Hacettepe Journal of Mathematics and Statistics
Volume 45 (5) (2016), 1421 - 1434

Quasi-primry submodules satisfying the primeful
property I

Hosein Fazaeli Moghimi*' and Mahdi Samiei*

Abstract

Let R be a commutative ring with identity and M a unital R-module. In
this article we extend the notion of quasi-primary ideals to submodules.
A proper submodule N of M is called quasi-primary if whenever rx € N
forr € Rand x € M, then r € /(N : M) or x € radN where radN
is the intersection of all prime submodules of M containing N. Also,
we say that a submodule N of M satisfies the primeful property if
M/N is a primeful R-module. For a quasi-primary submodule N of
M satisfying the primeful property, /(N : M) is a prime ideal of R.
For the existence of a module-reduced quasi-primary decomposition,
the radical of each term appeared in decomposition must be prime.
We provide sufficient conditions, involving the saturation and torsion
arguments, to ensure that this property holds as is valid in the ideal
case. It is proved that for a submodule N of M over a Dedekind domain
R which satisfies the primeful property, N is quasi-primary if and only
if radN is prime.
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1. Introduction

Throughout this paper all rings are commutative with non-zero identity and all mod-
ules are unital. If R is a ring and N a submodule of an R-module M, the ideal
{r € R| rM C N} will be denoted by (N : M). Then ann(M), the annihilator of
M, is (0 : M). A proper submodule N of M is said to be prime (resp. primary), if
rxz € N for r € R and © € M implies that either r € (N : M) (resp. r € /(N : M)) or
x € N. In this case, N is called p-prime (resp. p-primary), where p = (N : M) (resp.
p = /(N : M)) (For more study these notions see for example [3, 13, 14, 16, 17, 19]).
The intersection of all prime submodules containing /N, denoted radN, is called the prime
radical of N. Also, N is called a radical submodule if radN = N. A proper submodule
N of M is called primary-like if ro € N for r € R and = € M implies that r € (N : M)
or x € radN. It is clear that primary-like submodules of R as an R-module and primary
ideals of R are the same. Also, N is a prime submodule of M if and only if N is a
radical and primary-like submodule of M. The notion of primary-like submodules has
been extensively studied by the authors and F. Rashedi in [6].

A proper ideal g of R is said to be quasi-primary if rs € ¢ for r, s € R implies r € /g or
s € /q. In particular, q is a quasi-primary ideal of R if and only if |/q is a prime ideal of
R [7, p.176]. Quasi-primary ideals was first introduced and studied by L. Fuchs [7]. Since
primary ideals are quasi-primary, every ideal of a Noetherian ring has a quasi-primary
decomposition. Moreover, the uniqueness of the corresponding shortest quasi-primary
decompositions of an ideal has been given in [7, Theorem 6]. Here we extend the no-
tion of quasi-primary ideals to submodules. Recall that a proper submodule N of M is
quasi-primary if rz € N for r € R and € M implies that r € /(N : M) or z € radN.
It is clear that primary submodules are quasi-primary. We say that a submodule N
of an R-module M satisfies the primeful property if for each prime ideal p of R with
(N : M) C p, there exists a prime submodule P containing N such that (P : M) = p.
If the zero submodule of M satisfies the primeful property, then M is called primeful.
For instance finitely generated modules, projective modules over domains and (finite and
infinite dimensional) vector spaces are primeful (see [10]). If N satisfies the primeful
property, then /(N : M) = (radN : M) [10, Proposition 5.3]. If N is a quasi-primary
(primary-like) submodule satisfying the primeful property, then it is easy to verify that
p = /(N : M) is a prime ideal of R. In this case, N is called a p-quasi-primary (p-
primary like) submodule of M. In [4], Atani and Darani used the term “quasi-primary
submodule" in a different way. In fact, they consider a submodule N of an R-module M
as a quasi-primary submodule if \/(N : M) is a prime ideal of R. Thus a quasi-primary
submodule satisfying the primeful property, in the our sense, follows that in [4]. But the
converse is not true in general. For example, if M =[] ., Z/pZ and N = @, Z/pZ
are Z-modules, where € is the set of prime integers, then M is a primeful module and
N is a O-prime submodule of M with rad(NN) = 0 while N dose not satisfy the primeful
property, i.e. M/N is not primeful [10, Example 1 (5)]. Now we give an example of a sub-
module N such that /(N : M) is a prime ideal while N is not quasi-primary. Consider
the Z-module M = Q & Z,, where Q is the additive abelian group of rational numbers
and Z, is the cyclic group of order p. Then Q&0 and 0@ Z, are only prime submodules
of M [14, Example 2.6]. Now if N = 090, it is easy to verify that (N : M) =0 and N is
not a quasi-primary submodule of M. Also, a quasi-primary submodule does not satisfy
the primeful property necessarily. For example, if M = Z(p*>°) ®Z, as a Z-module, where
Z(p®) is the Priifer group, and N = 0B Z,, then radN = M and so N is a quasi-primary
submodule of M. But N dose not satisfy the primeful property [14, Example 3.7].

