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Comparison of near sets by means of a chain of
features
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Abstract

If the number of features of objects in a perceptual system, is large,
then the objects can be known better and comparable. In this paper
basically, we form a chain of feature sets that describe objects and then
by means of this chain of feature sets, we investigate the nearness of
sets and near sets in a perceptual system.
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1. Introduction
Near sets were introduced by J.F. Peters [11], which are indeed a form of generalization

of rough sets proposed by Z. Pawlak [6]. The algebraic properties of near sets are de-
scribed in [9]. Recent work has considered near soft sets [20], soft nearness approximation
spaces [4], near groups [3], isometries in proximity spaces [18], and applications of near
sets [17,19]. The fundamental idea of near set theory is object description and classifica-
tion according to perceptual knowledge. It is supposed that perceptual knowledge about
objects is always given with respect to probe functions, i.e., real-valued functions which
represent features of a physical object. Some well known examples of probe functions are
the colour, size or weight of an object [1,2,9-16,21].
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2. Preliminiaries
In this section, we present the basic definitions of near set theory [9,11]. More detailed

explanations related to near sets and rough sets can be found in [1,2,9-16,21] and [5-8],
respectively.

2.1. Definition. [9] (Perceptual Object) A perceptual object is something perceivable
that has its origin in the physical world.

2.2. Definition. [9] (Probe Function) A probe function is a real-valued function rep-
resenting a feature of a perceptual object.Simple examples of probe functions are the
colour, size or weight of an object.

2.3. Definition. [9] (Perceptual System) A perceptual system 〈O,F 〉 consists of a
non-empty set O of sample perceptual objects and a non-empty set F of real-valued
functions φ ∈ F such that φ : O → R.

2.4. Definition. [9] (Object Description) Let 〈O,F 〉 be a perceptual system, and let
B ⊆ F be a set of probe functions. Then, the description of a perceptual object x ∈ O
is a feature vector given by

φB(x) = (φ1(x), φ2(x), ..., φi(x), ..., φl(x))
where l is the length of the vector φB , and each φi(x) in φB(x) is a probe function

value that is part of the description of the object x ∈ O .

2.5. Definition. [2, 6] (Indiscernibility relation) Let 〈O,F 〉 be a perceptual system.
For every B ⊆ F the indiscernibility relation ∼B is defined as follows:

∼B= {(x, y) ∈ O ×O | ∀φi ∈ B,φi (x) = φi (y)} .

If B = {φ} for some φ ∈ F , instead of ∼{φ} we write ∼φ .
The indiscernibility relation ∼B is an equivalence relation on object descriptions.

2.6. Lemma. [9] Let 〈O,F 〉 be a perceptual system. For every B ⊆ F ,

∼B=
⋂
φ∈B
∼φ .

2.7. Definition. (Equivalence Class) Let 〈O,F 〉 be a perceptual system and let x ∈ O
. For a set B ⊆ F an equivalence class is defined as x�∼B = {y ∈ O | y ∼B x} .

2.8. Definition. (Quotient Set)Let 〈O,F 〉 be a perceptual system.For a set B ⊆ F a
quotient set is defined as

O�∼B = {x�∼B | x ∈ O} .

2.9. Definition. [9] Let 〈O,F 〉 be a perceptual system. Then∏
(O,F ) :=

⋃
B⊆F

O�∼B ,

i.e.,
∏

(O,F ) is the family of equivalence classes of all indiscernibility relations deter-
mined by a perceptual information system 〈O,F 〉 .

2.10. Definition. [9] (Nearness relation). Let 〈O,F 〉 be a perceptual system and let
X,Y ⊆ O. A set X is near to a set Y within the perceptual system 〈O,F 〉 (X 1F Y ) iff
there are F1, F2 ⊆ F and f ∈ F and there are A ∈ O�∼F1

, B ∈ O�∼F2
, C ∈ O�∼f such

that A ⊆ X,B ⊆ Y ve A,B ⊆ C.If a perceptual system is understood, then we say
briefly that a set X is near to a set Y .
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2.11. Definition. [9] (Perceptual near sets) Let 〈O,F 〉 be a perceptual system and let
X ⊆ O. A set X is a perceptual near set iff there is Y ⊆ O such that X 1F Y . The
family of near sets of a perceptual system 〈O,F 〉 is denoted by NearF (O) .

