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Quasi-primry submodules satisfying the primeful
property I
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Abstract

LetR be a commutative ring with identity andM a unitalR-module. In
this article we extend the notion of quasi-primary ideals to submodules.
A proper submoduleN ofM is called quasi-primary if whenever rx ∈ N
for r ∈ R and x ∈ M , then r ∈

√
(N : M) or x ∈ radN where radN

is the intersection of all prime submodules of M containing N . Also,
we say that a submodule N of M satis�es the primeful property if
M/N is a primeful R-module. For a quasi-primary submodule N of

M satisfying the primeful property,
√

(N : M) is a prime ideal of R.
For the existence of a module-reduced quasi-primary decomposition,
the radical of each term appeared in decomposition must be prime.
We provide su�cient conditions, involving the saturation and torsion
arguments, to ensure that this property holds as is valid in the ideal
case. It is proved that for a submodule N ofM over a Dedekind domain
R which satis�es the primeful property, N is quasi-primary if and only
if radN is prime.
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1. Introduction

Throughout this paper all rings are commutative with non-zero identity and all mod-
ules are unital. If R is a ring and N a submodule of an R-module M , the ideal
{r ∈ R | rM ⊆ N} will be denoted by (N : M). Then ann(M), the annihilator of
M , is (0 : M). A proper submodule N of M is said to be prime (resp. primary), if

rx ∈ N for r ∈ R and x ∈ M implies that either r ∈ (N : M) (resp. r ∈
√

(N : M)) or
x ∈ N . In this case, N is called p-prime (resp. p-primary), where p = (N : M) (resp.

p =
√

(N : M)) (For more study these notions see for example [3, 13, 14, 16, 17, 19]).
The intersection of all prime submodules containing N , denoted radN , is called the prime
radical of N . Also, N is called a radical submodule if radN = N . A proper submodule
N of M is called primary-like if rx ∈ N for r ∈ R and x ∈ M implies that r ∈ (N : M)
or x ∈ radN . It is clear that primary-like submodules of R as an R-module and primary
ideals of R are the same. Also, N is a prime submodule of M if and only if N is a
radical and primary-like submodule of M . The notion of primary-like submodules has
been extensively studied by the authors and F. Rashedi in [6].

A proper ideal q of R is said to be quasi-primary if rs ∈ q for r, s ∈ R implies r ∈ √q or
s ∈ √q. In particular, q is a quasi-primary ideal of R if and only if

√
q is a prime ideal of

R [7, p.176]. Quasi-primary ideals was �rst introduced and studied by L. Fuchs [7]. Since
primary ideals are quasi-primary, every ideal of a Noetherian ring has a quasi-primary
decomposition. Moreover, the uniqueness of the corresponding shortest quasi-primary
decompositions of an ideal has been given in [7, Theorem 6]. Here we extend the no-
tion of quasi-primary ideals to submodules. Recall that a proper submodule N of M is
quasi-primary if rx ∈ N for r ∈ R and x ∈ M implies that r ∈

√
(N : M) or x ∈ radN .

It is clear that primary submodules are quasi-primary. We say that a submodule N
of an R-module M satis�es the primeful property if for each prime ideal p of R with
(N : M) ⊆ p, there exists a prime submodule P containing N such that (P : M) = p.
If the zero submodule of M satis�es the primeful property, then M is called primeful.
For instance �nitely generated modules, projective modules over domains and (�nite and
in�nite dimensional) vector spaces are primeful (see [10]). If N satis�es the primeful

property, then
√

(N : M) = (radN : M) [10, Proposition 5.3]. If N is a quasi-primary
(primary-like) submodule satisfying the primeful property, then it is easy to verify that

p =
√

(N : M) is a prime ideal of R. In this case, N is called a p-quasi-primary (p-
primary like) submodule of M . In [4], Atani and Darani used the term �quasi-primary
submodule" in a di�erent way. In fact, they consider a submodule N of an R-module M
as a quasi-primary submodule if

√
(N : M) is a prime ideal of R. Thus a quasi-primary

submodule satisfying the primeful property, in the our sense, follows that in [4]. But the
converse is not true in general. For example, if M =

∏
p∈Ω Z/pZ and N =

⊕
p∈Ω Z/pZ

are Z-modules, where Ω is the set of prime integers, then M is a primeful module and
N is a 0-prime submodule of M with rad(N) = 0 while N dose not satisfy the primeful
property, i.e. M/N is not primeful [10, Example 1 (5)]. Now we give an example of a sub-

module N such that
√

(N : M) is a prime ideal while N is not quasi-primary. Consider
the Z-module M = Q ⊕ Zp, where Q is the additive abelian group of rational numbers
and Zp is the cyclic group of order p. Then Q⊕ 0 and 0⊕Zp are only prime submodules
of M [14, Example 2.6]. Now if N = 0⊕ 0, it is easy to verify that (N : M) = 0 and N is
not a quasi-primary submodule of M . Also, a quasi-primary submodule does not satisfy
the primeful property necessarily. For example, ifM = Z(p∞)⊕Zp as a Z-module, where
Z(p∞) is the Prüfer group, and N = 0⊕Zp, then radN = M and so N is a quasi-primary
submodule of M . But N dose not satisfy the primeful property [14, Example 3.7].