We say that a submodule N of an R-module M has a quasi-primary decomposition
if N = Nt NanN---N Ny, where each N; is a quasi-primary submodule of M. If
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Ni ZNin---NNi—1 N Niz1 NN Ny, for 1 < i < ¢, then the above quasi-primary de-
composition is called (1) a reduced quasi-primary decomposition, if the ideals y/(N; : M)
are distinct primes; (2) a module-reduced quasi-primary decomposition, if the submod-
ules radN; are distinct primes; (3) a shortest quasi-primary decomposition, if none of
the intersection (N, : M) N (Niy : M)N---N(N;, : M) (s > 1) is a quasi-primary ideal.
In part II, we investigate the existence and uniqueness of these decompositions and rela-
tionships between them in different cases. For this purpose we need to some properties
and facts about quasi-primary submodules, mostly consideration satisfying the primeful
property.

Unlike the ideal case, there are several challenging problems in radical theory of sub-
modules. Finding a good description of radN either in terms of its elements or as some
sort of decomposition and splitting the finite intersection of submodules by radical are
two examples of them. Some works and methods for characterizing the radN may be
found in [1, 12, 15, 16, 18, 19, 20, 21]). One of the main differences between ideal and
module cases is that the radical of a quasi-primary submodule is not necessarily prime.
In fact, if R = Z[z], then the submodule N = R(2,z) + R(z,0) is a quasi-primary sub-
module of M = R ® R whose radical is not prime [19, Theorem 1.9 and Example 1.11].
The mentioned conditions are useful to obtain a module-reduced quasi-primary decom-
position from the original one.

In section 2, the behaviuor of quasi-primary submodules (probably satisfying the
primeful property) under some operations such as quotient and fraction are considered
(Corollary ?? and Theorem 2.14). In this section, it is also shown that ¢ is a quasi-
primary ideal of R if and only if ¢F is a quasi-primary submodule of a free R-module F’
(Theorem 2.18). In this case rad(¢F’) is a prime submodule of F'. Moreover, it is proved
that the radical of every quasi-primary submodule of a free module F' over a Noetherian
domain R is prime provided that every prime submodule of F' contains only finitely many
prime submodules (Proposition 2.20).

Let p be a prime ideal of R and N a submodule of M. By the saturation of N with
respect to p, we mean the contraction of N, in M and designate it by Sp(NV). It is also
known that S,(N) = {x € M|cz € N for some ¢ € R\p}. Saturations of submodules were
investigated in detail in [11] and some results of the study are applied for quasi-primary
submodules in section 3. For example, if N is a p-quasi-primary submodule satisfying
the primeful property, then we have : (1) S, (V) is a prime submodule of M if and only
if radN = Sp(N) (Theorem 3.3); (2)Sp(radN) # M if and only if radN is a prime
submodule of M (Theorem 3.9). Also, some other conditions under which the radical of
a quasi-primary (probably satisfying the primeful property) is prime have been given in
Corollary 3.7, Proposition 3.10, Corollary 3.11 and Theorem 3.14.

The purpose of the section 4 is to discuss about important roles played by torsion
submodules in the class of quasi-primary submodules of a module. In Theorem 4.3, it is
proved that for a submodule N of a module M over a Dedekind domain R satisfying the
primeful property, radN is prime if and only if M = radN @ N’ for some torsion-free
submodule N’ of M or (radN : M) = m for some maximal ideal m of R.

In part II, we will characterize the quasi-primary submodules of multiplication mod-
ules. Using this, we will fully investigate reduced and module-reduced and shortest
quasi-primary decompositions of submodules of multiplication modules. Also, we will
give some uniqueness theorems for reduced and module-reduced quasi-primary decom-
positions of submodules of modules over Noetherian rings.
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2. On quasi-primary submodules satisfying the primeful property

In this section, we study basic properties of quasi-primary submodules which probably
satisfies the primeful property. In particular we show the affect of some operations on
quasi-primary submodules. We start with some elementary results.

2.1. Lemma. Let M be an R-module. Then the following hold:
(1) Any mazimal, prime, primary and primary-like submodule is quasi-primary.
(ii) Any quasi-primary radical submodule is primary. In particular, if radN is a
quasi-primary submodule for a submodule N of M, then radN is primary.
(iif) If N is a quasi-primary submodule of M and (N : M) is a radical ideal of R,
then N is primary-like.

2.2. Lemma. Let M be an R-module. If N is a quasi-primary submodule of M satisfying
the primeful property with p = /(N : M), then radN = rad(N + pM).

