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Convergence processes of approximating operators

Özlem Girgin ATLIHAN ∗

Abstract
The aim of this paper is to present Korovkin type theorems on approxi-
matin of continuous functions with the use of A−statistical convergence
and matrix summability method which includes both convergence and
almost convergence. Since statistical convergence and almost conver-
gence methods are incompatible, we conclude that these methods can
be used alternatively to get some approximation results.

2000 AMS Classification: Primary 41A25, 41A36; Secondary 47B38.

Keywords: Matrix summability method, sequence of positive linear operators,
the Korovkin approximation theorem, A-statistical convergence.

Received 22/01/2014 : Accepted 08/04/2014 Doi : 10.15672/HJMS.2015449435

1. Introduction
The so-called Bohman-Korovkin theorem on approximation of continuous functions

on a compact interval provides conditions in order to make a decision whether a sequence
of positive linear operators converges to the identity operator [2],[7],[14], and so on many
proofs have appeared in a variety of settings of this result (see[15],[18],
[20],[27]). In [27], Uchiyama have given an alternate proof of it by using inequali-
ties related to variance. If the sequence of positive linear operators does not conver-
gence to the identity operator then it might be benefical to use summability methods
([1],[13],[16],[22],[26],[28]).

The main point of using summability theory has always been to make a nonconvergent
sequence to converge. This was the motivation behind Fèjer’s famous theorem showing
Cesàro method being effective in making the Fourier series of a continuous periodic
function to converge [29]. In this paper, using Uchiyama’s idea [27], we give quite simple
proofs of the Korovkin type approximation theorems studied in ([9],[13],[23]). And also
we develop some Korovkin type results with the use of summation process and statistical
convergence methods respectively.

We pause to collect some notation.
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Let C [a, b] be the vector space of all real-valued continuous functions on [a, b] and let
L be a linear operator on C [a, b] . We say that L is positive if Lf ≥ 0 whenever f ≥ 0 on
[a, b] . Note that C [a, b] is a Banach space with norm ‖f‖ = max

x∈[a,b]
|f(x)| and we denote

norm of L operator by ‖L‖ = max {‖Lf‖ : ‖f‖ ≤ 1} .
A subsequence B of C [a, b] is called a subalgebra if f.g belongs to B whenever f and

g are members of B.
We first recall the following lemma introduced in [27], which is useful in proving our

results.
[A] Lemma. Let B be a norm-closed subalgebra of C [a, b] that contains 1. If L is a

positive linear operator on B with L(1) ≤ 1, then

V (h) := L(h2)− (L(h))2 ≥ 0

for every h in B. Morever, for f, g and k in B:

(1.1) |L(fg)− L(f)L(g)|2 ≤ V (f)V (g)

(1.2) ‖L(fg)− L(f)L(g)‖ ≤ ‖V (f)‖
1
2 ‖V (g)‖

1
2

(1.3) ‖L(fg)− L(f)L(g)‖ ≤ ‖V (f)‖
1
2 ‖V (g) + V (k)‖

1
2

We now turn our attention to matrix summability method.
Let A :=

{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with non-negative real

entries. A sequence {Lj} of positive linear operators of C [a, b] into C [a, b] is called an
A - summation process on C [a, b] if {Lj (f)} is A- convergent to f for every f ∈ C [a, b] ,
i.e.,

(1.4) lim
k

∥∥∥∥∥
∞∑
j=1

a
(n)
kj Lj(f)− f

∥∥∥∥∥ = 0, uniformly in n,

where it is assumed that the series in (1.4) converges for each k, n and f. Recall that
a sequence of real numbers {xj} is said to be A−convergent (or A−summable) to L if

limk

∞∑
j=1

a
(n)
kj xj = L, (uniformly in n), ([19],[25]).

If A(n) = A for some matrix A, then A−summability is the ordinary matrix summa-
bility by A. If a(n)kj = 1/k for n ≤ j < k + n, (n = 1, 2, ...), and a(n)kj = 0 otherwise, then
A−summability reduces to almost convergence method [18]. Let {Lj} be a sequence of
positive linear operators of C [a, b] into C [a, b] such that for each k, n ∈ N

(1.5)
∞∑
j=1

a
(n)
kj ‖Lj(1)‖ <∞.