We say that a submodule N of an R-module M has a quasi-primary decomposition
if N = N1 ∩ N2 ∩ · · · ∩ Nt, where each Ni is a quasi-primary submodule of M . If
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Ni # N1 ∩ · · · ∩Ni−1 ∩Ni+1 ∩ · · · ∩Nt, for 1 ≤ i ≤ t, then the above quasi-primary de-

composition is called (1) a reduced quasi-primary decomposition, if the ideals
√

(Ni : M)
are distinct primes; (2) a module-reduced quasi-primary decomposition, if the submod-
ules radNi are distinct primes; (3) a shortest quasi-primary decomposition, if none of
the intersection (Ni1 : M) ∩ (Ni2 : M) ∩ · · · ∩ (Nis : M) (s > 1) is a quasi-primary ideal.
In part II, we investigate the existence and uniqueness of these decompositions and rela-
tionships between them in di�erent cases. For this purpose we need to some properties
and facts about quasi-primary submodules, mostly consideration satisfying the primeful
property.

Unlike the ideal case, there are several challenging problems in radical theory of sub-
modules. Finding a good description of radN either in terms of its elements or as some
sort of decomposition and splitting the �nite intersection of submodules by radical are
two examples of them. Some works and methods for characterizing the radN may be
found in [1, 12, 15, 16, 18, 19, 20, 21]). One of the main di�erences between ideal and
module cases is that the radical of a quasi-primary submodule is not necessarily prime.
In fact, if R = Z[x], then the submodule N = R(2, x) + R(x, 0) is a quasi-primary sub-
module of M = R ⊕ R whose radical is not prime [19, Theorem 1.9 and Example 1.11].
The mentioned conditions are useful to obtain a module-reduced quasi-primary decom-
position from the original one.

In section 2, the behaviuor of quasi-primary submodules (probably satisfying the
primeful property) under some operations such as quotient and fraction are considered
(Corollary ?? and Theorem 2.14). In this section, it is also shown that q is a quasi-
primary ideal of R if and only if qF is a quasi-primary submodule of a free R-module F
(Theorem 2.18). In this case rad(qF ) is a prime submodule of F . Moreover, it is proved
that the radical of every quasi-primary submodule of a free module F over a Noetherian
domain R is prime provided that every prime submodule of F contains only �nitely many
prime submodules (Proposition 2.20).

Let p be a prime ideal of R and N a submodule of M . By the saturation of N with
respect to p, we mean the contraction of Np in M and designate it by Sp(N). It is also
known that Sp(N) = {x ∈M |cx ∈ N for some c ∈ R\p}. Saturations of submodules were
investigated in detail in [11] and some results of the study are applied for quasi-primary
submodules in section 3. For example, if N is a p-quasi-primary submodule satisfying
the primeful property, then we have : (1) Sp(N) is a prime submodule of M if and only
if radN = Sp(N) (Theorem 3.3); (2)Sp(radN) 6= M if and only if radN is a prime
submodule of M (Theorem 3.9). Also, some other conditions under which the radical of
a quasi-primary (probably satisfying the primeful property) is prime have been given in
Corollary 3.7, Proposition 3.10, Corollary 3.11 and Theorem 3.14.

The purpose of the section 4 is to discuss about important roles played by torsion
submodules in the class of quasi-primary submodules of a module. In Theorem 4.3, it is
proved that for a submodule N of a module M over a Dedekind domain R satisfying the
primeful property, radN is prime if and only if M = radN ⊕ N ′ for some torsion-free
submodule N ′ of M or (radN : M) = m for some maximal ideal m of R.

In part II, we will characterize the quasi-primary submodules of multiplication mod-
ules. Using this, we will fully investigate reduced and module-reduced and shortest
quasi-primary decompositions of submodules of multiplication modules. Also, we will
give some uniqueness theorems for reduced and module-reduced quasi-primary decom-
positions of submodules of modules over Noetherian rings.
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2. On quasi-primary submodules satisfying the primeful property

In this section, we study basic properties of quasi-primary submodules which probably
satis�es the primeful property. In particular we show the a�ect of some operations on
quasi-primary submodules. We start with some elementary results.

2.1. Lemma. Let M be an R-module. Then the following hold:

(i) Any maximal, prime, primary and primary-like submodule is quasi-primary.

(ii) Any quasi-primary radical submodule is primary. In particular, if radN is a

quasi-primary submodule for a submodule N of M , then radN is primary.

(iii) If N is a quasi-primary submodule of M and (N : M) is a radical ideal of R,
then N is primary-like.

2.2. Lemma. LetM be an R-module. If N is a quasi-primary submodule ofM satisfying

the primeful property with p =
√

(N : M), then radN = rad(N + pM).

Proof. Clearly radN ⊆ rad(N + pM). If Pi is a pi-prime submodule such that N ⊆ Pi,

then p =
√

(N : M) = (radN : M) ⊆ (Pi : M) = pi. Hence N + pM ⊆ Pi + piM ⊆ Pi.
Therefore rad(N + pM) ⊆ radN . �

2.3. Theorem. Let m be a maximal ideal of R and M an R-module. If N is an m-

quasi-primary submodule ofM satisfying the primeful property, then radN is an m-prime

submodule of M . Moreover, radN = rad(N +mM) = N +mM .

Proof. Since N satis�es the primeful property, we have (radN : M) =
√

(N : M) = m
and so radN is anm-prime submodule ofM . By Lemma 2.2, N+mM ⊆ rad(N +mM) =
radN . Sine radN is m-prime, we conclude m ⊆ (N +mM : M) ⊆ (radN : M) = m. It
follows that (N +mM : M) = m. Hence N +mM is a prime submodule containing N .
Thus radN = rad(N +mM) = N +mM . �

2.4. Proposition. Let M be an R-module. If N is a quasi-primary submodule of M
and L a submodule of M such that radN ∩ radL = rad(N ∩L), then L ⊆ N or N ∩L is

a quasi-primary submodule of L.