Proof. Clearly radN C rad(N + pM). If P; is a p;-prime submodule such that N C P;,
then p = /(N : M) = (radN : M) C (P; : M) = p;. Hence N +pM C P, +p;M C P;.
Therefore rad(N + pM) C radN. O

2.3. Theorem. Let m be a mazimal ideal of R and M an R-module. If N is an m-
quast-primary submodule of M satisfying the primeful property, then radN is an m-prime
submodule of M. Moreover, radN = rad(N +mM) =N +mM.

Proof. Since N satisfies the primeful property, we have (radN : M) = /(N : M) =m
and so radN is an m-prime submodule of M. By Lemma 2.2, N+mM C rad(N +mM) =
radN. Sine radN is m-prime, we conclude m C (N +mM : M) C (radN : M) =m. It
follows that (N +mM : M) = m. Hence N + mM is a prime submodule containing N.
Thus radN = rad(N + mM) = N + mM. 0

2.4. Proposition. Let M be an R-module. If N is a quasi-primary submodule of M
and L a submodule of M such that radN NradL = rad(NNL), then LC N or NNL is
a quasi-primary submodule of L.

Proof. Suppose L ¢ N. Let rle NNLforr € R\\/(NNL:L)and! € L. Thenrl € N
and r ¢ /(N : M). Since N is a quasi-primary submodule of M, we have [ € radN.
Thus [ € radN Nradl = rad(N N L). O

2.5. Corollary. Let N and K be proper submodules of an R-module M. If N is a quasi-
primary submodule of M satisfying the primeful property such that N & K, then N s
also a quasi-primary submodule of K.

Proof. It follows by applying Proposition 2.4 to N and K. O

2.6. Theorem. Let N be a proper submodule of a non-zero R-module M. Then the
following statements are equivalent:

(1) N is a quasi-primary submodule of M ;

(ii) /(N : K)=+/(N:M) for every submodule K of M such that K 2 radN.

Proof. (i)=-(ii). Let K be any submodule of M such that K 2 radN. Then K/N C M/N
and so, /(N : K) 2 /(N : M). For the reverse inclusion, let a € /(N : K). Since
radN ; K, we can find an element x of K\radN. Then a"z € N for some positive
integer n. Hence, by (i), a € /(N : M).

(ii)=(i). Suppose rz € N, where r € R and x € M. Assume z ¢ radN. Then radN C
radN + Rz C M. By (ii), /(N : 7adN + Rz) = /(N : M). Since rz € N, we have
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r(N + Rz) = rN + Rrz C N. This shows that r € (N : N + Rz) C /(radN : N + Rz).
Hence r € /(N : M), as required. O

2.7. Theorem. Let {N; :1 <i < n} be a finite collection of submodules of an R-module
M satisfying the primeful property. Then Nj—iN; satisfies the primeful property and

V(NP N; : M) = (rad(Ni=1 N;) : M).

Proof. Suppose p is a prime ideal of R containing (Ni—; N; : M). Then (N; : M) C p, for
some 1 < j < n. Since N; satisfies the primeful property, there exists a prime submodule
P of M containing N; with (P : M) = p. Hence Nj=; N; satisfies the primeful property
and so /(N N; : M) = (rad(Ni=1N;) : M). O

The following is a result of Theorem 2.7.

2.8. Corollary. Let M be an R-module and {N; : i € I} a collection of quasi-primary
submodules of M satisfying the primeful property. Then (rad(Nj=,N;) : M) = (Ni=radN; :

It is well-known that for a surjective homomorphism f : M — M’ and a prime submod-
ule N of M containing Kerf, f(N) is a prime submodule of M’. Tt follows that for any
submodule N of M, f(radN) C radf(N). Also if Kerf C N, then f(radN) = radf(N).
In particular for every submodule K of M containing N, rad(K/N) = radK/N. Analo-
gously we have the following corollaries:

2.9. Theorem. Let f : M — M’ be a surjective homomorphism. If N' is a quasi-
primary submodule of M’ such that f~'(N') is containing Kerf, then f~'(N') is a
quasi-primary submodule of M.

Proof. Suppose rm’ € f~H(N’) and r ¢ \/(f~1(N’) : M). Tt follows that rf(m’) € N’
and r ¢ \/(N’: M’). Since N’ is a quasi-primary submodule of M’, f(m') € radN’;
i.e. f(m') € P’ for any prime submodule P’ of M’ containing N’. Now, let P be a
prime submodule of M containing f~*(N’). Then N’ = ff~'(N’) C P. Since f(P)
is a prime submodule of M’ containing N’, we must have f(m') € f(P). Therefore,
there exists an element x € P such that m’ — x € Kerf C P. Thus m’ € P and so
m’ € rad(f~*(N")). O

2.10. Theorem. Let f: M — M’ be a surjective homomorphism and N a submodule
of M. If N is a quasi-primary submodule of M containing Kerf, then f(N) is a quasi-
primary submodule of M.

