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Abstract
As a generalization of conformal holomorphic submersions and conformal anti-invariant
submersions, we introduce a new conformal submersion from almost Hermitian manifolds
onto Riemannian manifolds, namely conformal slant submersions. We give examples and
find necessary and sufficient conditions for such maps to be harmonic morphism. We also
investigate the geometry of foliations which are arisen from the definition of a conformal
submersion and obtain a decomposition theorem on the total space of a conformal slant
submersion. Moreover, we find necessary and sufficient conditions of a conformal slant
submersion to be totally geodesic.
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1. Introduction
A submanifold of a complex manifold is a complex (invariant) submanifold if the tan-

gent space of the submanifold at each point is invariant with respect to the almost complex
structure of the Kähler manifold. Besides complex submanifolds of a complex manifold,
there is another important class of submanifolds called totally real submanifolds. A totally
real submanifold of a complex manifold is a submanifold of such that the almost complex
structure of ambient manifold carries the tangent space of the submanifold at each point
into its normal space. Many authors have studied totally real submanifolds in various
ambient manifolds and many interesting results were obtained, see ([45], page: 199) for a
survey on all these results. As a generalization of holomorphic and totally real submani-
folds, slant submanifolds were introduced by Chen in [13]. We recall that the submanifold
M is called slant [14] if for any p ∈M and any X ∈ TpM, the angle between JX and TpM
is a constant θ(X) ∈ [0, π2 ], i.e, it does not depend on the choice of p ∈M and X ∈ TpM.
It follows that invariant and totally real immersions are slant immersions with slant angle
θ = 0 and θ = π

2 respectively.

On the other hand, Riemannian submersions between Riemannian manifolds were stud-
ied by O’Neill [37] and Gray [25]. Since then Riemannian submersions have been an ef-
fective tool to obtain new manifolds and compare certain manifolds within differential
∗Corresponding Author.
Email addresses: mehmetakifakyol@bingol.edu.tr (M.A. Akyol), bayram.sahin@ege.edu.tr (B. Şahin)
Received: 20.06.2017; Accepted: 03.08.2017



Conformal slant submersions 29

geometry, see [8], [12] and [21]. It is also known that Riemannian submersions have many
applications in different areas such as Kaluza-Klein theory [22], [10], statistical machine
learning processes [46], medical imaging [36], statistical analysis on manifolds [9] and the
theory of robotics [3]. As analogue of holomorphic submanifolds, holomorphic submersions
were introduced by Watson [44] in seventies by using the notion of almost complex map.
This notion has been extended to other manifolds, see [21] for holomorphic submersions
and their extensions to other manifolds. Although holomorphic submersions have been
studied widely, however this research area is still an active research area, see a recent
paper [43]. The main property of such maps is that the horizontal distribution and the
vertical distribution of holomorphic submersions are invariant with respect to the almost
complex map of the total manifold. Thus holomorphic submersions include only those
submersions whose vertical distribution is invariant under the almost complex structure
of the total manifold. Therefore, the second author of the present paper considered a
new submersion defined on an almost Hermitian manifold such that the vertical distri-
bution is anti-invariant with respect to almost complex structure [41]. He showed that
such submersions have rich geometric properties and they are useful for investigating the
geometry of the total space. This new class of submersions called anti-invariant submer-
sions can be seen as an analogue of totally real submanifolds in the submersion theory.
As a generalization of anti-invariant submersions, slant submersions were defined in [42]
and it is shown that such maps are useful for obtaining new conditions for harmonicity,
see also [4,5,7,18–20,24,28–32,34,35,38] and [40] for new submersions in other total spaces.

As a generalization of Riemannian submersions, horizontally conformal submersions
are defined as follows [6]: Suppose that (M, gM ) and (B, gB) are Riemannian manifolds
and F : M −→ B is a smooth submersion, then F is called a horizontally conformal
submersion, if there is a positive function λ such that

λ2gM (X,Y ) = gB(F∗X,F∗Y )

for every X,Y ∈ Γ((kerF∗)⊥). It is obvious that every Riemannian submersion is a par-
ticular horizontally conformal submersion with λ = 1. One can see that Riemannian
submersions are very special maps comparing with conformal submersions. We note that
horizontally conformal submersions are special horizontally conformal maps which were
introduced independently by Fuglede [23] and Ishihara [33]. We also note that a hori-
zontally conformal submersion F : M −→ B is said to be horizontally homothetic if the
gradient of its dilation λ is vertical, i.e.,

H(gradλ) = 0 (1.1)

at p ∈M , where H is the projection on the horizontal space (kerF∗)⊥. Although confor-
mal maps do not preserve distance between points contrary to isometries, they preserve
angles between vector fields. This property enables one to transfer certain properties of a
manifold to another manifold by deforming such properties.

As a generalization of holomorphic submersions, conformal holomorphic submersions
were studied by Gudmundsson and Wood [27]. They obtained necessary and sufficient
conditions for conformal holomorphic submersions to be a harmonic morphism, see also
[15–17] for the harmonicity of conformal holomorphic submersions.

Recently, we introduced conformal anti-invariant submersions [2] from almost Hermitian
manifolds onto Riemannian manifolds, as a generalization of anti-invariant submersions,
and investigated the geometry of such submersions. (see also: [1]) We showed that the



30 M.A. Akyol, B. Şahin

geometry of such submersions are different from their counterparts anti-invariant sub-
mersions and semi-invariant submersions. In this paper, we study conformal slant sub-
mersions as a generalization of both conformal holomorphic submersions and conformal
anti-invariant submersions and investigate the geometry of the total space and the base
space for the existence of such submersions.