Proof. Suppose L * N . Let rl ∈ N ∩L for r ∈ R\
√

(N ∩ L : L) and l ∈ L. Then rl ∈ N
and r /∈

√
(N : M). Since N is a quasi-primary submodule of M , we have l ∈ radN .

Thus l ∈ radN ∩ radL = rad(N ∩ L). �

2.5. Corollary. Let N and K be proper submodules of an R-module M . If N is a quasi-

primary submodule of M satisfying the primeful property such that N  K, then N is

also a quasi-primary submodule of K.

Proof. It follows by applying Proposition 2.4 to N and K. �

2.6. Theorem. Let N be a proper submodule of a non-zero R-module M . Then the

following statements are equivalent:

(i) N is a quasi-primary submodule of M ;

(ii)
√

(N : K) =
√

(N : M) for every submodule K of M such that K ! radN .

Proof. (i)⇒(ii). LetK be any submodule ofM such thatK ! radN . ThenK/N ⊆M/N

and so,
√

(N : K) ⊇
√

(N : M). For the reverse inclusion, let a ∈
√

(N : K). Since
radN $ K, we can �nd an element x of K\radN . Then anx ∈ N for some positive

integer n. Hence, by (i), a ∈
√

(N : M).
(ii)⇒(i). Suppose rx ∈ N , where r ∈ R and x ∈ M . Assume x /∈ radN . Then radN (
radN + Rx ⊆ M . By (ii),

√
(N : radN +Rx) =

√
(N : M). Since rx ∈ N , we have
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r(N +Rx) = rN +Rrx ⊆ N . This shows that r ∈ (N : N +Rx) ⊆
√

(radN : N +Rx).

Hence r ∈
√

(N : M), as required. �

2.7. Theorem. Let {Ni : 1 ≤ i ≤ n} be a �nite collection of submodules of an R-module

M satisfying the primeful property. Then ∩n
i=1Ni satis�es the primeful property and√

(∩n
i=1Ni : M) = (rad(∩n

i=1Ni) : M).

Proof. Suppose p is a prime ideal of R containing (∩n
i=1Ni : M). Then (Nj : M) ⊆ p, for

some 1 ≤ j ≤ n. Since Nj satis�es the primeful property, there exists a prime submodule
P of M containing Nj with (P : M) = p. Hence ∩n

i=1Ni satis�es the primeful property

and so
√

(∩n
i=1Ni : M) = (rad(∩n

i=1Ni) : M). �

The following is a result of Theorem 2.7.

2.8. Corollary. Let M be an R-module and {Ni : i ∈ I} a collection of quasi-primary

submodules ofM satisfying the primeful property. Then (rad(∩n
i=1Ni) : M) = (∩n

i=1radNi :
M).

It is well-known that for a surjective homomorphism f : M →M ′ and a prime submod-
ule N of M containing Kerf , f(N) is a prime submodule of M ′. It follows that for any
submodule N of M , f(radN) ⊆ radf(N). Also if Kerf ⊆ N , then f(radN) = radf(N).
In particular for every submodule K of M containing N , rad(K/N) = radK/N . Analo-
gously we have the following corollaries:

2.9. Theorem. Let f : M → M ′ be a surjective homomorphism. If N ′ is a quasi-

primary submodule of M ′ such that f−1(N ′) is containing Kerf , then f−1(N ′) is a

quasi-primary submodule of M .

Proof. Suppose rm′ ∈ f−1(N ′) and r /∈
√

(f−1(N ′) : M). It follows that rf(m′) ∈ N ′

and r /∈
√

(N ′ : M ′). Since N ′ is a quasi-primary submodule of M ′, f(m′) ∈ radN ′;
i.e. f(m′) ∈ P ′ for any prime submodule P ′ of M ′ containing N ′. Now, let P be a
prime submodule of M containing f−1(N ′). Then N ′ = ff−1(N ′) ⊆ P . Since f(P )
is a prime submodule of M ′ containing N ′, we must have f(m′) ∈ f(P ). Therefore,
there exists an element x ∈ P such that m′ − x ∈ Kerf ⊆ P . Thus m′ ∈ P and so
m′ ∈ rad(f−1(N ′)). �

2.10. Theorem. Let f : M → M ′ be a surjective homomorphism and N a submodule

of M . If N is a quasi-primary submodule of M containing Kerf , then f(N) is a quasi-

primary submodule of M ′.

Proof. Suppose that rf(x) ∈ f(N) for r ∈ R and x ∈ M and r /∈
√

(f(N) : f(M)).
Hence there exists n ∈ N such that rx − n ∈ Kerf . Therefor rx ∈ N and so we have
x ∈ radN . Since f(radN) = rad(f(N)), we conclude that f(x) ∈ rad(f(N)). �

2.11. Corollary. Let f : M →M ′ be a surjective homomorphism. Then the assignment

N 7→ f(N) de�nes a one-to-one correspondence between the set of all quasi-primary

submodules of M containing Kerf and the set of all quasi-primary submodules N ′ of M ′

such that f−1(N ′) contains Kerf .

From now on, we frequently use the fact that (radN : M) =
√

(N : M) for a submod-
ule N of M which satis�es the primeful property. Specially it is used in items (ii) and
(iii) of the following immediate results.

2.12. Lemma. Let N be a submodule of an R-moduleM satisfying the primeful property.

Then the following hold:
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(i) If N is a quasi-primary submodule of M , then (N : M) is a quasi-primary ideal

of R.
(ii) radN is quasi-primary if and only if radN is primary-like if and only if radN

is primary if and only if radN is prime.

(iii) If radN is a prime submodule of M , then N is quasi-primary.