Furthermore, for each k, n ∈ N and f ∈ C [a, b] , let

B
(n)
k (f ;x) =

∞∑
j=1

a
(n)
kj Lj(f ;x)

which is well defined by (1.5), and belongs toB [a, b] .Observe that
∥∥∥B(n)

k

∥∥∥ = maks
{∥∥∥B(n)

k (f)
∥∥∥ : ‖f‖ ≤ 1

}
.Hence∥∥∥B(n)

k

∥∥∥ =
∥∥∥B(n)

k (1)
∥∥∥ .Some unification on Korovkin-type results through the use of a

summability method may be found in ([3],[4],[5],[6],[8]).



815

2. Korovkin Type Approximation Theorems via Summation Pro-
cess
This section is motivated by that of Uchiyama [27]. We give quite simple proof of a

Korovkin type theorem which has been developed by Nishishiraho via A− summation
process, with the use of inequalities related to variance. And also we obtain Korovkin
type results for positive linear operators over C2π and C(D) respectively with the use of
A− summation process which includes both convergence and almost convergence.

2.1. Theorem. Let A :=
{
A(n)

}
be a sequence of infinite matrices with non-negative

real entries. Assume that {Lj} be a sequence of positive linear operators from C [a, b]
into C [a, b] for which (1.5) holds. If,

(2.1) lim
k

∥∥∥B(n)
k h− h

∥∥∥ = 0, uniformly in n,

for all h = 1, x, x2 then {Lj} is A− summation process on C [a, b] i.e., for every f ∈
C [a, b] ,

lim
k

∥∥∥B(n)
k f − f

∥∥∥ = 0, uniformly in n.

Proof. We proceed as in [27]. Since lim
k

∥∥∥B(n)
k 1− 1

∥∥∥ = 0, (uniformly in n), we have

lim
k

∥∥∥B(n)
k 1

∥∥∥ = 1, (uniformly in n). Without loss of generality we may assume that∥∥∥B(n)
k

∥∥∥ 6= 0 for all n and k.By considering B
(n)
k∥∥∥B(n)
k

∥∥∥ in place of B(n)
k , without loss of

generality we assume that B(n)
k (1) ≤ 1 for all n, k. This implies that

∥∥∥B(n)
k

∥∥∥ ≤ 1 for all
n, k. Using (1.2) , for every f in C [a, b] and for all n, k ,

we can write∥∥∥B(n)
k (xf)−B(n)

k (x).B
(n)
k (f)

∥∥∥2
(2.2) ≤

∥∥∥B(n)
k (x2)− (B

(n)
k (x))2

∥∥∥∥∥∥B(n)
k (f2)− (B

(n)
k (f))2

∥∥∥ .
Since

∥∥∥B(n)
k

∥∥∥ ≤ 1, we get∥∥∥B(n)
k (f2)− (B

(n)
k (f))2

∥∥∥ ≤ ∥∥∥B(n)
k

∥∥∥{∥∥f2
∥∥+ ‖f‖2} ≤ 2 ‖f‖2 .

Considering hypothesis we conclude that

lim
k
B

(n)
k (x2) = x2 = lim

k
(B

(n)
k (x))2, uniformly in n,

this implies that the right-hand side of (2.2) tends to zero (uniformly in n). We see that∥∥∥B(n)
k (xf)− xf

∥∥∥ ≤ ∥∥∥B(n)
k (xf)−B(n)

k (x).B
(n)
k (f)

∥∥∥∥∥∥B(n)
k (x).B

(n)
k (f)− xf

∥∥∥ .
If lim

k

∥∥∥B(n)
k f − f

∥∥∥ = 0, uniformly in n, then it follows from (2.2) that

lim
k

∥∥∥B(n)
k (xf)− xf

∥∥∥ = 0, uniformly in n.

Here by taking h = 1, x, x2 instead of f. We obtain (2.1) holds for h = xm for m =

0, 1, 2, ....Since B(n)
k is linear, (2.1) holds for every polynomial p. From the Weierstrass
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theorem asserting the norm-density of polynomials in C [a, b] (see [24],p.159), we have
for every f ∈ C [a, b]∥∥∥B(n)

k f − f
∥∥∥ ≤ ∥∥∥B(n)

k f −B(n)
k p

∥∥∥+ ∥∥∥B(n)
k p− p

∥∥∥+ ‖f − p‖
≤ 2 ‖f − p‖+

∥∥∥B(n)
k p− p

∥∥∥ .
Taking supremum over n and letting k →∞, result follows. �

Let C2π be the space of real-valued continuous functions f on [−π, π] such that
f(−π) = f(π). Then C2π is closed subalgebra of C [−π, π] and 1 belongs to C2π.

In the following theorem, we extend Korovkin type approximation theorem for a se-
quence of positive linear operators over C2π via A− summation process.