The paper is organized as follows. In the second section, we present the basic informa-
tion needed for this paper. In section 3, we give definition of conformal slant submersions
from almost Hermitian manifolds onto Riemannian manifolds, provide examples and give
a sufficient condition for conformal slant submersions to be harmonic. We also investigate
the geometry of leaves of (kerF∗)⊥ and (kerF∗). Moreover we obtain a decomposition
theorem on the total space of a conformal slant submersion. Finally, we give necessary
and sufficient conditions for a conformal slant submersion to be totally geodesic.

2. Preliminaries
In this section, we define almost Hermitian manifolds, recall the notion of (horizontally)

conformal submersions between Riemannian manifolds and give a brief review of basic facts
of (horizontally) conformal submersions.

Let (M, gM ) be an almost Hermitian manifold. This means [45] thatM admits a tensor
field J of type (1,1) on M such that, ∀X,Y ∈ Γ(TM), we have

J2 = −I, gM (X,Y ) = gM (JX, JY ). (2.1)

An almost Hermitian manifold M is called Kähler manifold if

(∇XJ)Y = 0, ∀X,Y ∈ Γ(TM), (2.2)

where ∇ is the Levi-Civita connection on M . Conformal submersions belong to a wide
class of conformal maps that we are going to recall their definition, but we will not study
such maps in this paper.

Definition 2.1. ([6]). Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map between Riemann-
ian manifolds, and let x ∈ M . Then ϕ is called horizontally weakly conformal or semi
conformal at x if either

(i) dϕx = 0, or
(ii) dϕx maps the horizontal space Hx = (ker(dϕx))⊥ conformally onto Tϕ(x)N , i.e.,

dϕx is surjective and there exists a number Λ(x) 6= 0 such that

h(dϕxX, dϕxY ) = Λ(x)g(X,Y ) (X,Y ∈ Hx). (2.3)

We shall call a point x of type (i) in Definition 2.1 critical point. Also we shall call a
point of type (ii) a regular point. At a critical point, dϕx has rank 0; at a regular point,
dϕx has rank n and ϕ is submersion. The number Λ(x) is called the square dilation (of ϕ
at x); it is necessarily non-negative; its square root λ(x) =

√
Λ(x) is called the dilation (of

ϕ at x). The map ϕ is called horizontally weakly conformal or semi conformal (on M) if
it is horizontally weakly conformal at every point of M . It is clear that if ϕ has no critical
points, then we call it a (horizontally) conformal submersion.

Next, we recall the following definition from [26]. Let π : M −→ N be a submersion. A
vector field E onM is said to be projectable if there exists a vector field Ě on N , such that
dπ(Ex) = Ěπ(x) for all x ∈ M . In this case E and Ě are called π− related. A horizontal
vector field Y on (M, g) is called basic, if it is projectable. It is well known fact, that if Ž
is a vector field on N , then there exists a unique basic vector field Z on M , such that Z
and Ž are π− related. The vector field Z is called the horizontal lift of Ž.
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The fundamental tensors of a submersion were introduced in [37]. They play a similar
role to that of the second fundamental form of an immersion. More precisely, O’Neill’s
tensors T and A defined for vector fields E,F on M by

AEF = V∇HEHF + H∇HEVF, TEF = H∇VEVF + V∇VEHF (2.4)
where V and H are the vertical and horizontal projections (see [21]). On the other hand,
from (2.4), we have

∇VW = TVW + ∇̂VW (2.5)
∇VX = H∇VX + TVX (2.6)
∇XY = H∇XY +AXY (2.7)

for X,Y ∈ Γ((kerF∗)⊥) and V,W ∈ Γ(kerF∗), where ∇̂VW = V∇VW . If X is basic, then
H∇VX = AXV . It is easily seen that for x ∈M , X ∈ Hx and Vx the linear operators TV ,
AX : TxM −→ TxM are skew-symmetric. We see that the restriction of T to the vertical
distribution T |V×V is exactly the second fundamental form of the fibres of π. Since TV is
skew-symmetric we get: π has totally geodesic fibres if and only if T ≡ 0. For the special
case when π is horizontally conformal we have the following:

Proposition 2.2. ([26]). Let π : (Mm, g) −→ (Nn, h) be a horizontally conformal sub-
mersion with dilation λ and X,Y be horizontal vectors, then

AXY = 1
2{V[X,Y ]− λ2g(X,Y )gradV( 1

λ2 )}. (2.8)

We now recall the notion of harmonic maps between Riemannian manifolds. Let
(M, gM ) and (N, gN ) be Riemannian manifolds and suppose that ϕ : M −→ N is a
smooth map between them. Then the differential ϕ∗ of ϕ can be viewed a section of the
bundle Hom(TM,ϕ−1TN) −→M , where ϕ−1TN is the pullback bundle which has fibres
(ϕ−1TN)p = Tϕ(p)N , p ∈ M . Hom(TM,ϕ−1TN) has a connection ∇ induced from the
Levi-Civita connection ∇M and the pullback connection. Then the second fundamental
form of ϕ is given by

(∇ϕ∗)(X,Y ) = ∇ϕXϕ∗(Y )− ϕ∗(∇MX Y ) (2.9)
for X,Y ∈ Γ(TM), where ∇ϕ is the pullback connection. It is known that the second
fundamental form is symmetric. A smooth map ϕ : (M, gM ) −→ (N, gN ) is said to be
harmonic if trace(∇ϕ∗) = 0. On the other hand, the tension field of ϕ is the section τ(ϕ)
of Γ(ϕ−1TN) defined by

τ(ϕ) = divϕ∗ =
m∑
i=1

(∇ϕ∗)(ei, ei), (2.10)

where {e1, ..., em} is an orthonormal frame on M . Then it follows that ϕ is harmonic if
and only if τ(ϕ) = 0, for details, see [6]. Now, we recall the following lemma from [6].