2.13. Theorem. Let N be a proper submodule of a �nitely generated module M over

a zero-dimensional ring R. Then N is quasi-primary if and only if there exists a quasi-

primary ideal q of R such that q ⊆ (N : M). In particular, N is a quasi-primary

submodule of M if and only if (N : M) is a quasi-primary ideal of R.

Proof. Since M is �nitely generated, N satis�es the primeful property, then Lemma 2.12
follows that (N : M) is a quasi-primary ideal. Conversely, let q be a quasi-primary ideal
of R such that q ⊆ (N : M). Since M is �nitely generated, N is contained in a maximal
submodule of M and so radN 6= M . Since R is zero-dimensional,

√
q is a maximal ideal

of R and so
√
q =

√
(N : M) = (radN : M). Hence radN is a prime submodule of M .

Therefore by Lemma 2.12 (iii), N is quasi-primary. �

Let S be a multiplicatively closed subset of R and M an R-module. We denote the
ring and module of fractions by S−1R and S−1M respectively.

2.14. Theorem. Let M be an R-module and N a quasi-primary submodule of M sat-

isfying the primeful property. Let S be a multiplicatively closed subset of R such that

S ∩
√

(N : M) = ∅. Then S−1N is a quasi-primary submodule of S−1R-submodule

S−1M .

Proof. It is easy to see that x/1 ∈ S−1M\S−1N for each x ∈M\radN and so S−1N 6=
S−1M . Suppose (r/s)(x/t) ∈ S−1N and r/s /∈

√
(S−1N : S−1M). Since S−1

√
(N : M) ⊆√

(S−1N : S−1M), then r /∈
√

(N : M). Thus there exist u,w ∈ S, y ∈ N such that

wurx = wsty. It follows x ∈ radN , since N is quasi-primary. Thus x/t ∈ S−1radN ⊆
rad(S−1N), by [16, Theorems 3.3 and Theorem 3.4]. �

In the following the localization of a ring R and an R-module M at a prime ideal p
are denoted by Rp and Mp respectively.

2.15. Theorem. Let M be an R-module and N a quasi-primary submodule of M sat-

isfying the primeful property. Then (radN)p is an Rp-prime submodule of Mp where

p =
√

(N : M) = (radN : M). In addition, radNp is prime and radNp = (radN)p.

Proof. By [16, Theorems 3.3 and Theorem 3.4] (radN)p ⊆ rad(Np). For the reverse
inclusion, it is easy to see that (radN : M)p ⊆ ((radN)p : Mp). Since N is quasi-
primary, by Lemma 2.12 (i), (radN : M)p is the unique maximal ideal of Rp. Now we
have (radN : M)p = ((radN)p : Mp), because (radN)p 6= Mp. Thus (radN)p is a prime
submodule of Mp containing Np. On the other hand, by [18, Lemma 1.7] rad(Np) is a
prime submodule of Mp containing Np. Hence rad(Np) ⊆ (radN)p. �

We remark that if N is a submodule ofM satisfying the primeful property, then radN
is also satis�es the primeful property. In this case if N is a proper submodule of M , then
radN is also proper. Henceforth, we consider radN 6= M when trying to prove radN is
prime for a quasi-primary submodule N satisfying the primeful property.

2.16. Proposition. Let R be a ring and N a quasi-primary submodule of an R-module

M satisfying the primeful property. If
√

(N : M) is a maximal ideal of R, then radN is

a prime submodule of M .
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2.17. Proposition. Let M be an R-module and {Ni : i ∈ I} a collection of submodules

of M such that
∑

i∈I Ni satis�es the primeful property. Then
∑

i∈I radNi = M if and

only if
∑

i∈I Ni = M .

Proof. Assume
∑

i∈I radNi = M and
∑

i∈I Ni 6= M . Then there exists a maximal ideal
m of R containing (

∑
i∈I Ni : M) and a prime submodule P of M containing

∑
i∈I Ni

such that (P : M) = m. Thus
∑

i∈I radNi ⊆ P , a contradiction. The converse is
obvious. �

It is well-known that if F is a free R-module and I is an ideal of R, then (IF : F ) = I

and rad(IF ) =
√
IF [20, Proposition 2.2]. Thus if I is a prime(resp. primary) ideal of

R, then IF is prime(resp. primary) submodule of M . Now we give a similar result in
the quasi-primary case.

2.18. Theorem. Let F be a free R-module. Then qF is a quasi-primary submodule of

F if and only if q is a quasi-primary ideal of R.

Proof. Let qF be a quasi-primary submodule of M . Since (qF : F ) = q, q is a proper
ideal of R. Suppose rs ∈ q, for r ∈ R, s ∈ R\√q. Hence rsF ⊆ qF and s /∈ (radqF : F ),

since radqF =
√
qF [20, Proposition 2.2]. It follows that r ∈

√
qF : F =

√
q. Conversely

let q be a quasi-primary ideal of R. Again by (qF : F ) = q, qF is a proper submodule

of F . Suppose r /∈
√

(qF : F ) =
√
q and x /∈ radqF =

√
qF . Hence we have rx /∈ √qF ,

since
√
qF is a prime submodule of F . Thus rx /∈ qF . �

2.19. Corollary. Let F be a free R-module. Then the following statements are equiva-

lent.

(i) I = q1 ∩ · · · ∩ qt is a reduced quasi-primary decomposition of the ideal I;
(ii) IF = q1F ∩ · · · ∩ qtF is a reduced quasi-primary decomposition of IF ;
(iii) IF = q1F ∩ · · · ∩ qtF is a module-reduced quasi-primary decomposition of IF .