2.12. Example. Let 〈O,F 〉 be a perceptual system such that O = {x1, x2, ..., x6} ,
F = {φ1, φ2} , φ1 (x1) = φ1 (x2) = φ1 (x3) , φ1 (x4) = φ1 (x5) = φ1 (x6) , φ1 (x1) 6= φ1 (x4)
and φ2 (x1) = φ2 (x2) , φ2 (x3) = φ2 (x4) , φ2 (x5) = φ2 (x6) ,φ2 (x1) 6= φ2 (x4) 6= φ2 (x5) .

Thus O�∼φ1 = {{x1, x2, x3} , {x4, x5, x6}} , O�∼φ2 = {{x1, x2} , {x3, x4} , {x5, x6}} ,
O�∼{φ1,φ2}

= {{x1, x2} , {x3} , {x4} , {x5, x6}} .
Let X = {x1, x2, x3, x5} , Y = {x2, x4, x5, x6} .Thus there are A = {x4} ∈ O�∼{φ1,φ2}

,

B = {x5, x6} ∈ O�∼φ2C = (A ∪B) ∈ O�∼φ1 such that A ⊆ X,B ⊆ Y. Therefore
X 1F Y.

2.13. Proposition. [9] Let 〈O,F 〉 be a perceptual system, B ⊆ F and x�∼B ∈ O�∼B ,
where |x�∼B | ≥ 2. All elements belonging to a class x�∼Bare near each other.

2.14. Proposition. [9] Let 〈O,F 〉 be a perceptual system. For any B ⊆ F , every
equivalence class of an indiscernibility relation ∼B is a near set .

3. Some New Properties of Near Sets
In this section, we give some new propositions which are related to some propositions

in [9].

3.1. Proposition. [9] Let 〈O,F 〉 be a perceptual system. For every X ⊆ O, the following
conditions are equivalent:

(1) X ∈ NearF (O) ,
(2) there is A ∈

∏
(O,F ) such that A ⊆ X,

(3) there is A ∈ O�∼F such that A ⊆ X .

3.2. Proposition. Let 〈O,F 〉 be a perceptual system and X,Y ⊆ O . Then

X 1F Y ⇒ X,Y ∈ NearF (O) .

Proof. Let X 1F Y. From Definition 2.11, there are A,B ∈
∏

(O,F ) such that A ⊆
X,B ⊆ Y.Thus, from Proposition 3.1, X,Y ∈ NearF (O) . �

3.3. Remark. From Proposition 3.2, two near sets may not be near to each other. We
can see this in the following example.

3.4. Example. Let 〈O,F 〉 be a perceptual system such that O = {x1, x2, ..., x6} ,for
simplicity F = (φ) and φ (x2) =φ (x3) , φ (x4) = φ (x5) = φ (x6) , φ (x1) 6= φ (x2) 6=
φ (x4) .ThusO�∼φ = {{x1} , {x2, x3} , {x4, x5, x6}} . LetX = {x1, x2} , Y = {x2, x3, x6} .There
are A = {x1} ∈ O�∼φ, B = {x2, x3} ∈ O�∼φ such that A ⊆ X,B ⊆ Y, so X,Y ∈
NearF (O) . But there is no C ∈ O�∼φ such that A,B ⊆ C.Therefore X and Y are not
near to each other.

3.5. Proposition. [9] Let 〈O,F 〉 be a perceptual system and X,Y ⊆ O . Then

X,Y ∈ NearF (O) ⇒ X ∪ Y ∈ NearF (O) ,
i.e., the family of near sets of a perceptual system 〈O,F 〉 is closed for the union of

sets.

3.6. Proposition. Let 〈O,F 〉 be a perceptual system and X,Y ⊆ O . Then

X 1F Y ⇒ X ∪ Y ∈ NearF (O) .

Proof. It is clear from Proposition 3.2 and Proposition 3.5 . �
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3.7. Proposition. [9] Let 〈O,F 〉 be a . Then

X ∈
∏

(O,F ) ⇒ X 1F X,
i.e., the relation 1F is reflexive within the family

∏
(O,F ) .

3.8. Proposition. Let 〈O,F 〉 be a perceptual system. Then

X 1F X ⇔ there is A ∈
∏

(O,F ) such that A ⊆ X.
That is, a set X ⊆ O to be near to itself need not be a equivalence class or need not

be a union of equivalence classes. But at least it has to contain an equivalence class.

Proof. It is clear. �

3.9. Proposition. [9] Let 〈O,F 〉 be a perceptual system . For any X,Y ⊆ O, if there is
A ∈

∏
(O,F ) such that A ⊆ X ∩ Y , then X 1F Y.

3.10. Proposition. Let 〈O,F 〉 be a perceptual system and let X,Y ⊆ O and F is a
singleton set. Then

X 1F Y ⇔ there is A ∈
∏

(O,F ) such that A ⊆ X ∩ Y.

