Corollary. Let M be an R-module. A proper submodule P of M is completely
semiprime if and only if M\P is a complete system.

2.11. Proposition. Let M be an R-module, P be a proper submodule of M , and
T := M\P . Then, the following statements are equivalent:

(1) P is completely semiprime;
(2) T is a complete system;
(3) for all a ∈ R and m ∈M , if a〈m〉 ∩ T 6= ∅, then a2m ∈ T ;
(4) for all a ∈ R and m ∈M , if 〈a〈m〉〉 ∩ T 6= ∅, then 〈a2m〉 ∩ T 6= ∅.

2.1. Remark. Every classical multiplicative system is a complete system but not con-
versely.

2.2. Question. Is every completely semiprime submodule of a module an intersection
of classical completely prime submodules?
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3. Comparison with “primes” in literature
In this section we compare classical completely prime (resp. completely semiprime)

submodules with prime (resp. semiprime) and classical prime (resp. classical semiprime)
submodules.

3.1. Definition. [2], [11] P ≤ RM with RM 6⊆ P is prime if for any N ≤ RM and any
A / R such that AN ⊆ P , then AM ⊆ P or N ⊆ P . P is a semiprime submodule of M
if for a ∈ R and m ∈M such that aRam ⊆ P , then am ∈ P .

3.2. Definition. [4, p.338 ] P ≤ RM with RM 6⊆ P is classical prime if for any
N ≤ RM and any A,B /R such that ABN ⊆ P , then AN ⊆ P or BN ⊆ P . P ≤R M is
classical semiprime if for every A / R, and N ≤ M such that A2N ⊆ P , then AN ⊆ P .

Propositions 3.1 and 3.2 are modifications of [4, Proposition 1.1] and [4, Proposition
1.2] to suit a not necessarily unital module.

3.1. Proposition. Let P ≤ RM , the following statements are equivalent:
(1) P is a classical prime submodule of M ;
(2) for all a, b ∈ R and every m ∈M , if 〈a〉〈b〉m ⊆ P , then 〈a〉m ⊆ P or 〈b〉m ⊆ P ;
(3) for all a, b ∈ R and every m ∈ M such that aRb〈m〉 ⊆ P , then a〈m〉 ⊆ P or

b〈m〉 ⊆ P .

3.2. Proposition. Let P ≤ RM , the following statements are equivalent:
(1) P is a classical semiprime submodule of M ;
(2) for all a ∈ R and every m ∈M , if 〈a〉2m ⊆ P , then 〈a〉m ⊆ P ;
(3) for all a ∈ R and every m ∈M , if aRa〈m〉 ⊆ P , then a〈m〉 ⊆ P .

3.1. Remark. In literature, classical prime is used interchangeably with weakly prime,
cf., [3], [4], [5], [6]. We here use classical prime instead of weakly prime. In defense of our
nomenclature, weakly prime modules exist in [13] when used in a totally different context
- a context which generalizes the notion of weakly prime ideals for rings to modules. To
the best of our knowledge, classical prime has never been used by other authors to mean
something different. Our “classical semiprime" is what is called “semiprime" in [4], our
nomenclature reflects that classical semiprime is derived from classical prime. Lastly, our
“semiprime" is the semiprime in [11].

3.1. Theorem. For any submodule P ≤ RM , we have the following implications:
(i) in general (ii) P IFP submodule

prime prime
⇓ ⇓

classical ⇒ classical classical ⇔ classical
completely prime prime completely prime prime

Proof. (i). By [22, Prop. 4.1.11], it is known that a prime submodule is classical
prime. Now we show that a classical completely prime submodule is classical prime.
Let a, b ∈ R and m ∈ M such that 〈a〉〈b〉m ⊆ P . Then, abm ∈ P and P classi-
cal completely prime in M implies a〈m〉 ⊆ P or b〈m〉 ⊆ P . Thus, (am ∈ P and
aRm ⊆ P ) or (bm ∈ P and bRm ⊆ P ) so that 〈a〉m = (Za+Ra+ aR+RaR)m ⊆ P or
〈b〉m = (Zb+Rb+ bR+RbR)m ⊆ P . Hence, P is classical prime.