2.20. Proposition. If R is a Noetherian domain and F is a free R-module such that

every prime submodule of F contains only �nitely many prime submodules, then for every

non-zero quasi-primary submodule N of F , radN is prime.

Proof. We �rst show that R is a one-dimensional ring. Let 0 ⊂ p′ ⊆ p be a chain of prime
ideals of R. If p′ 6= p, then there exist in�nitely many such prime ideals contained in p [9,
p. 144]. It follows from the above argument of Theorem 2.18 that there exist in�nitely
many prime submodule contained in prime submodule pF , a contradiction. Thus R is a
one-dimensional domain. Now, let qF be a non-zero quasi-primary submodule of F . It
is clear that 0 ⊂ q ⊆

√
(qF : F ) and so the proof is completed by Proposition 2.16. �

2.21. Theorem. Let M be an R-module and N a proper submodule of M . If N1, · · · , Nt

satis�es the primeful property and N has a reduced quasi-primary decomposition N =
N1 ∩ N2 ∩ · · · ∩ Nt such that all the prime ideals associated with N are isolated, then

(N : M) = (N1 : M)∩(N2 : M)∩· · ·∩(Nt : M) is a reduced quasi-primary decomposition

of the ideal (N : M) in R.

Proof. Suppose not. Since the ideals
√

(Ni : M) are distinct, we have (Ni : M) ⊇
∩j 6=i(Nj : M) for some i. Then

√
(Ni : M) ⊇ ∩j 6=i

√
(Nj : M). It implies that

√
(Ni : M) ⊃√

(Nj : M) for some i 6= j, since
√

(Ni : M) is a prime ideal. The �nal inclusion contra-

dicts the assumption that
√

(Ni : M) is an isolated prime ideal of R. �

2.22. Corollary. Let M be an R-module and N a proper submodule of M . If N1, · · · , Nt

satis�es the primeful property and N has a reduced quasi-primary decomposition N =
N1 ∩N2 ∩ · · · ∩Nt such that all the prime ideals associated with N are isolated, then
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(i) N is quasi-primary if and only if (N : M) is quasi-primary.

(ii) N is prime if and only if (N : M) is prime.

Proof. The necessity of each part is clear. To show su�ciency, let N = N1∩N2∩· · ·∩Nt

be a reduce quasi-primary decomposition of N . By Theorem 2.21 (N : M) = (N1 :
M) ∩ (N2 : M) ∩ · · · ∩ (Nt : M) is a reduced quasi-primary decomposition of the ideal
(N : M) in R. If (N : M) is quasi-primary, we must have t = 1 and so N = N1 is
quasi-primary. (ii) is concluded by an analogous argument. �

3. Saturation and radical

Let p be a prime ideal of R and N a submodule of an R-module M . Then Sp(N) =
{x ∈ M : cx ∈ N for some c ∈ R\p} is a submodule of M which is called the saturation
of N with respect to p. A submodule N of M is called saturated with respect to p if
Sp(N) = N . It is easy to verify Sp(N) is a saturated submodule of M with respect
to p. In [11], Lu applied the tool of saturation in the context of prime and primary
submodules. In this section we develop and use this tool for quasi-primary submodules
(probably satisfying the primeful property). In particular, using this, we give some
conditions under which the radical of a quasi-primary submodule is prime.

3.1. Lemma. Let N be a submodule of an R-module M satisfying the primeful property.

N is a p-quasi-primary submodule of M if and only if
√

(N : M) = p is a prime ideal of

R and Sp(N) ⊆ radN .

Proof. Suppose N is a p-quasi-primary submodule of M . Since N satis�es the primeful
property, it is clear that

√
(N : M) = p is a prime ideal of R. Let x ∈ Sp(N). Then

sx ∈ N for some s ∈ R \ p. Hence x ∈ radN and so that Sp(N) ⊆ radN .

Assume
√

(N : M) = p is a prime ideal of R. Let rx ∈ N and x /∈ radN . Hence we
conclude that sx /∈ N for any s ∈ R \ p. Thus r ∈ p, as required. �

From now on, we denote the set of all prime ideals of R containing (N : M) by
V (N : M).

3.2. Lemma. Let N be a quasi-primary submodule of an R-module M . Then Sp(N) ⊆
radN for every p ∈ V (N : M). In particular, if Sp(N) is a prime submodule of M for

some p ∈ V (N : M), then Sp(N) = radN .

Proof. Straightforward. �

3.3. Theorem. Let N be a p-quasi-primary submodule of an R-module M satisfying the

primeful property. Sp(N) is a p-prime submodule of M if and only if Sp(N) = radN .

Proof. Assume that Sp(N) is a p-prime submodule ofM . It follows from Lemma 3.2 that
Sp(N) = radN . Conversely, suppose Sp(N) = radN . Let rx ∈ Sp(N) and x /∈ Sp(N).
Then rx ∈ N for some r ∈ R \ p. Since N is a p-quasi-primary submodule of M ,

r ∈
√

(N : M) = (radN : M) = (Sp(N) : M). Thus Sp(N) is a p-prime submodule of
M . �

3.4. Lemma. If a submodule N of an R-module M satis�es the primeful property, then

so do radN and Sp(N) for every p ∈ V (N : M).