2.2. Theorem. Let A :=
{
A(n)

}
be a sequence of infinite matrices with non-negative

real entries. Assume that {Lj} be a sequence of positive linear operators from C2π into
C2π for which (1.5) holds. If,

lim
k

∥∥∥B(n)
k h− h

∥∥∥ = 0, uniformly in n,

for all h = 1, sinx, cosx, then {Lj} is A− summation process on C2π i.e., for every
f ∈ C2π,

lim
k

∥∥∥B(n)
k f − f

∥∥∥ = 0, uniformly in n.

Proof. As in the proof of Theorem 2.1, without loss generality we assume that B(n)
k (1) ≤

1. By (1.3), for every f in C2π,we have∥∥∥B(n)
k (f sinx)−B(n)

k (f).B
(n)
k (sinx)

∥∥∥2
≤
∥∥∥B(n)

k (f2)− (B
(n)
k (f))2

∥∥∥ ∥∥∥B(n)
k ( sin2 x)− (B

(n)
k ( sinx))2+B

(n)
k ( cos2 x)− (B

(n)
k ( cosx))2

∥∥∥
=
∥∥∥B(n)

k (f2)− (B
(n)
k (f))2

∥∥∥ ∥∥∥B(n)
k (1)− (B

(n)
k ( sinx))2−(B(n)

k ( cosx))2
∥∥∥

≤ 2 ‖f‖2 .
∥∥∥B(n)

k (1)− (B
(n)
k ( sinx))2−(B(n)

k ( cosx))2
∥∥∥ .

Considering hypothesis we conclude that

lim
k

∥∥∥B(n)
k (f sinx)−B(n)

k (f).B
(n)
k (sinx)

∥∥∥ = 0, uniformly in n.

Observe now that∥∥∥B(n)
k (f sinx)− f sinx

∥∥∥
≤
∥∥∥B(n)

k (f sinx)−B(n)
k (f).B

(n)
k (sinx)

∥∥∥∥∥∥B(n)
k (f).B

(n)
k (sinx)− f sinx

∥∥∥ .
If lim

k

∥∥∥B(n)
k f − f

∥∥∥ = 0,(uniformly in n) then lim
k

∥∥∥B(n)
k (f sinx)− f sinx

∥∥∥ = 0,

(uniformly in n). We obtain similarly that lim
k

∥∥∥B(n)
k (f cosx)− f cosx

∥∥∥ = 0, (uniformly

in n). By taking h = 1, sinx, cosx instead of f then (2.1) holds for h = sinm x cost x
for all nonnegative integers m and t, which ensures that it is valid for h = sinmx. cos tx
for all such m and t. Thus (2.1) holds for every trigonometric polynomial p, and since
the latter functions are dense in C2π. (see [24],p:190) we have for every f in C2π that
lim
k

∥∥∥B(n)
k f − f

∥∥∥ = 0, uniformly in n. �
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We next consider the space C(D) of complex-valued continuous functions f on the
closed unit disk D = {z : |z| ≤ 1} in the complex plane.

In what follows we require the following
[B] Lemma. [27] If L is a positive linear operators on C(D) with L(1) ≤ 1, then

V (h) := L(|h|2)− |L(h)|2 ≥ 0

for every h in C(D). Morever, for f and g in C(D) it is the case that

|L(fg)− L(f)L(g)|2 ≤ V (f)V (g)

‖L(fg)− L(f)L(g)‖ ≤ ‖V (f)‖
1
2 ‖V (g)‖

1
2(2.4)

We now give a Korovkin type approximation theorem for a sequence of positive linear
operators defined on C(D) via A− summation process.

2.3. Theorem. Let A :=
{
A(n)

}
be a sequence of infinite matrices with non-negative

real entries. Assume that {Lj} be a sequence of positive linear operators from C(D) into
C(D) for which (1.5) holds. If,

lim
k

∥∥∥B(n)
k h− h

∥∥∥ = 0, uniformly in n,

for all h = 1, z, |z|2 , then {Lj} is A− summation process on C(D) i.e., for every f ∈
C(D),

lim
k

∥∥∥B(n)
k f − f

∥∥∥ = 0, uniformly in n.