Lemma 2.3. Suppose that ϕ : M −→ N is a horizontally conformal submersion. Then,
for any horizontal vector fields X,Y and vertical fields V,W we have

(i) ∇dϕ(X,Y ) = X(lnλ)dϕ(Y ) + Y (lnλ)dϕ(X)− g(X,Y )dϕ(gradlnλ);
(ii) ∇dϕ(V,W ) = −dϕ(AV

VW );
(iii) ∇dϕ(X,V ) = −dϕ(∇MX V ) = dϕ((AH)∗XV )).

Here (AH)∗X is the adjoint of AH
X characterized by

〈(AH)∗XE,F 〉 = 〈E,AH
XF 〉 (E,F ∈ Γ(TM)).

Let gB be a Riemannian metric tensor on the manifold B = B1 × B2 and assume that
the canonical foliations DB1 and DB2 intersect perpendicularly everywhere. Then gB is
the metric tensor of a usual product of Riemannian manifolds if and only if DB1 and DB2
are totally geodesic foliations [39].
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3. Conformal Slant submersions
In this section, we define conformal slant submersions from an almost Hermitian mani-

fold onto a Riemannian manifold, investigate the effect of the existence of conformal slant
submersions on the source manifold and the target manifold. But we first present the
following notion.

Definition 3.1. Let F be a horizontally conformal submersion from an almost Hermitian
manifold (M1, g1, J1) onto a Riemannian manifold (M2, g2). If for any non-zero vector
X ∈ Γ(kerF∗p); p ∈M1, the angle θ(X) between JX and the space (kerF∗p) is a constant,
i.e. it is independent of the choice of the point p ∈M1 and choice of the tangent vector X
in (kerF∗p), then we say that F is a conformal slant submersion. In this case, the angle θ
is called the slant angle of the conformal slant submersion.

We note that it is known that the distribution kerF∗ is integrable. In fact, its leaves
are F−1(q), q ∈ M2, i.e., fibers. Thus it follows from above definition that the fibres of a
conformal slant submersion are slant submanifolds of M1, for slant submanifolds, see [13].
We now give some examples of conformal slant submersions.

Example 3.2. Every Hermitian submersion from an almost Hermitian manifold onto an
almost Hermitian manifold is a conformal slant submersion with λ = 1 and θ = 0.

Example 3.3. Every conformal anti-invariant submersion from an almost Hermitian man-
ifold to a Riemannian manifold is a conformal slant submersion with λ = 1 and θ = π

2 .

Example 3.4. Every slant submersion from an almost Hermitian manifold onto Riemann-
ian manifold is a conformal slant submersion with λ = 1.

A conformal slant submersion is said to be proper if it is neither Hermitian nor conformal
anti- invariant submersion. We now present two examples of a proper conformal slant
submersion. We denote by Jα the compatible almost complex structure on R4 defined by

Jα(a, b, c, d) = (cosα)(−c,−d, a, b) + (sinα)(−b, a, d,−c), 0 < α ≤ π

2
Example 3.5. Consider the following submersion given by

F : R4 −→ R2

(x1, x2, x3, x4) (ex1 sin x2, e
x1 cosx2),

where x2 ∈ R− {k π2 , kπ}, k ∈ Z. Then it follows that

kerF∗ = span{V1 = ∂x3, V2 = ∂x4}

and

(kerF∗)⊥ = span{X1 = ex1 sin x2∂x1 + ex1 cosx2∂x2,

X2 = ex1 cosx2∂x1 − ex1 sin x2∂x2}.

Then by direct computations for any 0 < θ ≤ π
2 , F is a slant submersion with slant angle

θ. On the other hand,

F∗X1 = (ex1)2∂y1, F∗X2 = (ex1)2∂y2.

Hence, we have

g2(F∗X1, F∗X1) = (ex1)2g1(X1, X1), g2(F∗X2, F∗X2) = (ex1)2g1(X2, X2),

where g1 and g2 denote the standard metrics (inner products) of R4 and R2. Thus F is a
conformal slant submersion with λ = ex1 .
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Example 3.6. Let F be a submersion defined by

F : R4 −→ R2

(x1, x2, x3, x4) (cosh x1 sin x3, sinh x1 cosx3),

where x3 ∈ R− {k π2 , kπ}, k ∈ Z. Then it follows that

kerF∗ = span{V1 = ∂x2, V2 = ∂x4}

and

(kerF∗)⊥ = span{X1 = sinh x1 sin x3∂x1 + cosh x1 cosx3∂x2,

X2 = cosh x1 cosx3∂x1 − sinh x1 sin x3∂x2}.

Then by direct computations for any 0 < θ ≤ π
2 , F is a slant submersion with slant angle

θ. On the other hand,

F∗X1 = (sinh2 x1 sin2 x3 + cosh2 x1 cos2 x3)∂y1

and
F∗X2 = (sinh2 x1 sin2 x3 + cosh2 x1 cos2 x3)∂y2.