Proof. Suppose that rf(z) € f(N) for r € Rand z € M and r ¢ /(f(N): f(M)).

Hence there exists n € N such that ro —n € Kerf. Therefor ro € N and so we have
z € radN. Since f(radN) = rad(f(N)), we conclude that f(z) € rad(f(N)). O

2.11. Corollary. Let f: M — M’ be a surjective homomorphism. Then the assignment
N — f(N) defines a one-to-one correspondence between the set of all quasi-primary
submodules of M containing Kerf and the set of all quasi-primary submodules N’ of M’
such that f~(N') contains Kerf.

From now on, we frequently use the fact that (radN : M) = /(N : M) for a submod-
ule N of M which satisfies the primeful property. Specially it is used in items (ii) and
(iii) of the following immediate results.

2.12. Lemma. Let N be a submodule of an R-module M satisfying the primeful property.
Then the following hold:



1426

(1) If N is a quasi-primary submodule of M, then (N : M) is a quasi-primary ideal
of R.
(ii) radN is quasi-primary if and only if radN is primary-like if and only if radN
is primary if and only if radN is prime.
(iii) If radN 1is a prime submodule of M, then N is quasi-primary.

2.13. Theorem. Let N be a proper submodule of a finitely generated module M over
a zero-dimensional ring R. Then N is quasi-primary if and only if there exists a quasi-
primary ideal q of R such that ¢ C (N : M). In particular, N is a quasi-primary
submodule of M if and only if (N : M) is a quasi-primary ideal of R.

Proof. Since M is finitely generated, N satisfies the primeful property, then Lemma 2.12
follows that (N : M) is a quasi-primary ideal. Conversely, let ¢ be a quasi-primary ideal
of R such that ¢ C (N : M). Since M is finitely generated, N is contained in a maximal
submodule of M and so radN # M. Since R is zero-dimensional, /g is a maximal ideal
of R and so /g = /(N : M) = (radN : M). Hence radN is a prime submodule of M.
Therefore by Lemma 2.12 (iii), N is quasi-primary. d

Let S be a multiplicatively closed subset of R and M an R-module. We denote the
ring and module of fractions by S™'R and S~'M respectively.

2.14. Theorem. Let M be an R-module and N o quasi-primary submodule of M sat-
isfying the primeful property. Let S be a multiplicatively closed subset of R such that
SN/ (N:M) = 0. Then ST'N is a quasi-primary submodule of S™'R-submodule
SIM.

Proof. Tt is easy to see that /1 € ST'M\S™'N for each € M\radN and so S™'N #
S™tM. Suppose (r/s)(z/t) € ST* N andr/s ¢ \/(S~IN : S—IM). Since S™*/(N : M) C
V(STIN : S—1M), then r ¢ /(N : M). Thus there exist u,w € S, y € N such that
wurz = wsty. It follows z € radN, since N is quasi-primary. Thus =/t € S~ *radN C
rad(S™'N), by [16, Theorems 3.3 and Theorem 3.4]. O

In the following the localization of a ring R and an R-module M at a prime ideal p
are denoted by R, and M), respectively.

2.15. Theorem. Let M be an R-module and N a quasi-primary submodule of M sat-
isfying the primeful property. Then (radN), is an Rp-prime submodule of M, where
p=+/(N:M)=(radN : M). In addition, radNp is prime and radNp = (radN)p.

Proof. By [16, Theorems 3.3 and Theorem 3.4] (radN), C rad(Np). For the reverse
inclusion, it is easy to see that (radN : M), C ((radN), : Mp). Since N is quasi-
primary, by Lemma 2.12 (i), (radN : M), is the unique maximal ideal of R,. Now we
have (radN : M), = ((radN), : Mp), because (radN)p, # M,. Thus (radN), is a prime
submodule of M, containing N,. On the other hand, by [18, Lemma 1.7] rad(NN,) is a
prime submodule of M, containing N,. Hence rad(Np) C (radN),. O

We remark that if N is a submodule of M satisfying the primeful property, then radN
is also satisfies the primeful property. In this case if N is a proper submodule of M, then
radN is also proper. Henceforth, we consider radN # M when trying to prove radN is
prime for a quasi-primary submodule IV satisfying the primeful property.

2.16. Proposition. Let R be a ming and N a quasi-primary submodule of an R-module
M satisfying the primeful property. If \/(N : M) is a mazimal ideal of R, then radN is
a prime submodule of M.
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2.17. Proposition. Let M be an R-module and {N; : i € I} a collection of submodules
of M such that ), ; N; satisfies the primeful property. Then ), ;radN; = M if and
only if Y ,c; Ni = M.