Proof. It is enough to prove the implication (⇒). From Definition 2.10, there are A ∈
O�∼F , B ∈ O�∼F , C ∈ O�∼F such that A ⊆ X,B ⊆ Y and A,B ⊆ C. Since F is a
singleton set and A,B ⊆ C, then A = B = C. Therefore A ⊆ X ∩ Y. �

3.11. Proposition. [9] Let 〈O,F 〉 be a perceptual system and let X,Y, Z ⊆ O. Then
the following conditions hold:

(1) X 1F Y &Y ⊆ Z ⇒ X 1F Z,
(2) X ⊆ Y & X 1F Z ⇒ Y 1F Z .

3.12. Proposition. Let 〈O,F 〉 be a perceptual system and A1, A2, B1, B2 ⊆ O.Then the
following conditions hold:

(1) A1 1F A2 &B1 1F B2 ⇒ (A1 ∪B1) 1F (A2 ∪B2) or (A1 ∪B2) 1F (A2 ∪B1) ,
(2) (A1 ∩A2) 1F (B1 ∩B2)⇒ A1 1F B1 or A1 1F B2 or A2 1F B1 or A2 1F B2.

Proof. Let 〈O,F 〉 be a perceptual system and let A1, A2, B1, B2 ⊆ O.
Case ( 1). Let A1 1F A2 and B1 1F B2. So A1 1F A2 , A2 ⊆ A2 ∪ B2 and

B1 1F B2, B2 ⊆ (A2 ∪B2) then from Proposition 3.11 (1) A1 1F (A2 ∪B2) and B1 1F

(A2 ∪B2) . Since A1 1F (A2 ∪B2) and B1 1F (A2 ∪B2), (A1 ∪B1) 1F (A2 ∪B2) .
Similarly it can be shown that (A1 ∪B2) 1F (A2 ∪B1).

Case ( 2). Let (A1 ∩A2) 1F (B1 ∩B2) . Since (A1 ∩A2) ⊆ A1 and from Proposition
3.11 (2) A1 1F (B1 ∩B2) . Since A1 1F (B1 ∩B2) and from Proposition 3.11 (1), then
A1 1F B1. Similarly it can be shown that A2 1F B1 or A2 1F B1 or A2 1F B2. �

The fact that the reverse of the implication reversed in Proposition 3.12 (1) does not
hold is shown by example . Similarly it can be shown that the Proposition 3.12 (2) does
not hold always.

3.13. Example. Let 〈O,F 〉 be a perceptual system such that O = {x1, x2, ..., x8} ,so
O�∼F = {{x1, x2, x3} , {x4, x5} , {x6, x7, x8}} .LetA1 = {x2, x3, x4} , A2 = {x1, x2, x3, x5} ,
B1 = {x1, x3, x4, x7} , B2 = {x2, x4, x6, x8} ,so A1 ∪ B1 = {x1, x2, x3, x4, x7} and A2 ∪
B2 = {x1, x2, x3, x4, x5, x6, x8} . Since {x1, x2, x3} ∈O�∼F and {x1, x2, x3} ⊆ A1∪B1, A2∪
B2 A1 ∪ B1 1F A2 ∪ B2.But there is no X�∼F ∈ O�∼F , Y�∼F ∈ O�∼F , Z�∼F ∈
O�∼F such that X�∼F ⊆ A1, Y�∼F ⊆ A2 and X,Y ⊆ Z. Therefore, from Definition
2.10, A1 and A2 are not near to each other. For same reason, B1 and B2 are not near to
each other.
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4. Chain of Features, Nearness and Near Sets
In this section basically, a nested chain of probe functions (features) is formed and cor-

responding indiscernibility relation, nearness relation and near sets in 〈O,F 〉 perceptual
system are investigated.

4.1. Definition. Let 〈O,F 〉 be a perceptual system. Then∏
(O,∼F ) := {∼B | B ⊆ F} ,

i.e.
∏

(O,∼F ) is the family of indiscernibility relations of all probe functions deter-
mined by a perceptual information system 〈O,F 〉 .

4.2. Lemma. Let 〈O,F 〉 be a perceptual system,
∏

(O,F ) is the family of equivalence
classes of all indiscernibility relations and

∏
(O,∼F ) is the family of indiscernibility

relations of all probe functions. Then for all B ⊆ F, the function

f :
∏

(O,∼F )→
∏

(O,F )
∼B 7→ O�∼B

is one-to-one and onto.