(ii). Suppose a classical prime submodule P is IFP, we show that P is classical
completely prime. If a, b ∈ R and m ∈ M such that abm ∈ P , then aRbm ⊆ P and
aRb(Rm) ⊆ P so that aRb〈m〉 ⊆ P . This implies, either a〈m〉 ⊆ P or b〈m〉 ⊆ P by
definition of classical prime submodule. So, P is classical completely prime. �
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3.2. Theorem. P is a classical completely prime submodule of an R-module M if and
only if P is both a classical prime and a completely semiprime submodule of M .

Proof. Every classical completely prime submodule is completely
semiprime. From Theorem 3.1, classical completely prime submodules are classical prime.
For the converse, assume P is both a completely semiprime and a classical prime sub-
module of M . Now, let a, b ∈ R and m ∈ M such that abm ∈ P . By Proposition 2.1, P
is IFP. Hence, aRb〈m〉 ⊆ P . P classical prime implies a〈m〉 ⊆ P or b〈m〉 ⊆ P . �

3.1. Example. Every maximal submodule P of an R-module M is a classical prime
submodule but there exist modules with maximal submodules which are not classical
completely prime. Let A / R and N ≤ M such that AN ⊆ P , where P is a maximal
submodule of M . If N ⊆ P , we are through. Suppose N 6⊆ P . Then, M = N + P so
that AM = AN + AP ⊆ P . This shows P is a prime submodule and hence a classical
prime submodule. We construct a maximal submodule which is not classical completely
prime. Let R = (M2(Z),+, .) be a ring of all 2-by-2 matrices with integral entries and
(M2(Z2),+) be a group of all 2-by-2 matrices with entries from the ring Z2 = {0̄, 1̄}.
Then, M2(Z2) is an M2(Z)-module and

P =

{(
0̄ 0̄
0̄ 0̄

)
,

(
0̄ 0̄
1̄ 1̄

)
,

(
1̄ 1̄
0̄ 0̄

)
,

(
1̄ 1̄
1̄ 1̄

)}
is a maximal submodule of M2(Z2). Now, let a =

(
0 1
0 0

)
, b =

(
1 0
0 0

)
and m =(

0̄ 1̄
1̄ 0̄

)
. abm = 0 ∈ P but a〈m〉 6⊆ P and b〈m〉 6⊆ P since am 6∈ P and bm 6∈ P .

Therefore, P is a maximal submodule of M2(Z2) but not a classical completely prime
submodule of M2(Z)-module M2(Z2).

In regard to Example 3.1, we point out that, although it is not true in general, we can
find noncommutative rings for which every maximal submodule is classical completely
prime. To illustrate this, we use left (quasi) duo rings. A ring R is called left (quasi) duo
if every left (maximal left) ideal of R is two sided. A ring R is called left quasi-duo, if
every maximal left ideal of R is two sided.

3.3. Proposition. [20, Proposition 3.6] R is a left quasi-duo ring if and only if each
simple R-module M is reduced.

3.4. Proposition. If R is a left quasi-duo ring, then each maximal submodule P of M
is a classical completely prime submodule of M .

Proof. Let P be a maximal submodule of M and R a left quasi-duo ring. M/P is simple
and from Proposition 3.3, it is reduced. Hence, P is a completely semiprime submodule
of M . Since every maximal submodule of M is classical prime, it follows from Theorem
3.2 that P is a classical completely prime submodule of M . �

3.2. Remark. It is not possible to get an example like Example 3.1 for a ring R which
is a collection of all upper triangular matrices over Z. This is because, upper triangular
matrix rings are left quasi-duo and from Proposition 3.4, maximal submodules are always
classical completely prime.

It is clear from Example 3.1 that simple modules are not always classical completely
prime. We give another example to show that simple modules are not always classical
completely prime. It makes use of Lemma 3.1.

3.1. Lemma. For a simple and reduced module RM , am = 0 implies aM = 0 for all
a ∈ R and 0 6= m ∈M .
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Proof. Suppose am = 0. Since M is simple and reduced, we have 0 = aM ∩ 〈m〉 =
aM ∩M = aM . �

3.2. Example. Let M =

{(
0̄ 0̄
0̄ 0̄

)
,

(
0̄ 0̄
1̄ 1̄

)
,

(
1̄ 1̄
0̄ 0̄

)
,

(
1̄ 1̄
1̄ 1̄

)}
where entries of ma-

trices in M are from Z2 = {0̄, 1̄} and R = M2(Z). RM is a simple module which is not
classical completely prime.