Proof. Assume ), radN; = M and },.; N; # M. Then there exists a maximal ideal
m of R containing (3 ,., N; : M) and a prime submodule P of M containing ), , N;
such that (P : M) = m. Thus )} ,_;radN; C P, a contradiction. The converse is

obvious. O

It is well-known that if F' is a free R-module and I is an ideal of R, then (IF : F) =1
and rad(IF) = /TF |20, Proposition 2.2]. Thus if I is a prime(resp. primary) ideal of
R, then IF is prime(resp. primary) submodule of M . Now we give a similar result in
the quasi-primary case.

2.18. Theorem. Let F be a free R-module. Then qF is a quasi-primary submodule of
F if and only if q is a quasi-primary ideal of R.

Proof. Let ¢F be a quasi-primary submodule of M. Since (¢F : F) = q, q is a proper
ideal of R. Suppose rs € ¢, for r € R, s € R\,/q. Hence rsF C qF and s ¢ (radgF : F'),
since radgF = ,/qF [20, Proposition 2.2]. It follows that r € \/qF : F' = ,/q. Conversely
let ¢ be a quasi-primary ideal of R. Again by (¢F : F) = q, ¢F is a proper submodule

of . Suppose r ¢ \/(qF : F') = \/q and z ¢ radqF = ,/qF. Hence we have rz ¢ /qF,
since \/qF is a prime submodule of F. Thus rz ¢ ¢F. O

2.19. Corollary. Let F' be a free R-module. Then the following statements are equiva-
lent.
1) I=qginN---Naq is a reduced quasi-primary decomposition of the ideal I;
(i) IF=q@FN---NgF is a reduced quasi-primary decomposition of I1F;
(iii) IF =q@FN---NgF is a module-reduced quasi-primary decomposition of IF.

2.20. Proposition. If R is a Noetherian domain and F is a free R-module such that
every prime submodule of F' contains only finitely many prime submodules, then for every
non-zero quasi-primary submodule N of F, radN 1is prime.

Proof. We first show that R is a one-dimensional ring. Let 0 C p’ C p be a chain of prime
ideals of R. If p’ # p, then there exist infinitely many such prime ideals contained in p [9,
p. 144]. Tt follows from the above argument of Theorem 2.18 that there exist infinitely
many prime submodule contained in prime submodule pF', a contradiction. Thus R is a
one-dimensional domain. Now, let ¢F be a non-zero quasi-primary submodule of F. It
is clear that 0 C ¢ C /(¢F : F) and so the proof is completed by Proposition 2.16. O

2.21. Theorem. Let M be an R-module and N a proper submodule of M. If Ny,--- , Ny
satisfies the primeful property and N has a reduced quasi-primary decomposition N =
N1 N NaN---N N such that all the prime ideals associated with N are isolated, then
(N:M)=(N1:M)N(Nz: M)N---N(Ng : M) is a reduced quasi-primary decomposition
of the ideal (N : M) in R.

Proof. Suppose not. Since the ideals \/(N; : M) are distinct, we have (N; : M) D
Nj=i(N; : M) for some i. Then \/(N; : M) D Njxin/(N; : M). It implies that y/(N; : M) D
V/(N; : M) for some i # j, since \/(N; : M) is a prime ideal. The final inclusion contra-
dicts the assumption that \/(N; : M) is an isolated prime ideal of R. O

2.22. Corollary. Let M be an R-module and N a proper submodule of M. If Ny,--- , Ny
satisfies the primeful property and N has a reduced quasi-primary decomposition N =
N1 N NaN---N Ny such that all the prime ideals associated with N are isolated, then
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(1) N is quasi-primary if and only if (N : M) is quasi-primary.
(ii) N is prime if and only if (N : M) is prime.

Proof. The necessity of each part is clear. To show sufficiency, let N = NyNNz2N---N Ny
be a reduce quasi-primary decomposition of N. By Theorem 2.21 (N : M) = (Ny :
M)N (N2 : M)n---N (N, : M) is a reduced quasi-primary decomposition of the ideal
(N : M)in R. If (N : M) is quasi-primary, we must have { = 1 and so N = N is
quasi-primary. (ii) is concluded by an analogous argument. ]

3. Saturation and radical

Let p be a prime ideal of R and N a submodule of an R-module M. Then S,(N) =
{z € M : cx € N for some ¢ € R\p} is a submodule of M which is called the saturation
of N with respect to p. A submodule N of M is called saturated with respect to p if
Sp(N) = N. It is easy to verify S,(N) is a saturated submodule of M with respect
to p. In [11], Lu applied the tool of saturation in the context of prime and primary
submodules. In this section we develop and use this tool for quasi-primary submodules
(probably satisfying the primeful property). In particular, using this, we give some
conditions under which the radical of a quasi-primary submodule is prime.

3.1. Lemma. Let N be a submodule of an R-module M satisfying the primeful property.
N is a p-quasi-primary submodule of M if and only if \/(N : M) = p is a prime ideal of
R and S,(N) C radN.