4.3. Proposition. Let 〈O,F 〉 be a perceptual system and F = Bn = {φ1, φ2, ..., φn} .
Then for all Bi ⊆ F , 1 ≤ j, i ≤ n,

Bj ⊆ Bi ⇔ ∼Bi⊆ ∼Bj .

Proof. Let Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n . Since
⋂

φ∈Bj
∼φ⊆

⋂
φ∈Bi

∼φ and, from Lemma

2.6, ∼Bi⊆∼Bj . �

4.4. Corollary. Let 〈O,F 〉 be a perceptual system and F = Bn = {φ1, φ2, ..., φn} . Then
for all Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n ,

∼Bi⊆∼Bj⇔ ∩
φ∈Bi

∼φ⊆ ∩
φ∈Bj

∼φ .

4.5. Proposition. Let 〈O,F 〉 be a perceptual system , F = Bn = {φ1, φ2, ..., φn} and
Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n . Then

∼Bi⊆∼Bj ⇒ For all A ∈ O�∼Bi there is a unique C ∈ O�∼Bj such
that A ⊆ C .

Proof. Let∼Bi⊆∼Bj , x ∈ O,A = x�∼Bi and C = x�∼Bj .Since ∼Bi⊆∼Bj , then x�∼Bi ⊆
x�∼Bj . �

4.6. Proposition. Let 〈O,F 〉 be a perceptual system , X ⊆ O,F = Bn = {φ1, φ2, ..., φn}
and Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n . Then the following conditions hold:

(1)
∏(

O,∼Bj
)
⊆
∏

(O,∼Bi) ,
(2)

∏
(O,Bj) ⊆

∏
(O,Bi) .

Proof. Let 〈O,F 〉 be a perceptual system , X ⊆ O, F = Bn = {φ1, φ2, ..., φn} and
Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n .

(1) Since B ⊆ Bj then B ⊆ Bi . Thus from Definition 4.1
∏(

O,∼Bj
)
⊆
∏

(O,∼Bi) .
(2) Since Bj ⊆ Bi, from Definition 2.9

∏
(O,Bj) ⊆

∏
(O,Bi) . �

4.7. Proposition. Let 〈O,F 〉 be a perceptual system , F = Bn = {φ1, φ2, ..., φn} and
Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n . Then

NearBj (O) ⊆ NearBi (O) .
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Proof. LetX ⊆ O andX ∈ NearBj (O) . SinceX ∈ NearBj (O) there is A ∈
∏(

O,∼Bj
)

such that A ⊆ X. From Proposition 4.6 (1) A ∈
∏

(O,∼Bi) . Therefore X ∈ NearBi (O) .
�

The fact that the reverse of the implication reversed in Proposition 4.7 does not hold.
We can see this in the next example.

4.8. Example. Let 〈O,F 〉 be perceptual system in Example 2.12. ThusO = {x1, x2, ..., x6} ,
F = {φ1, φ2} . Recall also that O�∼φ1 = {{x1, x2, x3} , {x4, x5, x6}} , O�∼φ2 = {{x1, x2}
, {x3, x4} , {x5, x6} , O�∼{φ1,φ2}

= {{x1, x2} , {x3} , {x4} , {x5, x6}} . Let X ⊆ O , B1, B2

⊆ F be defined as: X = {x1, x2, x4} , B1 = {φ1} , B2 = {φ1, φ2} . Since {x1, x2} ∈
O�∼{φ1,φ2}

and {x1, x2} ⊆ X, then X ∈ NearB2 (O) . But there is no A ∈ O�∼φ1 such
that A ⊆ X, therefore X /∈ NearB1 (O) .

4.9. Proposition. Let 〈O,F 〉 be a perceptual system ,F = Bn = {φ1, φ2, ..., φn} , X, Y ⊆
O and Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n .Then

X 1Bj
Y ⇒ X 1Bi

Y.

Proof. Let X 1Bj
Y. From Definition 2.10 there are A,B,C ∈

∏
(O,Bj) such that

A ⊆ X,B ⊆ Y and A,B ⊆ C. Since A,B,C ∈
∏

(O,Bj) , then from Proposition 4.6 (2)
A,B,C ∈

∏
(O,Bi) . Again from Definition 2.10, X 1

Bi

Y. �

4.10. Definition. Let 〈O,F 〉 be a perceptual system ,X,Y ⊆ O,F = Bn = {φ1, φ2, ..., φn}
and Bi ⊆ F. Then the expression

X 1∼
Bi

Y means that: A set X is near to a set Y within the perceptual system
〈O,F 〉 only for the ∼Bi relation.