Proof. Let r =

(
a b
c d

)
∈ R,

rM =

{(
0̄ 0̄
0̄ 0̄

)
,

(
a a
c c

)
,

(
b b
d d

)
,

(
a+ b a+ b
c+ d c+ d

)}
⊆M

for any a, b, c, d ∈ Z. The would be nontrivial proper submodules, namely; N1 ={(
0̄ 0̄
0̄ 0̄

)
,

(
1̄ 1̄
0̄ 0̄

)}
, N2 =

{(
0̄ 0̄
0̄ 0̄

)
,

(
0̄ 0̄
1̄ 1̄

)}
and

N3 =

{(
0̄ 0̄
0̄ 0̄

)
,

(
1̄ 1̄
1̄ 1̄

)}
are not closed under multiplication by R since, for a and

c odd, rN1 6⊆ N1, for b and d odd, rN2 6⊆ N2 and for a odd but b, c, d even, rN3 6⊆

N3. Take a =

(
3 3
2 2

)
∈ R and m =

(
1̄ 1̄
1̄ 1̄

)
∈ M , am = 0 but aM 6= 0 since

a =

(
3 3
2 2

)(
1̄ 1̄
0̄ 0̄

)
=

(
1̄ 1̄
0̄ 0̄

)
6= 0. By Lemma 3.1, M is not reduced and hence not

classical completely prime. �

3.3. Example. If P is a classical prime submodule of an R-module M , (P : M) is a
prime ideal of R which is not necessarily a completely prime ideal of R. On the other
hand, if P is a classical completely prime submodule of an R-module M , then (P : M)
is a completely prime ideal of R. This shows that a classical prime submodule need not
be classical completely prime.

Since over commutative rings classical completely prime submodules and classical
submodules are indistinguishable, we have:

3.4. Example. [6, Example 1] Assume that R is a unital commutative domain and P is
a non-zero prime ideal in R. P⊕ 0 and 0⊕P are classical completely prime submodules
in the free module M = R⊕R, but they are not prime submodules.

4. Comparison of “semiprimes”
4.1. Theorem. For any submodule P of an R-module M ,

completely semiprime ⇒ semiprime ⇒ classical semiprime.

Proof. Suppose for a ∈ R and m ∈ M , aRam ⊆ P , then (a2)2m ∈ P and P completely
semiprime implies a2m ∈ a2〈m〉 ⊆ P . Hence, am ∈ a〈m〉 ⊆ P and P is semiprime.
Now, suppose aRa〈m〉 ⊆ P but a〈m〉 6⊆ P . Then, there exists m1 ∈ 〈m〉 such that
am1 6∈ P . By definition of semiprime submodules, aRam1 6⊆ P and so aRa〈m〉 6⊆ P
which is a contradiction. Therefore, whenever aRa〈m〉 ⊆ P , we have a〈m〉 ⊆ P and
semiprime ⇒ classical semiprime. �

The reverse implications in Theorem 4.1 are not true in general. The simple module
M constructed in Examples 3.2 is semiprime (because all simple modules are prime)
but it is not completely semiprime. For the second implication, a counter example was
constructed by Hongan in [15, p.119].



727

4.1. Corollary. If P is an IFP submodule of M , then

completely semiprime ⇔ semiprime ⇔ classical semiprime.

Proof. It is enough to show that classical semiprime ⇒ completely semiprime, the rest
follows from Theorem 4.1. Let a2m ∈ P , where a ∈ R and m ∈ M . For P IFP,
aRa〈m〉 ⊆ P . By definition of classical semiprime, a〈m〉 ⊆ P and P is completely
semiprime. �

A ring R is left (right) permutable [10, p.258], if for all a, b, c ∈ R, abc = bac (abc =
acb). R is permutable if it is both left and right permutable. Commutative rings and
nilpotent rings of index ≤ 3 are left (right) permutable. A ring R is medial [10], if for all
a, b, c, d ∈ R, abcd = acbd. A left (right) permutable ring is medial but not conversely.
A unital medial ring is indistinguishable from a commutative ring. A ring R is left self
distributive, denoted by LSD (resp. right self distributive, denoted by RSD) if for all
a, b, c, d ∈ R, the identity: abc = abac (resp. abc = acbc) holds. LSD rings are left
permutable, see [14, Corollary 2.2]. Left (right) permutable rings and medial rings exist
in abundancy; according to Birkenmeier and Heatherly in [10, p.258], they are a special
type of PI-rings and also exist as special subrings of every ring. Furthermore, if R is
a noncommutative medial (left permutable, right permutable or permutable) ring, then
the ring of polynomials (resp. formal power series or formal Laurent series) over R is a
medial (left permutable, right permutable or permutable) ring which is not commutative,
see [10, p.262-263].