Hence, we have

g2(F∗X1, F∗X1) = (sinh2 x1 sin2 x3 + cosh2 x1 cos2 x3)g1(X1, X1)

and
g2(F∗X2, F∗X2) = (sinh2 x1 sin2 x3 + cosh2 x1 cos2 x3)g1(X2, X2),

where g1 and g2 denote the standard metrics (inner products) of R4 and R2. Thus F is a
conformal slant submersion with λ2 = sinh2 x1 sin2 x3 + cosh2 x1 cos2 x3.

Let F be a conformal slant submersion from an almost Hermitian manifold (M1, g1, J)
onto a Riemannian manifold (M2, g2). Then for U ∈ Γ(kerF∗), we write

JU = φU + ωU (3.1)

where φU and ωU are vertical and horizontal parts of JU. Also for X ∈ Γ((kerF∗)⊥), we
have

JX = BX + CX, (3.2)
where BX and CX are vertical and horizontal components. Using (2.5), (2.6), (3.1) and
(3.2) we obtain

(∇Uω)V = CTUV − TUφV (3.3)

(∇Uφ)V = BTUV − TUωV, (3.4)
where ∇ is the Levi-Civita connection on M1 and

(∇Uω)V = H∇UωV − ω∇̂UV

(∇Uφ)V = ∇̂UφV − φ∇̂UV
for U, V ∈ Γ(kerF∗). Let F be a proper conformal slant submersion from an almost
Hermitian manifold (M1, g1, J) onto a Riemannian manifold (M2, g2), then we say that
ω is parallel with respect to the Levi-Civita connection ∇ on (kerF∗) if its covariant
derivative with respect to ∇ vanishes, i.e., we have

(∇Uω)V = ∇UωV − φ∇̂UV

for U, V ∈ Γ(kerF∗). The proof of the following result is exactly same with slant immer-
sions (see [11] and [13]), therefore we omit its proof.
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Theorem 3.7. Let F be a conformal slant submersion from an almost Hermitian manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then F is a proper conformal slant
submersion if and only if there exists a constant λ1 ∈ [−1, 0] such that

φ2U = λ1U

for U ∈ Γ(kerF∗). If F is a proper conformal slant submersion, then λ1 = − cos2 θ.

By using above theorem, it is easy to see the following lemma.

Lemma 3.8. Let F be a proper conformal slant submersion from an almost Hermitian
manifold (M1, g1, J1) onto a Riemannian manifold (M2, g2) with slant angle θ. Then, for
any U, V ∈ Γ(kerF∗), we have

g1(φU, φV ) = cos2 θg1(U, V ), (3.5)
and

g1(ωU, ωV ) = sin2 θg1(U, V ). (3.6)

We now denote complementary distribution of ω(kerF∗) in (kerF∗)⊥ by µ. The proof
of the following result is exactly same with slant submersion (see [42]), therefore we omit
its proof.

Proposition 3.9. Let F be a proper conformal slant submersion from an almost Hermitian
manifold (M1, g1, J1) onto a Riemannian manifold (M2, g2). Then µ is invariant with
respect to J1.

Corollary 3.10. Let F be a proper conformal slant submersion from an almost Hermitian
manifold (Mm

1 , g1, J1) onto a Riemannian manifold (Mn
2 , g2). Let

{e1, ..., em−n}
be a local orthonormal basis of (kerF∗), then {csc θωe1, ..., csc θωem−n} is a local orthonor-
mal basis of ω(kerF∗).

Proof. It will be enough to show that g1(csc θωei, csc θωej) = δij , for any i, j ∈ {1, ..., m−n2 }.
By using (3.6), we have

g1(csc θωei, cscθωej) = csc2 θ sin2 θg1(ei, ej) = δij ,

which proves the assertion. �

We note that above Proposition 3.9 tells that the distributions µ and (kerF∗)⊕ω(kerF∗)
are even dimensional. In fact it implies that the distribution (kerF∗) is even dimensional.
More precisely, we have the following result whose proof is similar to the above corollary.

Lemma 3.11. Let F be a proper conformal slant submersion from an almost Hermit-
ian manifold (Mm

1 , g1, J1) onto a Riemannian manifold (Mn
2 , g2). If e1, e2, ..., em−n

2
are

orthogonal unit vector fields in (kerF∗), then
{e1, sec θφe1, e2, sec θφe2, ..., em−n

2
, sec θφem−n

2
}

is a local orthonormal basis of (kerF∗).

Let F be a proper conformal slant submersion from an almost Hermitian manifold
(M2n

1 , g1, J1) onto a Riemannian manifold (Mn
2 , g2). As in the case of slant immersions,

we call such an orthonormal frame
{e1, sec θφe1, e2, sec θφe2, ..., en, sec θφen, csc θωe1, csc θωe2, ..., csc θωen}

an adapted slant frame for conformal slant submersions. In the sequel, we show that the
conformal slant submersion puts some restrictions on the dimensions of the distributions
and the base manifold.
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Proposition 3.12. Let F be a proper conformal slant submersion from an almost Hermit-
ian manifold (Mm

1 , g1, J1) onto a Riemannian manifold (Mn
2 , g2). Then dim(µ) = 2n−m.

If µ = 0, then n = m
2 .