Proof. Suppose N is a p-quasi-primary submodule of M. Since N satisfies the primeful
property, it is clear that /(NN : M) = p is a prime ideal of R. Let x € S,(N). Then
sz € N for some s € R\ p. Hence x € radN and so that S,(IN) C radN.

Assume /(N : M) = p is a prime ideal of R. Let rz € N and z ¢ radN. Hence we
conclude that sx ¢ N for any s € R\ p. Thus r € p, as required. |

From now on, we denote the set of all prime ideals of R containing (N : M) by
V(N : M).

3.2. Lemma. Let N be a quasi-primary submodule of an R-module M. Then S,(N) C
radN for every p € V(N : M). In particular, if Sp(N) is a prime submodule of M for
somep € V(N : M), then Sp(N) = radN.

Proof. Straightforward. O

3.3. Theorem. Let N be a p-quasi-primary submodule of an R-module M satisfying the
primeful property. Sp(N) is a p-prime submodule of M if and only if Sp(N) = radN.

Proof. Assume that S,(N) is a p-prime submodule of M. It follows from Lemma 3.2 that
Sp(N) = radN. Conversely, suppose Sp(N) = radN. Let rz € Sp(N) and = ¢ Sp(N).
Then rz € N for some r € R\ p. Since N is a p-quasi-primary submodule of M,
r €/ (N:M)= (radN : M) = (Sp(N) : M). Thus S,(N) is a p-prime submodule of
M. O

3.4. Lemma. If a submodule N of an R-module M satisfies the primeful property, then
so do radN and S,(N) for every p € V(N : M).

Proof. Suppose p is a prime ideal of R containing (radN : M). Since N satisfies the
primeful property and p O (N : M), there exists a prime submodule P of M containing
N such that (P : M) = p. It is clear that P O radN and so radN satisfies the primeful
property. For the second part, let p be a prime ideal of R such that p 2 (Sp(N) :
M) D (N : M). Then there exists a prime submodule P’ of M containing N such that
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(P’ : M) = p. Now, let z € S,(N). There exists s € R\ p such that st € N C P’.
Therefore € P'. Hence we have S,(N) C P’, as desired. O

3.5. Theorem. Let p be a prime ideal of R and N a submodule of an R-module M
satisfying the primeful property. Then the following statements are equivalent:
(1) Sp(N) is a p-quasi-primary submodule of M;
) (Sp(N): M) is a p-quasi-primary ideal of R;
) V(Sp(N) : M) = (radS,(N) : M) = p;
(iv) (Sp(N): M) is a p-primary ideal of R;
) Sp(N) is a p-primary submodule of M.

Proof. (i)= (ii)= (iii) is clear by Lemma 3.4.

(ili))= (i). By [11, Result 1(1), page 2658], Sp(Sp(N)) = Sp(N). It implies that
Sp(Sp(N)) C rad(Sp(N)) and so Sp(N) is a p-quasi-primary submodule of M by Lemma

(ili)< (iv)< (v) is obtained by [11, Theorem 2.3]. O

3.6. Corollary. Let N be a p-quasi-primary submodule of an R-module M satisfying the
primeful property. Then the equivalent conditions in Theorem 3.5 hold.

Proof. Since N satisfies the primeful property, Lemma 3.4 shows that

p=+/(N:M)C+\/(Sp(N): M) = (radS,(N) : M).

On the other hand, Lemma 3.1 follows that (S,(N) : M) C p and hence p = (radS,(N) :
M). Thus (iii) of Theorem 3.5 holds. O

3.7. Corollary. Let N be a p-quasi-primary submodule of an R-module M satisfying
the primeful property. If (Sp(N) : M) is a radical ideal of R, then radN is a prime
submodule of M.

Proof. It follows from Corollary 3.6 that S,(NN) is a p-primary submodule of M and so
Sp(IN) is prime, since (Sp(N) : M) is a radical ideal of R. Now the proof is completed
by Theorem 3.3. ]

3.8. Proposition. Let N be a p-quasi-primary submodule of an R-module M satisfying
the primeful property. Then

VS (N : M) = /(Sp(N) : M) = p.
In particular, Sp,(N : M) and (Sp(N) : M) are p-primary ideals of R.

Proof. Since N is p-quasi-primary, Lemma 3.1 shows that (S,(N) : M) C /(N : M).
Thus we conclude that (N : M) C S,(N : M) C (Sp(N) : M) C /(N : M), as required.
The second part is clear. O

3.9. Theorem. Let N be a submodule of an R-module M and p a prime ideal of R such
that p C (radN : M). Then the following statements are equivalent:
(i) Sp(radN) # M;
(it) (radN : M) = (Sp(radN) : M) = p;
(iii) Sp(radN) is a p-prime submodule of M.
Further, if N is a p-quasi-primary submodule of M, then the above statements are equiv-
alent to:

(iv) radN is a p-prime submodule of M.
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Proof. (i)= (ii). By replacing N with radN in [11, Theorem 2.1], we have (Sp(radN) :
M) C p. Since pM C radN, we have p C (radN : M) C Sp(radN : M) C (Sp(radN) :
M) C p, whence (ii) follows.