4.11. Proposition. Let 〈O,F 〉 be a perceptual system , X,Y ⊆ O,F = Bn = {φ1, φ2, ..., φn}
and Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n . Then

X 1∼
Bj

Y ⇒ X 1∼
Bi

Y.

Proof. Let X 1∼
Bj

Y. From Proposition 3.10 and Proposition 3.1, respectively, then
X ∩Y ∈ NearBj (O) . Thus from Proposition 4.7, X ∩Y ∈ NearBi (O) . Therefore, from
Proposition 3.10, then X 1∼

Bi
Y. �

4.12. Example. Let 〈O,F 〉 be perceptual system in the Example 2.12. Recall also that
O�∼φ2 = {{x1, x2} , {x3, x4} , {x5, x6}} , O�∼{φ1,φ2}

= {{x1, x2} , {x3} , {x4} , {x5, x6}} .
Let sets X,Y ⊆ O , B1, B2 ⊆ F be defined as: X = {x2, x3, x4} , Y = {x3, x4, x6} B1 =
{φ2} , B2 = {φ1, φ2} . Since {x3, x4} ∈ O�∼{φ2}

and {x3, x4} ⊆ X,Y then X 1∼
B1

Y.

Since {x4} ∈ O�∼{φ1,φ2}
and {x4} ⊆ {x3, x4} ⊆ X,Y then X 1∼

B2
Y.

4.13. Definition. Let 〈O,F 〉 be a perceptual system and F = Bn = {φ1, φ2, ..., φn} .

(4.1) B1 ⊆ B2 ⊆ ... ⊆ Bn
Then the ascending subsets (4.1) is called as a chain of probe function sets or briefly

a feature sets chain.
From Proposition 4.6, we can give following proposition.

4.14. Proposition. Let 〈O,F 〉 be a perceptual system , F = Bn = {φ1, φ2, ..., φn} and
B1 ⊆ B2 ⊆ ... ⊆ Bn be a feature chain. Then the followings hold:
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(1)
∏

(O,∼B1) ⊆
∏

(O,∼B2) ⊆ ... ⊆
∏

(O,∼F )
(2)

∏
(O,B1) ⊆

∏
(O,B2) ⊆ ... ⊆

∏
(O,F ) .

4.15. Definition. Let 〈O,F 〉 be a perceptual system and F = Bn = {φ1, φ2, ..., φn} .

(4.2) 1B1⊆1B2⊆ ... ⊆1F
The relation (4.2) corresponding to (4.1) is called as chain of a perceptual nearness or

briefly nearness chain.
From Proposition 4.7 and Proposition 4.9 we can give following proposition.

4.16. Proposition. Let 〈O,F 〉 be a perceptual system ,F = Bn = {φ1, φ2, ..., φn} , X, Y ⊆
O and 1B1⊆1B2⊆ ... ⊆1F a nearness chain .Then the following conditions hold:

(1) X 1B1 Y ⇒ X 1B2 Y ⇒ ...⇒ X 1F Y
(2) NearB1 (O) ⊆ NearB2 (O) ⊆ ... ⊆ NearF (O) .

4.17. Definition. Let 〈O,F 〉 be a perceptual system and F = Bn = {φ1, φ2, ..., φn} .

(4.3) ∼F⊆∼Bn−1⊆ ... ⊆∼B1

The relation (4.3) corresponding to (4.1) is called a chain of indiscernibility relations
or briefly indiscernibility chain.

4.18. Remark. By using Definition 4.15 and Definition 4.17, we obtain 1∼B1
⊆1∼B2

⊆
... ⊆1∼F . In fact, more than one indiscernibility chain can be formed. We can imagine
this indiscernibility chain as a tree, i.e., a branching model which is formed by trunk,
branch, thinner branch and so on, respectively. So we get a tree which has n features in
the trunk and 1 feature in the thinnest branch.

From Proposition 4.11 we can give following proposition.

4.19. Proposition. Let 〈O,F 〉 be a perceptual system , X,Y ⊆ O,F = Bn = {φ1, φ2, ..., φn}
and 1∼B1

⊆1∼B2
⊆ ... ⊆1∼F nearness chain .Then ,

X 1∼B1
Y ⊆ X 1∼B2

Y ⊆ ... ⊆ X 1∼F Y.

4.20. Remark. There is a nuance between X 1F Y and X 1∼F Y . X 1∼F Y implies
that the sets X and Y near to each other with respect to only the ∼F indiscernebility
relation in 〈O,F 〉 perceptual system. However, X 1F Y implies that the sets X and Y
near to each other by means of Definition 2.10.
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