Proof. First note that dim(kerF∗) = m− n. Thus using Corollary 3.10, we have
dim((kerF∗)⊕ ω(kerF∗)) = 2(m− n). Since M1 is m− dimensional, we get
dim(µ) = 2n−m. Second assertion is clear. �

We now check the harmonicity of conformal slant submersions. But we first give a
preparatory lemma.
Lemma 3.13. Let F be a proper conformal slant submersion from a Kähler manifold onto
a Riemannian manifold. If ω is parallel with respect to ∇ on (kerF∗), then we have

TφUφU = − cos2 θTUU (3.7)
for U ∈ Γ(kerF∗).
Proof. If ω is parallel, then from (3.3) we have CTUV = TUφV for U, V ∈ Γ(kerF∗).
Interchanging the role of U and V, we get CTV U = TV φU. Thus we have

CTUV − CTV U = TUφV − TV φU.
Since T is symmetric, we derive

TUφV = TV φU. (3.8)
Then substituting V by φU we get TUφ2U = TφUφU. Finally using Theorem 3.7 we obtain
(3.7). �

Theorem 3.14. Let F : (M2(m+r)
1 , g1, J1) −→ (Mm+2r

2 , g2) be a conformal slant sub-
mersion, where (M1, g1, J1) is a Kähler manifold and (M2, g2) is a Riemannian manifold.
Then the tension field τ of F is

τ(F ) = − 1
m
F∗
(
Teiei + sec2 θTφei

φei
)

+
( 2
λ2 − (m+ 2r)

)
F∗(gradlnλ). (3.9)

Proof. Let {e1, ..., em, sec θφe1, ..., sec θφem, csc θωe1, ..., csc θωem, µ1, ..., µr, J1µ1, ..., J1µr}
be orthonormal basis of Γ(TM1) such that {e1, ..., em, sec θφe1, ..., sec θφem} be orthonor-
mal basis of Γ(kerF∗),
{csc θωe1, ..., csc θωem} be orthonormal basis of Γ(ω(kerF∗)) and {µ1, ..., µr, J1µ1, ..., J1µr}
be orthonormal basis of Γ(µ). Then the trace of second fundamental form (restriction to
kerF∗ × kerF∗) is given by

tracekerF∗∇F∗ =
m∑
i=1

(∇F∗)(ei, ei) + (∇F∗)(sec θφei, sec θφei)

=
m∑
i=1

(∇F∗)(ei, ei) + sec2 θ(∇F∗)(φei, φei).

Then using (2.9) we obtain

tracekerF∗∇F∗ = − 1
m
F∗(Teiei)−

1
m
F∗(sec2 θTφei

φei)

= − 1
m
F∗(Teiei + sec2 θTφei

φei). (3.10)

In a similar way, we have

trace(kerF∗)⊥∇F∗ =
m∑
i=1

(∇F∗)(csc θωei, csc θωei) +
2r∑
i=1

(∇F∗)(µi, µi)

= csc2 θ
m∑
i=1

(∇F∗)(ωei, ωei) +
2r∑
i=1

(∇F∗)(µi, µi).
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Using Lemma 2.3 we arrive at

trace(kerF∗)⊥∇F∗ = csc2 θ
m∑
i=1
{ωei(lnλ)F∗ωei + ωei(lnλ)F∗ωei

− g1(ωei, ωei)F∗(gradlnλ)}

+
2r∑
i=1
{µi(lnλ)F∗µi + µi(lnλ)F∗µi − g1(µi, µi)F∗(gradlnλ)}

= csc2 θ
m∑
i=1

2g1(Hgradlnλ, ωei)F∗ωei

− csc2 θg1(ωei, ωei)F∗(gradlnλ)

+
2r∑
i=1

2g1(Hgradlnλ, µi)F∗µi − 2rF∗(gradlnλ).

Since F is a conformal slant submersion, we derive

trace(kerF∗)⊥∇F∗ = csc2 θ
m∑
i=1

2
λ2 g2(F∗(gradlnλ), F∗ωei)F∗ωei

+
2r∑
i=1

2
λ2 g2(F∗(gradlnλ), F∗µi)F∗µi − (m+ 2r)F∗(gradlnλ)

= 2
λ2F∗(gradlnλ)− (m+ 2r)F∗(gradlnλ)

=
( 2
λ2 − (m+ 2r)

)
F∗(gradlnλ). (3.11)

Then proof follows from (3.10) and (3.11). �

We note that for any C2 real valued function f defined on an open subset of a Riemann-
ian manifold M , the equation 4f = 0 is called Laplace’s equation and solutions are called
harmonic functions on U . Let F : M −→ N be a smooth map between Riemannian man-
ifolds. Then F is called harmonic morphism if, for every harmonic function f : V −→ R
defined an open subset V of N with F−1(V ) non-empty, the composition f ◦F is harmonic
on F−1(V ). It is known that a smooth map F : M −→ N between Riemannian mani-
folds is a harmonic morphism if and only if F is both harmonic and horizontally weakly
conformal [23] and [33]. Thus from Theorem 3.14 we deduce the following result.

Theorem 3.15. Let F : (M2(m+r)
1 , g1, J1) −→ (Mm+2r

2 , g2) be a conformal slant sub-
mersion such that 2

(m+2r) 6= λ2 where (M1, g1, J1) is a Kähler manifold and (M2, g2) is a
Riemannian manifold. Then any two conditions below imply the third:

(i) F is a harmonic morphism
(ii) ω is parallel with respect to ∇ on (kerF∗)
(iii) F is a horizontally homotetic map.

We also have the following result.