(ii)= (iii). Using [11, Theorem 2.3] by replacing N with radN.

(iii)= (i) is clearly true.

(iif)= (iv). Let N be a p-quasi-primary submodule of M. It follows from (ii) and (iii)
that Sp(radN) is a p-prime submodule of M where (radN : M) = p. It follows from
Lemma 3.2, Sp(radN) = radN. Hence radN is a p-prime submodule of M.

(tw) = (4it) is clear. O

3.10. Proposition. Let N be a quasi-primary submodule of an R-module M. If p =
(N : M) is a prime ideal of R, then Sp(N) = M or radN is a prime submodule of M.

Proof. Suppose Sp(N) # M. By [11, Proposition 2.4], S,(N) is a prime submodule of
M. Tt follows from Lemma 3.2 that radN is a prime submodule of M. O

3.11. Corollary. Let N be a quasi-primary submodule of an R-module M satisfying the
primful property. If p= (N : M) is a prime ideal of R, then radN is a prime submodule
of M.

Proof. Since N satisfies the primeful property, we have radN # M. Also, it follows from
Lemma 3.1 that S,(NN) C radN. Now Proposition 3.10 completes the proof. O

3.12. Proposition. Let N be a p-quasi-primary submodule of an R-module M satisfying
the primeful property. Then radS,(N) C S,(N + pM) C Sp(radN). In particular,
p = (radSp(N) : M) = (Sp(N +pM) : M).

Proof. By |11, Theorem 4.3|, Sp,(N+pM) is a p-prime submodule of M and so radS,(N) C
Sp(N + pM). Suppose z € Sp(N + pM). Then cx € N + pM for some ¢ € R\p.
Since /(N : M) = p and cx € radN, we conclude that z € S,(radN). Also, we have
p=(radN : M) C (radSp(N) : M) C (Sp(N + pM) : M) = p, as required. O

The following is a result of [11, Corollary 5.7] and Proposition 3.12.

3.13. Corollary. Let m be a mazimal ideal of R and N a m-quasi-primary submod-
ule of an R-module M satisfying the primeful property. Then radN = radS.,(N) =
Sm(radN) = Sy (N +mM).

3.14. Theorem. Let R be an Artinian ring and M a module over R. If N is a quasi-
primary submodule of M and p € V(N : M) , then the followings hold.

(1) radN is a prime submodule of M.
(ii) radSp(N) = Sp(radN) = Sp(N + pM). In particular, radS,(N) is a prime
submodule of M.

Proof. (i). Since R is an Artinian ring, [2, Theorem 2.16] implies that N satisfies the
primeful property Thus (N : M) is a quasi-primary ideal of R. Since R is zero-
dimensional, /(N (P : M) for all prime submodules P containing N. Hence
p=+(N:M)= (radN : M) is a prime ideal of R. Now if rx € radN and z ¢ radN,
there is a prime submodule P’ containing N such that rz € P’ and = ¢ P’. Thus
€ (P :M)=+/(N:M)=(radN : M) and so radN is prime.
(i1). Suppose x € Sp(N + pM). Then cx € N + pM for some ¢ € R\p. Since
V(N : M) =p, cx € radN and so z € Sy(radN). Thus S,(N + pM) C S,(radN). Now
if z € Sp(radN), there exists ¢ € R\p such that cz € P and so similar to the process of
the proof (i), « € P. Hence we have x € radSp(N) and so Sp(radN) C radS,(N).
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Finally, by [12, Theorem 4.3], Sp(N + pM) is a prime submodule of M and hence
radSp(N) C radSy(N + pM) = Sp(N + pM). O

4. Torsioan and radical

Recall that a torsion submodule of a module M over a domain R, denoted by T'(M), is
the submodule {z € M : ann(z) # 0} of M. An R-module M is said to be torsion(resp.
torsion-free), if T(M) = M(resp. T (M) = 0). Compare the following proposition with
[8, Lemma 1].

4.1. Lemma. Let M be an R-module. Let N be a submodule of M satisfying the primeful
property. Then radN is a quasi-primary submodule of M if and only if (N : M) is a
quasi-primary ideal of R and T(M/radN) = 0 as a R/\/(N : M)-module. In this case
radN is a prime submodule of M.