Proof. We may assume that B(n)
k (1) ≤ 1 for all n, k. Since (2.4), we have∥∥∥B(n)

k (zf)−B(n)
k (z).B

(n)
k (f)

∥∥∥2 ≤ ∥∥∥∥B(n)
k ( |z|2 )−

∣∣∣B(n)
k (z)

∣∣∣2∥∥∥∥ ∥∥∥∥B(n)
k ( |f |2 )−

∣∣∣B(n)
k (f)

∣∣∣2∥∥∥∥
≤ 2 ‖f‖2

∥∥∥∥B(n)
k ( |z|2 )−

∣∣∣B(n)
k (z)

∣∣∣2∥∥∥∥ .
By the hypothesis we get

lim
k
B

(n)
k (|z|2) = |z|2 = lim

k

∣∣∣B(n)
k (z)

∣∣∣2 , uniformly in n,

this implies that

lim
k

∥∥∥B(n)
k (zf)−B(n)

k (z).B
(n)
k (f)

∥∥∥ = 0, uniformly in n.

We can write∥∥∥B(n)
k (zf)− zf

∥∥∥ ≤ ∥∥∥B(n)
k (zf)−B(n)

k (z).B
(n)
k (f)

∥∥∥∥∥∥B(n)
k (z).B

(n)
k (f)− zf

∥∥∥
if lim

k

∥∥∥B(n)
k f − f

∥∥∥ = 0, (uniformly in n) then lim
k

∥∥∥B(n)
k (zf)− zf

∥∥∥ = 0, (uniformly in

n). We obtain that (2.1) holds for h whenever it holds for h. Here by taking h =

1, z, |z|2 instead of f , (2.1) holds for h = zm.zk for all non-negative integers m and k,
hence for every polynomial in z and z. By Stone’s theorem (see [24],p:165) the set of all
such polynomials is dense in C(D), so (2.1) holds for every f in C(D).

�



818

3. A Korovkin Type Approximation Theorem via Statistical Con-
vergence
In this section we give simple proofs for statistical analog of Korovkin’s theorems

considered in [9] and [13], also using A−statistically convergence, we extend a Korovkin
type result for positive linear operators over the space C(D).
First we recall the concept of A−statistical convergence. Let A := (ajn), j, n = 1, 2, ...,
be an infinite summability matrix. For a given sequence x := (xn), the A−transform
of x, denoted by Ax := ((Ax)j), is given by (Ax)j :=

∑
n

ajnxn, provided the series

converges for each j. The matrix A is said to be regular if limj(Ax)j = L whenever
limx = L [12].Suppose that A is a non-negative regular summability matrix. Then x is
A−statistically convergent to L if for every ε > 0

lim
j

∑
n:|xn−L|≥ε

ajn = 0.

In this case we write stA − limx = L ([11],[17]). The case in which A = C1, the Cesaro
matrix of order one, reduces to the statistical convergence ([10],[11]). Also if A = I, the
identity matrix, then it reduces to the ordinary convergence.
Note that, if A = (ajn) is a non-negative regular matrix such that limj maxn {ajn} = 0,
then A−statistical convergence is stonger than convergence [17].

3.1. Theorem.Let A = (ajn) be a non-negative regular summability matrix. Assume
that {Ln} be a sequence of positive linear operators from C [a, b] into C [a, b] . If,

(3.1) stA − lim
n
‖Lnh− h‖ = 0.

for all h = 1, x, x2, then, for every f ∈ C [a, b]

stA − lim
n
‖Lnf − f‖ = 0.

Proof. As in the proof of Theorem 2.1 , without loss of generality we assume that in
Ln(1) ≤ 1 for all n. By (1.2) , for every f in C [a, b] and for all n , we can write

(3.2) ‖Ln(xf)− Ln(x).Ln(f)‖2 ≤
∥∥Ln(x2)− (Ln(x))

2
∥∥ ∥∥Ln(f2)− (Ln(f))

2
∥∥ .

Since ‖Ln‖ ≤ 1, we get∥∥Ln(f2)− (Ln(f))
2
∥∥ ≤ ‖Ln‖{∥∥f2

∥∥+ ‖f‖2} ≤ 2 ‖f‖2

by hypothesis we obtain that

stA − lim
n
Ln(x

2) = x2 = stA − lim
n
(Ln(x))

2

this implies that the right-hand side of (3.2) isA−statistically convergent to zero. Observe
that

‖Ln(xf)− xf‖ ≤ ‖Ln(xf)− Ln(x).Ln(f)‖ . ‖Ln(x).Ln(f)− xf‖ .

If stA − lim
n
‖Lnf − f‖ = 0, then it follows from (3.2) that

stA − lim
n
‖Ln(xf)− xf‖ = 0.