Corollary 3.16. Let F be a conformal slant submersion from a Kähler manifold
(M2(m+r)

1 , g1, J1) to a Riemannian manifold (Mm+2r
2 , g2). If 2

(m+2r) = λ2 then F is har-
monic morphism if and only if ω is parallel with respect to ∇ on (kerF∗).

Remark 3.17. By arguing as in [6, Proposition 3.5.1, Theorem 4.5.4], one can see that
Theorem 3.15 and Corollary 3.16 are also valid for a horizontally weakly conformal map.
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We note that if 2
(m+2r) = λ2 is satisfied, then F is certainly horizontally homothetic.

We now study the integrability of the distribution (kerF∗)⊥ and then we investigate the
geometry of leaves of (kerF∗)⊥ and (kerF∗).We note that it is known that the distribution
kerF∗ is integrable.

Theorem 3.18. Let F be a proper conformal slant submersion from a Kähler mani-
fold (M1, g1, J1) onto a Riemannian manifold (M2, g2). Then the following assertions are
equivalent to each other;

(i) (kerF∗)⊥ is integrable,
(ii) 1

λ2 {g2(∇FY F∗CX −∇FXF∗CY, F∗ωV )− g2(∇FY F∗X −∇FXF∗Y, F∗ωφV )}

= g1(AXBY −AYBX
− CY (lnλ)X + CX(lnλ)Y
− 2g1(CX,Y ) lnλ, ωV )

for X,Y ∈ Γ((kerF∗)⊥), V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗), using (2.1), (2.2) and (3.1) we have

g1([X,Y ], V )=−g1(∇XY, JφV )+g1(∇XJY, ωV )+g1(∇YX, JφV )−g1(∇Y JX, ωV ).

Then by using (3.2), we get

g1([X,Y ], V ) = −g1(∇XY, φ2V )− g1(∇XY, ωφV ) + g1(∇XBY, ωV )
+ g1(∇XCY, ωV )
+ g1(∇YX,φ2V ) + g1(∇YX,ωφV )− g1(∇YBX,ωV )
− g1(∇Y CX,ωV ).

Since F is a conformal submersion, using (2.7), Theorem 3.7 and Lemma 2.3 we arrive at

g1([X,Y ], V ) = cos2 θg1([X,Y ], V ) + g1(AXBY −AYBX,ωV )

+ 1
λ2 g2((∇F∗)(X,Y ), F∗ωφV )

− 1
λ2 g2(∇FXF∗Y, F∗ωφV )− g1(gradlnλ,X)g1(CY, ωV )− g1(gradlnλ,CY )g1(X,ωV )

+g1(X,CY )g1(gradlnλ, ωV ) + 1
λ2 g2(∇FXF∗CY, F∗ωV )− 1

λ2 g2((∇F∗)(Y,X), F∗ωφV )

+ 1
λ2 g2(∇FY F∗X,F∗ωφV ) + g1(gradlnλ, Y )g1(CX,ωV ) + g1(gradlnλ,CX)g1(Y, ωV )

−g1(Y,CX)g1(gradlnλ, ωV )− 1
λ2 g2(∇FY F∗CX,F∗ωV ).

Since ∇F∗ is symmetric, we have

sin2 θg1([X,Y ], V ) = g1(AXBY −AYBX − CY (lnλ)X + CX(lnλ)Y
− 2g1(CX,Y ) lnλ, ωV )

+ 1
λ2 {g2(∇FY F∗X −∇FXF∗Y, F∗ωφV )

− g2(∇FY F∗CX −∇FXF∗CY, F∗ωV )}

which proves assertion. �

From Theorem 3.18, we deduce the following which shows that a conformal slant sub-
mersion with integrable (kerF∗)⊥ turns out to be a horizontally homothetic submersion.
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Theorem 3.19. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then any two conditions below imply
the three;

(i) (kerF∗)⊥ is integrable
(ii) F is horizontally homotetic.
(iii) 1

λ2 {g2(∇FY F∗CX −∇FXF∗CY, F∗ωV )− g2(∇FY F∗X −∇FXF∗Y, F∗ωφV )}

= g1(AXBY −AYBX,ωV )
for X,Y ∈ Γ((kerF∗)⊥), V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)⊥), V ∈ Γ(kerF∗), from Theorem 3.18, we have
sin2 θg1([X,Y ], V ) = g1(AXBY −AYBX − CY (lnλ)X + CX(lnλ)Y

− 2g1(CX,Y ) lnλ, ωV )

+ 1
λ2 {g2(∇FY F∗X −∇FXF∗Y, F∗ωφV )

− g2(∇FY F∗CX −∇FXF∗CY, F∗ωV )}.
Now, if we have (i) and (iii), then we arrive at

−g1(Hgrad lnλ,CY )g1(X,ωV ) + g1(Hgrad lnλ,CX)g1(Y, ωV )
−2g1(CX,Y )g1(Hgrad lnλ, ωV ) = 0. (3.12)

Now, taking Y = JV in (3.12) for V ∈ Γ(kerF∗), we get
g1(Hgrad lnλ,CX)g1(ωV, ωV ) = 0.

Hence λ is a constant on Γ(µ). On the other hand, taking Y = CX in (3.12) for X ∈ Γ(µ),
we derive

−g1(Hgrad lnλ,C2X)g1(X,ωV ) + g1(Hgrad lnλ,CX)g1(CX,ωV )
−2g1(CX,CX)g1(Hgrad lnλ, ωV ) = 0,

hence, we arrive at
g1(CX,CX)g1(Hgrad lnλ, ωV ) = 0.