Proof. Suppose radN is a quasi-primary submodule of M. By Lemma 2.12 (i), /(N : M) =
p is a prime ideal of R. If x + radN € T(M/radN)), then rz € radN, for some ele-
ment 7 € R\ p. Since radN is p-quasi-primary, z € radN i.e. T(M/radN) = 0.
Conversely, /(N : M) = p # R implies radN # M. If rz € radN and r ¢ p, then
z+radN € T(M/radN) and so z € radN. Thus radN is a quasi-primary submodule of
M. In this case radN is prime by Lemma 2.12. O

4.2. Corollary. Let N be a submodule of an R-module M satisfying the primeful prop-
erty. If (N : M) is a quasi-primary ideal of R and T(M/radN) =10 as a R/\/(N : M)-
module, then N s a quasi-primary submodule of M.

Proof. The proof is clear by using Lemma 2.12 and Lemma 4.1. (]

4.3. Theorem. Let R be a Dedekind domain and N a submodule of an R-module M
satisfying the primeful property. The following are equivalent:
(1) radN is prime;
(i) M =radN @ N’ for some torsion-free submodule N' of M or (radN : M) = m
for some mazimal ideal m of R.

Proof. (i) = (ii). Suppose first that radN is a 0-prime submodule of M. It follows from
Lemma 4.1 that M/radN is a torsion-free R-module. It follows from [5, Exercise 19.6(a)]
that M/radN is projective and hence M = radN & N’ for some submodule N’. Clearly
N’ is torsion-free. Now, let radN be a prime submodule of M with (radN : M) # 0.
Since R is Dedekind domain, (radN : M) is a maximal ideal of R, as desired.

(ii) = (i). Assume that M = radN & N’ for some torsion-free submodule N’ of M.
Then M/radN ~ N’ follows that M/radN is torsion-free and hence radN is a 0-prime
submodule of M by [8, Lemma 1|. On the other hand, it is easy to verify that radN is
prime when (radN : M) is a maximal ideal. O

4.4. Theorem. Let R be a Noetherian domain and M be a non-torsion R-module such
that T'(M) is contained in only finitely many prime submodules of M. If N is a quasi-
primary submodule of M satisfying the primeful property, then radN s prime.

Proof. We first assume that (N : M) = 0. It follows from Corollary 3.11 that radN is
a prime submodule of M. Thus we may assume that (N : M) # 0. If P is a prime
submodule containing N, we have the chain 0 = (T'(M) : M) C /(N : M) C (P : M)
of prime ideals of R. If the later containment is proper, by [9, p.144] there are infinitely
many prime ideals p with (N : M) C p C (P : M) and so we have infinitely prime
submodules P containing T'(M), a contradiction. Hence we have /(N : M) = (P : M),
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for all prime submodules P containing N. Now if rz € radN and = ¢ radN, there
is a prime submodule P containing N such that r& € P and x ¢ P and therefore
re(P:M)=+/(N:M)=(radN : M), as required. O

For an R-module M and z € M, we mean that (N : x) is the set {r € R:rx € N}.
Now we have the elementary following lemma.

4.5. Lemma. Let M be an R-module. Then N is a quasi-primary submodule of M if
and only if /(N : M) = \/(N : z) for all x € M\radN.

In the following quasi-primary module is considered a module whose the zero submod-
ule is quasi-primary.
4.6. Theorem. Let M be a quasi-primary and primeful module over a one-dimensional

domain R. Then either \/ann(M) = 0 or \/ann(M) = /(N : M) for all proper sub-
modules N of M. In particular, if M is a non-cyclic torsion module, then \/(Rx : M) =

Vann(z) for all z € M\rad0.

Proof. Suppose y/ann(M) # 0. Since R is a one-dimensional domain, y/ann(M) is a
maximal ideal of R. It conclude that \/ann(M) = /(N : M) for all proper submodules
N. Since 0 is a quasi-primary submodule satisfying the primeful property, rad0 # M.
Now if M is a torsion module, then y/ann(M) # 0. Again since 0 is quasi-primary,

vann(M) = y/ann(m) for all x € M\rad0 by Lemma 4.5. Since Rz is a proper
submodule for all z € M, by the first part 1/(Rz : M) = y/ann(M) = \/ann(z) O

4.7. Theorem. Let M be a torsion module over a one-dimensional domain R. If M is
quasi-primary and primeful, then there exists a prime ideal p of R such that r ¢ p implies
rM =M.

Proof. Suppose p = y/ann(M). If rM # M, then by Theorem 4.6 r € \/(rM : M) =
ann(M) = p. O

4.8. Theorem. Let M be a quasi-primary primeful and torsion module over a one-
dimensional domain R. If p = y/ann(M) and M, is the localization of M at p, then
M/Sp(0) = M,, an isomorphism of R-modules.

Proof. Consider the R-module homomorphism 1 : M — M, given by m — m/1. To
show that ¢ is an epimorphism, take any m/s € M,,. Since s ¢ p, sM = M by Theorem
4.8 and so there exists m’ € M such that m = sm’. Thus m/s = sm’/s =m'/1 = (m').
Also it is easy to verified that the kernel of v is S,(0). Hence M/S,(0) = M. O
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