Proof. Suppose p is a prime ideal of R containing (radN : M). Since N satis�es the
primeful property and p ⊇ (N : M), there exists a prime submodule P of M containing
N such that (P : M) = p. It is clear that P ⊇ radN and so radN satis�es the primeful
property. For the second part, let p be a prime ideal of R such that p ⊇ (Sp(N) :
M) ⊇ (N : M). Then there exists a prime submodule P ′ of M containing N such that



1429

(P ′ : M) = p. Now, let x ∈ Sp(N). There exists s ∈ R \ p such that sx ∈ N ⊆ P ′.
Therefore x ∈ P ′. Hence we have Sp(N) ⊆ P ′, as desired. �

3.5. Theorem. Let p be a prime ideal of R and N a submodule of an R-module M
satisfying the primeful property. Then the following statements are equivalent:

(i) Sp(N) is a p-quasi-primary submodule of M ;

(ii) (Sp(N) : M) is a p-quasi-primary ideal of R;

(iii)
√

(Sp(N) : M) = (radSp(N) : M) = p;
(iv) (Sp(N) : M) is a p-primary ideal of R;
(v) Sp(N) is a p-primary submodule of M .

Proof. (i)⇒ (ii)⇒ (iii) is clear by Lemma 3.4.
(iii)⇒ (i). By [11, Result 1(1), page 2658], Sp(Sp(N)) = Sp(N). It implies that
Sp(Sp(N)) ⊆ rad(Sp(N)) and so Sp(N) is a p-quasi-primary submodule of M by Lemma
3.1.
(iii)⇔ (iv)⇔ (v) is obtained by [11, Theorem 2.3]. �

3.6. Corollary. Let N be a p-quasi-primary submodule of an R-module M satisfying the

primeful property. Then the equivalent conditions in Theorem 3.5 hold.

Proof. Since N satis�es the primeful property, Lemma 3.4 shows that

p =
√

(N : M) ⊆
√

(Sp(N) : M) = (radSp(N) : M).

On the other hand, Lemma 3.1 follows that (Sp(N) : M) ⊆ p and hence p = (radSp(N) :
M). Thus (iii) of Theorem 3.5 holds. �

3.7. Corollary. Let N be a p-quasi-primary submodule of an R-module M satisfying

the primeful property. If (Sp(N) : M) is a radical ideal of R, then radN is a prime

submodule of M .

Proof. It follows from Corollary 3.6 that Sp(N) is a p-primary submodule of M and so
Sp(N) is prime, since (Sp(N) : M) is a radical ideal of R. Now the proof is completed
by Theorem 3.3. �

3.8. Proposition. Let N be a p-quasi-primary submodule of an R-module M satisfying

the primeful property. Then√
Sp(N : M) =

√
(Sp(N) : M) = p.

In particular, Sp(N : M) and (Sp(N) : M) are p-primary ideals of R.

Proof. Since N is p-quasi-primary, Lemma 3.1 shows that (Sp(N) : M) ⊆
√

(N : M).

Thus we conclude that (N : M) ⊆ Sp(N : M) ⊆ (Sp(N) : M) ⊆
√

(N : M), as required.
The second part is clear. �

3.9. Theorem. Let N be a submodule of an R-module M and p a prime ideal of R such

that p ⊆ (radN : M). Then the following statements are equivalent:

(i) Sp(radN) 6= M ;

(ii) (radN : M) = (Sp(radN) : M) = p;
(iii) Sp(radN) is a p-prime submodule of M .

Further, if N is a p-quasi-primary submodule of M , then the above statements are equiv-

alent to:

(iv) radN is a p-prime submodule of M .
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Proof. (i)⇒ (ii). By replacing N with radN in [11, Theorem 2.1], we have (Sp(radN) :
M) ⊆ p. Since pM ⊆ radN , we have p ⊆ (radN : M) ⊆ Sp(radN : M) ⊆ (Sp(radN) :
M) ⊆ p, whence (ii) follows.
(ii)⇒ (iii). Using [11, Theorem 2.3] by replacing N with radN .
(iii)⇒ (i) is clearly true.
(iii)⇒ (iv). Let N be a p-quasi-primary submodule of M . It follows from (ii) and (iii)
that Sp(radN) is a p-prime submodule of M where (radN : M) = p. It follows from
Lemma 3.2, Sp(radN) = radN . Hence radN is a p-prime submodule of M .
(iv)⇒ (iii) is clear. �

3.10. Proposition. Let N be a quasi-primary submodule of an R-module M . If p =
(N : M) is a prime ideal of R, then Sp(N) = M or radN is a prime submodule of M .

Proof. Suppose Sp(N) 6= M . By [11, Proposition 2.4], Sp(N) is a prime submodule of
M . It follows from Lemma 3.2 that radN is a prime submodule of M . �

3.11. Corollary. Let N be a quasi-primary submodule of an R-module M satisfying the

primful property. If p = (N : M) is a prime ideal of R, then radN is a prime submodule

of M .

Proof. Since N satis�es the primeful property, we have radN 6= M . Also, it follows from
Lemma 3.1 that Sp(N) ⊆ radN . Now Proposition 3.10 completes the proof. �

3.12. Proposition. Let N be a p-quasi-primary submodule of an R-module M satisfying

the primeful property. Then radSp(N) ⊆ Sp(N + pM) ⊆ Sp(radN). In particular,

p = (radSp(N) : M) = (Sp(N + pM) : M).

Proof. By [11, Theorem 4.3], Sp(N+pM) is a p-prime submodule ofM and so radSp(N) ⊆
Sp(N + pM). Suppose x ∈ Sp(N + pM). Then cx ∈ N + pM for some c ∈ R\p.
Since

√
(N : M) = p and cx ∈ radN , we conclude that x ∈ Sp(radN). Also, we have

p = (radN : M) ⊆ (radSp(N) : M) ⊆ (Sp(N + pM) : M) = p, as required. �

The following is a result of [11, Corollary 5.7] and Proposition 3.12.