From above equation, λ is a constant on Γ(ω(kerF∗)). Similarly, one can obtain the other
assertions. �

Theorem 3.20. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then the distribution (kerF∗)⊥ defines
a totally geodesic foliation on M1 if and only if

1
λ2 {g2(∇FXF∗Y, F∗ωφV )−g2(∇FXF∗CY, F∗ωV )} = g1(AXBY, ωV )

+ g1(gradlnλ,X)g1(Y, ωφV )
+ g1(gradlnλ, Y )g1(X,ωφV )
− g1(X,Y )g1(gradlnλ, ωφV )
− g1(gradlnλ,X)g1(CY, ωV )
− g1(gradlnλ,CY )g1(X,ωV )
+ g1(X,CY )g1(gradlnλ, ωV )

for X,Y ∈ Γ((kerF∗)⊥), V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗), using (2.1), (2.2), (3.1) and (3.2) we
have
g1(∇XY, V ) = −g1(∇XY, φ2V )− g1(∇XY, ωφV ) + g1(∇XBY, ωV ) + g1(∇XCY, ωV ).
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Since F is a conformal submersion, using (2.7), Theorem 3.7 and Lemma 2.3 we arrive at
g1(∇XY, V ) = cos2 θg1(∇XY, V ) + g1(AXBY, ωV ) + g1(gradlnλ,X)g1(Y, ωφV )

+ g1(gradlnλ, Y )g1(X,ωφV )− g1(X,Y )g1(gradlnλ, ωφV )

− 1
λ2 g2(∇FXF∗Y, F∗ωφV )

− g1(gradlnλ,X)g1(CY, ωV )− g1(gradlnλ,CY )g1(X,ωV )

+ g1(X,CY )g1(gradlnλ, ωV ) + 1
λ2 g2(∇FXF∗CY, F∗ωV ).

Hence we have
sin2 θg1(∇XY, V ) = g1(AXBY, ωV ) + g1(gradlnλ,X)g1(Y, ωφV )

+ g1(gradlnλ, Y )g1(X,ωφV )
− g1(X,Y )g1(gradlnλ, ωφV )− g1(gradlnλ,X)g1(CY, ωV )
− g1(gradlnλ,CY )g1(X,ωV ) + g1(X,CY )g1(gradlnλ, ωV )

− 1
λ2 {g2(∇FXF∗Y, F∗ωφV )− g2(∇FXF∗CY, F∗ωV )}

which proves assertion. �

In a similar way we have the following.

Theorem 3.21. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then the distribution (kerF∗) defines
a totally geodesic foliation on M1 if and only if

1
λ2 {g2((∇F∗)(U, ωφV ), F∗Z)− g2(∇FωV F∗ωU,F∗JCZ)} = g1(AωV φU

+ g1(ωU, ωV )grad lnλ, JCZ)
+ g1(TUBZ, ωV )

for U, V ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥).

From Theorem 3.21, we deduce that:

Theorem 3.22. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then any two conditions below imply
the three:

(i) kerF∗ defines a totally geodesic foliation on M1.
(ii) λ is a constant on Γ(µ).
(iii) 1

λ2 {g2((∇F∗)(U, ωφV ), F∗Z)−g2(∇FωV F∗ωU,F∗JCZ)} = g1(AωV φU, JCZ)+g1(TUBZ, ωV )
for U, V ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥).

Proof. For U, V ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥), from Theorem 3.21, we have
sin2 θg1(∇UV,Z)=g1(TUωV,BZ)−g1(AωV φU, JCZ)

− g1(ωV, ωU)g1(Hgradlnλ, JCZ)

+ 1
λ2 {g2((∇F∗)(U, ωφV ), F∗Z)− g2(∇FωV F∗ωU,F∗JCZ)}.

Now, if we have (i) and (iii), then we get
g1(ωV, ωU)g1(Hgradlnλ, JCZ) = 0.

From above equation, λ is a constant on Γ(µ). Similarly, one can obtain the other asser-
tions. �

From Theorem 3.20 and Theorem 3.21 we have the following result.
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Corollary 3.23. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then M1 is a locally product Riemann-
ian manifold if and only if

1
λ2 {g2(∇FXF∗Y, F∗ωφV )− g2(∇FXF∗CY, F∗ωV )} = g1(AXBY, ωV )

+ g1(gradlnλ,X)g1(Y, ωφV )
+ g1(gradlnλ, Y )g1(X,ωφV )
− g1(X,Y )g1(gradlnλ, ωφV )
− g1(gradlnλ,X)g1(CY, ωV )
− g1(gradlnλ,CY )g1(X,ωV )
+ g1(X,CY )g1(gradlnλ, ωV )

and

1
λ2 {g2((∇F∗)(U, ωφV ), F∗Z)− g2(∇FωV F∗ωU,F∗JCZ)} = g1(AωV φU

+ g1(ωU, ωV )grad lnλ, JCZ)
+ g1(TUBZ, ωV )

for X,Y, Z ∈ Γ((kerF∗)⊥) and U, V ∈ Γ(kerF∗).

Finally we obtain necessary and sufficient condition for a conformal slant submersion
to be totally geodesic. We recall that a differentiable map F between two Riemannian
manifolds is called totally geodesic if

(∇F∗)(X,Y ) = 0 ∀X,Y ∈ Γ(TM).

A geometric interpretation of a totally geodesic map is that it maps every geodesic in the
total manifold into a geodesic in the base manifold in proportion to arc lengths.