Here by taking h = 1, x, x2 instead of f. We see that (3.1) holds for h = xm for m =
0, 1, 2, ....Since Ln is linear, (3.1) holds for every polynomial p. Since ‖Ln‖ ≤ 1 for every n,
theorem follows from the Weierstrass theorem asserting the norm-density of polynomials
in C [a, b] . �
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3.2. Theorem. Let A = (ajn) be a non-negative regular summability matrix. As-
sume that {Ln} be a sequence of positive linear operators from C2π into C2π. If,

stA − lim
n
‖Lnh− h‖ = 0.

for all h = 1, sinx, cosx, then, for every f ∈ C2π

stA − lim
n
‖Lnf − f‖ = 0.

Proof. As in the proof of Theorem 2.2, there is no loss of generality in assuming that
Ln(1) ≤ 1. By (1.3), we have for every f in C2π,

‖Ln(f sinx)− Ln(f).Ln(sinx)‖2

≤
∥∥Ln(f2)− (Ln(f))

2
∥∥∥∥Ln(sin2 x)− (Ln(sinx))

2 + Ln(cos
2 x)− (Ln(cosx))

2
∥∥

=
∥∥Ln(f2)− (Ln(f))

2
∥∥∥∥Ln(1)− (Ln(sinx))

2 − (Ln(cosx))
2
∥∥

≤ 2 ‖f‖2 .
∥∥Ln(1)− (Ln(sinx))

2 − (Ln(cosx))
2
∥∥

By the hypothesis we have

stA − lim
n
‖Ln(f sinx)− Ln(f)Ln(sinx)‖ = 0.

This implies that stA − limn ‖Ln(f sinx)− f sinx‖ = 0 whenever
stA − lim

n
‖Lnf − f‖ = 0.We see similarly that stA − limn ‖Ln(f cosx)− f cosx‖ = 0 in

this situtation. Thus (3.1) holds for h = sinm x cost x for all nonnegative integers m and
t, which ensures that it is valid for h = sinmx. cos tx for all such m and t.Thus (3.1)
holds for every trigonometric polynomial p, and since the latter functions are dense in
C2π.(see [24],p:190) we have for every f ∈ C2π that

stA − lim
n
‖Lnf − f‖ = 0.

�

3.3. Theorem. Let A = (ajn) be a non-negative regular summability matrix. As-
sume that {Ln} be a sequence of positive linear operators from C(D) into C(D). If,

stA − lim
n
‖Lnh− h‖ = 0.

for all h = 1, z, |z|2, then, for every f ∈ C(D)

stA − lim
n
‖Lnf − f‖ = 0.

Proof. We may assume that Ln(1) ≤ 1 for all n. It is evident that (3.1) holds for h
whenever it holds for h. The estimate (2.4) guarantees that (3.1) holds for h = zm.zk

for all nonnegative integers m and k, hence for every polynomial in z and z. By Stone’s
theorem the set of all such polynomials is dense in C(D), so (3.1) holds for every f in
C(D).

�

Note that if we replace A by the identity matrix we get the complex Korovkin theorem.
3.1. Remark. Now we exhibit two examples of sequences of positive linear operators.

The first one shows that Theorem 3.3 does not work, so the classical Korovkin theorem
does not work either; but Theorem 2.3 works. The second one gives that Theorem 2.3
does not work but Theorem 3.3 does work. In order to see this let {Lj} be a sequence of
positive linear operators from C(D) into C(D) satisfying the hypothesis of the classical
complex Korovkin theorem. Assume now that A =

{
A(n)

}
=
{
a
(n)
kj

}
is a sequence of
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infinite matrices defined by a(n)kj = 1/k if n ≤ j < n + k, and a
(n)
kj = 0 otherwise. In

this case A−summability method reduces to almost convergence.. We also take A =
C1 in Theorem 3.3. In this case A− statistical convergence reduces to the statistical
convergence. Then consider the following two examples.
(a) Take (uj) = {(−1)j}. Note that u is almost convergent to zero [19], but it is not
statistically convergent [11]. Now define

Tj(f ;x) = (1 + uj)Lj(f ;x) for all f ∈ C(D).

Then observe that {Tj} satisfies Theorem 2.3, but it satisfies neither the classical Ko-
rovkin theorem nor the present Theorem 3.3.
(b) Consider a non-negative sequence (uj) which is statistically convergent to zero but
not almost convergent. Such an example may be found in [21]. Proceeding exactly as in
the case (a) we can construct a sequence of positive linear operators so that it is statisti-
cally convergent to the identity operator but not almost convergent. These two methods
are incompatible [21].

The examples given above suggest that if the sequence of positive linear operators
does not converge then we can use alternatively either almost convergence method or
statistical convergence method to get some Korovkin type approximation results.
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