3.13. Corollary. Let m be a maximal ideal of R and N a m-quasi-primary submod-

ule of an R-module M satisfying the primeful property. Then radN = radSm(N) =
Sm(radN) = Sm(N +mM).

3.14. Theorem. Let R be an Artinian ring and M a module over R. If N is a quasi-

primary submodule of M and p ∈ V (N : M) , then the followings hold.

(i) radN is a prime submodule of M .

(ii) radSp(N) = Sp(radN) = Sp(N + pM). In particular, radSp(N) is a prime

submodule of M .

Proof. (i). Since R is an Artinian ring, [2, Theorem 2.16] implies that N satis�es the
primeful property. Thus (N : M) is a quasi-primary ideal of R. Since R is zero-

dimensional,
√

(N : M) = (P : M) for all prime submodules P containing N . Hence

p =
√

(N : M) = (radN : M) is a prime ideal of R. Now if rx ∈ radN and x /∈ radN ,
there is a prime submodule P ′ containing N such that rx ∈ P ′ and x /∈ P ′. Thus
r ∈ (P ′ : M) =

√
(N : M) = (radN : M) and so radN is prime.

(ii). Suppose x ∈ Sp(N + pM). Then cx ∈ N + pM for some c ∈ R\p. Since√
(N : M) = p, cx ∈ radN and so x ∈ Sp(radN). Thus Sp(N + pM) ⊆ Sp(radN). Now

if x ∈ Sp(radN), there exists c ∈ R\p such that cx ∈ P and so similar to the process of
the proof (i), x ∈ P . Hence we have x ∈ radSp(N) and so Sp(radN) ⊆ radSp(N).



1431

Finally, by [12, Theorem 4.3], Sp(N + pM) is a prime submodule of M and hence
radSp(N) ⊆ radSp(N + pM) = Sp(N + pM). �

4. Torsioan and radical

Recall that a torsion submodule of a moduleM over a domain R, denoted by T (M), is
the submodule {x ∈M : ann(x) 6= 0} of M . An R-module M is said to be torsion(resp.
torsion-free), if T (M) = M(resp. T (M) = 0). Compare the following proposition with
[8, Lemma 1].

4.1. Lemma. LetM be an R-module. Let N be a submodule ofM satisfying the primeful

property. Then radN is a quasi-primary submodule of M if and only if (N : M) is a

quasi-primary ideal of R and T (M/radN) = 0 as a R/
√

(N : M)-module. In this case

radN is a prime submodule of M .

Proof. Suppose radN is a quasi-primary submodule ofM . By Lemma 2.12 (i),
√

(N : M) =
p is a prime ideal of R. If x + radN ∈ T (M/radN)), then rx ∈ radN , for some ele-
ment r ∈ R \ p. Since radN is p-quasi-primary, x ∈ radN i.e. T (M/radN) = 0.

Conversely,
√

(N : M) = p 6= R implies radN 6= M . If rx ∈ radN and r /∈ p, then
x+ radN ∈ T (M/radN) and so x ∈ radN . Thus radN is a quasi-primary submodule of
M . In this case radN is prime by Lemma 2.12. �

4.2. Corollary. Let N be a submodule of an R-module M satisfying the primeful prop-

erty. If (N : M) is a quasi-primary ideal of R and T (M/radN) = 0 as a R/
√

(N : M)-
module, then N is a quasi-primary submodule of M .

Proof. The proof is clear by using Lemma 2.12 and Lemma 4.1. �

4.3. Theorem. Let R be a Dedekind domain and N a submodule of an R-module M
satisfying the primeful property. The following are equivalent:

(i) radN is prime;

(ii) M = radN ⊕N ′ for some torsion-free submodule N ′ of M or (radN : M) = m
for some maximal ideal m of R.

Proof. (i)⇒ (ii). Suppose �rst that radN is a 0-prime submodule of M . It follows from
Lemma 4.1 thatM/radN is a torsion-free R-module. It follows from [5, Exercise 19.6(a)]
that M/radN is projective and hence M = radN ⊕N ′ for some submodule N ′. Clearly
N ′ is torsion-free. Now, let radN be a prime submodule of M with (radN : M) 6= 0.
Since R is Dedekind domain, (radN : M) is a maximal ideal of R, as desired.
(ii) ⇒ (i). Assume that M = radN ⊕ N ′ for some torsion-free submodule N ′ of M .
Then M/radN ' N ′ follows that M/radN is torsion-free and hence radN is a 0-prime
submodule of M by [8, Lemma 1]. On the other hand, it is easy to verify that radN is
prime when (radN : M) is a maximal ideal. �

4.4. Theorem. Let R be a Noetherian domain and M be a non-torsion R-module such

that T (M) is contained in only �nitely many prime submodules of M . If N is a quasi-

primary submodule of M satisfying the primeful property, then radN is prime.

Proof. We �rst assume that (N : M) = 0. It follows from Corollary 3.11 that radN is
a prime submodule of M . Thus we may assume that (N : M) 6= 0. If P is a prime

submodule containing N , we have the chain 0 = (T (M) : M) ⊂
√

(N : M) ⊆ (P : M)
of prime ideals of R. If the later containment is proper, by [9, p.144] there are in�nitely
many prime ideals p with (N : M) ⊂ p ⊂ (P : M) and so we have in�nitely prime

submodules P containing T (M), a contradiction. Hence we have
√

(N : M) = (P : M),
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for all prime submodules P containing N . Now if rx ∈ radN and x /∈ radN , there
is a prime submodule P containing N such that rx ∈ P and x /∈ P and therefore
r ∈ (P : M) =

√
(N : M) = (radN : M), as required. �

For an R-module M and x ∈ M , we mean that (N : x) is the set {r ∈ R : rx ∈ N}.
Now we have the elementary following lemma.