Theorem 3.24. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then F is a totally geodesic map if
and only if

(i) 1
λ2 {g2((∇F∗)(U, ωφV ), F∗Z)−g2(∇FωV F∗ωU,F∗JCZ)} = g1(AωV φU, JCZ)+g1(TUωV,BZ),

(ii) 1
λ2 {g2((∇F∗)(U, ωBX), F∗Y )+g2((∇F∗)(U,CX), F∗CY )} = g1(TUφBX,Y )−g1(TUCX,BY ),

(iii) F is a horizontally homothetic map

for U, V ∈ Γ(kerF∗) and X,Y, Z ∈ Γ((kerF∗)⊥).

Proof. (i) For U, V ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥), using (2.1), (2.2), (3.1), (3.2 and
Lemma 2.3 we have

1
λ2 g2((∇F∗)(U, V ), F∗Z) = g1(∇Uφ2V,Z) + g1(∇UωφV,Z)

− g1(∇UωV,BZ)− g1(∇UωV,CZ)
= g1(∇Uφ2V,Z) + g1(∇UωφV,Z)
− g1(∇UωV,BZ) + g1(∇ωV JU, JCZ).
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Using (2.5), Theorem 3.7 and Lemma 2.3 we arrive at
1
λ2 g2((∇F∗)(U, V ), F∗Z) = − cos2 θg1(∇UV,Z)− g1(TUωV,BZ) + g1(AωV φU, JCZ)

− 1
λ2 g2((∇F∗)(U, ωφV ), F∗Z)− g1(grad lnλ, ωV )g1(ωU, JCZ)

− g1(grad lnλ, ωU)g1(ωV, JCZ) + g1(ωV, ωU)g1(gradlnλ, JCZ)

+ 1
λ2 g2(∇FωV F∗ωU,F∗JCZ).

Hence we have

sin2 θ
1
λ2 g2((∇F∗)(U, V ), F∗Z) = g1(AωV φU, JCZ)− g1(ωV, ωU)g1(gradlnλ, JCZ)

− g1(TUωV,BZ)

+ 1
λ2 {g2((∇F∗)(U, ωφV ), F∗Z) + g2(∇FωV F∗ωU,F∗JCZ)}.

(ii) For X,Y ∈ Γ((kerF∗)⊥) and U ∈ Γ(kerF∗), in a similar way
1
λ2 g2((∇F∗)(U,X), F∗Y ) = g1(∇UφBX,Y ) + g1(∇UωBX,Y )

− g1(∇UCX,BY )− g1(∇UCX,CY ).

Using also (2.5), Theorem 3.7 and Lemma 2.3 we arrive at
1
λ2 g2((∇F∗)(U,X), F∗Y ) = g1(TUφBX,Y ) + 1

λ2 g2(F∗(∇UωBX), F∗Y )

− g1(TUCX,BY )− 1
λ2 g2(F∗(∇UCX), F∗CY )

= g1(TUφBX,Y ) + 1
λ2 g2(−(∇F∗)(U, ωBX) +∇FUωBX,F∗Y )

− g1(TUCX,BY )− 1
λ2 g2(−(∇F∗)(U,CX) +∇FUCX,F∗CY )

= g1(TUφBX,Y )− g1(TUCX,BY )

+ 1
λ2 {g2((∇F∗)(U,CX), F∗CY )− g2((∇F∗)(U, ωBX), F∗Y ).

(iii) For X,Y ∈ Γ(µ), from Lemma 2.3, we have

(∇F∗)(X,Y ) = X(lnλ)F∗Y + Y (lnλ)F∗X − g1(X,Y )F∗(gradlnλ).

From above equation, taking Y = JX for X ∈ Γ(µ) we obtain

(∇F∗)(X, JX) = X(lnλ)F∗JX + JX(lnλ)F∗X − g1(X, JX)F∗(gradlnλ)
= X(lnλ)F∗JX + JX(lnλ)F∗X.

If (∇F∗)(X, JX) = 0, we obtain

X(lnλ)F∗JX + JX(lnλ)F∗X = 0. (3.13)

Taking inner product in (3.13) with F∗JX we have

g1(gradlnλ,X)g2(F∗JX,F∗JX) + g1(gradlnλ,X)g2(F∗X,F∗JX) = 0.

From above equation, it follows that λ is a constant on Γ(µ). In a similar way, for U, V ∈
Γ(kerF∗), using Lemma 2.3 we have

(∇F∗)(ωU, ωV ) = ωU(lnλ)F∗ωV + ωV (lnλ)F∗ωU − g1(ωU, ωV )F∗(gradlnλ).
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From above equation, taking V = U we obtain

(∇F∗)(ωU, ωU) = ωU(lnλ)F∗ωU + ωU(lnλ)F∗ωU − g1(ωU, ωU)F∗(gradlnλ)
= 2ωU(lnλ)F∗ωU − g1(ωU, ωU)F∗(gradlnλ). (3.14)

Taking inner product in (3.14) with F∗ωU and since F is a conformal submersion, we
derive

2g1(gradlnλ, ωU)g2(F∗ωU,F∗ωU)− g1(ωU, ωU)g2(F∗(gradlnλ), F∗ωU) = 0.

From above equation, it follows that λ is a constant on Γ(ω(kerF∗)). Thus λ is a constant
on Γ((kerF∗)⊥). On the other hand, if F is a horizontally homothetic map, it is obvious
that (∇F∗)(X,Y ) = 0. Thus proof is complete. �
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