4.2. Theorem. If P is a classical semiprime submodule of RM and R is a medial (left
permutable, right permutable or LSD) ring then each of the following statements implies
P is a completely semiprime submodule of RM :

(1) M is finitely generated,
(2) M is free,
(3) M is cyclic.

Proof. We prove only the case forM cyclic, the proofs for other cases are similar. Suppose
a2m ∈ P for a ∈ R and m ∈ M , R2a2m ⊆ P . R medial implies RaRam ⊆ P . Since M
is cyclic, m = rm0 for some r ∈ R and m0 ∈ M . RaRarm0 ⊆ P and R2aRarm0 ⊆ P .
Again, R medial leads to RaRaRm ⊆ P . It follows that RaRa〈m〉 ⊆ P . Since P is
classical semiprime, Ra〈m〉 ⊆ P , i.e., Ra ⊆ (P : 〈m〉). P classical semiprime implies
(P : 〈m〉) is a semiprime ideal of R and hence a ∈ (P : 〈m〉), i.e., a〈m〉 ⊆ P . �

4.2. Corollary. If P is a prime (semiprime, classical prime) submodule of RM with R
medial (left permutable, right permutable or LSD), then each of the following statements
implies P is completely prime and hence classical completely prime.

(1) M is finitely generated,
(2) M is free,
(3) M is cyclic.

5. The radicals βccl(M) and βco(R)

Let Mc be the class of all completely prime rings, i.e., rings which have no non-zero
divisors. Then Mc

R is the class of all classical completely prime R-modules. We have
Rc = Ng, the generalized nil radical which we shall call the completely prime radical of
R (denoted by βco(R)) with

βco(R) := ∩{I / R : I is a completely prime ideal}.
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The corresponding classical completely prime radical for the R-moduleM will be denoted
by

βc
cl(M) := ∩{N ≤M : M/N ∈M

c
R}.

Since each classical completely prime submodule of an R-module M is also classical
prime submodule, we have βcl(M) ⊆ βc

cl(M) where βcl(M) is the classical prime radical
(the intersection of all classical prime submodules of M). If M is an R-module over a
commutative ring, then the two radicals coincide.

5.1. Proposition. For any ring R, βc
cl(RR) ⊆ βco(R).

Proof. Follows from [21, Lemma 4.1] and the fact that any completely prime module is
classical completely prime. �

5.1. Lemma. For any R-module M , we have

βco(R) ⊆ (βc
cl(M) : M)R.

Proof. We have (βc
cl(M) : M) = (

⋂
S≤M

S : M)R =
⋂

S≤M

(S : M)R where M/S is a

classical completely prime module. Since (S : M)R is a completely prime ideal, we get
βco(R) ⊆ (βc

cl(M) : M). �

5.1. Remark. The containment in Lemma 5.1 is in general strict. Let R = Z and
M = Zp∞ ⊕ Z for some prime number p. Now βc

cl(M) = Zp∞ and βco(R) = 0, i.e.,
βco(R)M = (0).

5.2. Lemma. For any ring R, we have βco(R) = (βc
cl(RR) : R)R.

Proof. Follows from [12, Proposition 4.6]. �

Recall that for an R-module M , we have the Jacobson radical Rad(M) of the module
M defined as:

Rad(M) = ∩{K ≤M : K is a maximal submodule of M}.

5.1. Theorem. Let M be a module over a left Artinian ring R. Then

Rad(M) ⊆ βc
cl(M) and Rad(RR) = βc

cl(RR).

Proof. From [9, Cor. 4.3.17, p.178], Rad(M) = Jac(R)M = βco(R)M and from the fact
that βco(R) ⊆ (βc

cl(M) : M)R we get Rad(M) ⊆ βc
cl(M). Again from [9, Cor. 4.3.17,

p.178], and Lemma 5.2, Rad(RR) = Jac(R)R = βco(R)R = βc
cl(RR). �
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