4.5. Lemma. Let M be an R-module. Then N is a quasi-primary submodule of M if

and only if
√

(N : M) =
√

(N : x) for all x ∈M\radN .

In the following quasi-primary module is considered a module whose the zero submod-
ule is quasi-primary.

4.6. Theorem. Let M be a quasi-primary and primeful module over a one-dimensional

domain R. Then either
√
ann(M) = 0 or

√
ann(M) =

√
(N : M) for all proper sub-

modules N of M . In particular, if M is a non-cyclic torsion module, then
√

(Rx : M) =√
ann(x) for all x ∈M\rad0.

Proof. Suppose
√
ann(M) 6= 0. Since R is a one-dimensional domain,

√
ann(M) is a

maximal ideal of R. It conclude that
√
ann(M) =

√
(N : M) for all proper submodules

N . Since 0 is a quasi-primary submodule satisfying the primeful property, rad0 6= M .
Now if M is a torsion module, then

√
ann(M) 6= 0. Again since 0 is quasi-primary,√

ann(M) =
√
ann(m) for all x ∈ M\rad0 by Lemma 4.5. Since Rx is a proper

submodule for all x ∈M , by the �rst part
√

(Rx : M) =
√
ann(M) =

√
ann(x) �

4.7. Theorem. Let M be a torsion module over a one-dimensional domain R. If M is

quasi-primary and primeful, then there exists a prime ideal p of R such that r /∈ p implies

rM = M .

Proof. Suppose p =
√
ann(M). If rM 6= M , then by Theorem 4.6 r ∈

√
(rM : M) =√

ann(M) = p. �

4.8. Theorem. Let M be a quasi-primary primeful and torsion module over a one-

dimensional domain R. If p =
√
ann(M) and Mp is the localization of M at p, then

M/Sp(0) ∼= Mp, an isomorphism of R-modules.

Proof. Consider the R-module homomorphism ψ : M −→ Mp, given by m 7→ m/1. To
show that ψ is an epimorphism, take any m/s ∈Mp. Since s /∈ p, sM = M by Theorem
4.8 and so there exists m′ ∈M such that m = sm′. Thus m/s = sm′/s = m′/1 = ψ(m′).
Also it is easy to veri�ed that the kernel of ψ is Sp(0). Hence M/Sp(0) ∼= Mp. �

Acknowledgment

The authors express their sincere gratitude to the editor and referee for the careful reading
of the original manuscript and useful comments.

References

[1] Behboodi, M. On the prime radical and bear's lower nilradical of modules, Acta Math.
Hungar., 3, 293-306, 2009.

[2] Behboodi, M., Aghasi, M. and Sabzevari, M. A structure sheaf on the spectrum of prime

radical modules, J. Comm. Algebra., Accepted.
[3] Dauns, J. Prime submodules, Reine angew. Math., 298, 156-181, 1978.
[4] Ebrahimi Atani, S. and Youse�an Darani, A., On quasi-primary submodules, Chiang Mai

J. Sci., 33 (3), 249 - 254, 2006.
[5] Eisenbud, D., Commutative algebra with a view toward algebraic geometry, (Springer-Verlag,

1994).



1433

[6] Fazaeli Moghimi, H. and Rashedi, F., Primary-like submodules satisfying the primeful prop-

erty, Transactions on Algebra and its Applications, 1, 43-54, 2015.
[7] Fuchs, L. On Quasi-primary ideals, Acta Sci. Math. (Szeged), 11, 174-183, 1974.
[8] Jenkins, J. and Smith, P. F. On the prime radical of a module over a commutative Ring,

Comm. Algebra, 20, 3593-3602, 1992.
[9] Kaplansky, I. Commutative rings, (The University of Chicago Press, 1974).
[10] Lu, C.P. A module whose prime spectrum has the surjective natural map, Houston J. Math.,

33 (1), 125-143, 2007.
[11] Lu, C.P. Saturations of submodules, Comm. Algebra, 31 (6), 2655-2673, 2003.
[12] Lu, C.P. M-radical of submodules in modules II, Math. Japonica, 35 (5), 991-1001, 1990.
[13] McCasland, R. L. and Moore, M. E. Prime submodules, Comm. Algebra, 20 (6), 1803-1817,

1992.
[14] McCasland, R. L., Moore, M. E. and Smith, P. F. On the spectrum of a module over a

commutative ring, Comm. in Algebra, 25 (1), 79-103, 1997.
[15] McCasland, R. L. and Smith, P. F. Generalised associated primes and radicals of submod-

ules, Int. Electron. J. Algebra, 4, 159-176, 2008.
[16] Moore, M. E. and Smith, S. J. Prime and radical submodules of modules over commutative

rings, Comm. Alegbra, 30, 5073-5064, 2002.
[17] Naghipour, R. and Sedghi, M. Weakly associated primes and primary decomposition of

modules over commutative rings, Acta Math. Hungar. 110 (1-2), 1-12, 2006.
[18] Sharif, H., Shari�, Y., and Namazi, S. Rings satisfying the radical formula, Acta Math.

Hungar., 71(1-2), 103-108, 1996.
[19] Smith, P. F. Primary modules over commutative rings, Comm. Algebra, 43 (2001), 103-111.
[20] Pusat-Yilmaz, D. and Smith, P. F. Radicals of submodules of free modules, Comm. Algebra,

27 (5), 2253-2266, 1999.
[21] Pusat-Yilmaz, D. and Smith, P. F. Modules Which Satisfy the Radical Formula, Acta Math.

Hungar., 95 (1-2), 155-167, 2002.




