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Abstract

In this paper we study some new converses of the Jensen and the Lah-
Ribari¢ operator inequality regarding convex functions. First we give
two series of converses in a general setting. The general results are then
applied to quasi-arithmetic operator means with a particular emphasis
to power operator means. The obtained results are also compared with
some related results, known from the literature.
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1. Introduction

The Jensen inequality is one of the most important inequalities in modern mathemat-
ics since it implies the whole series of other classical inequalities (e.g. those by Holder,
Minkowski, Beckenbach-Dresher, Young, the arithmetic-geometric mean inequality etc.).
Applications of this inequality in various branches of mathematics, especially in math-
ematical analysis and statistics, have certainly contributed to its importance. During
decades, the Jensen inequality was extensively studied by some famous authors and was
generalized in numerous directions. For a comprehensive inspection of the Jensen in-
equality including history, proofs and diverse applications, the reader is referred to [10].

In this paper we refer to a quite general operator form of the Jensen inequality. In
order to present such result, we first introduce the appropriate setting.
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Let T be a locally compact Hausdorff space and let A be a C*-algebra. We say that a
field (z¢)ter of elements in A is continuous if the function ¢ — z; is norm continuous on
T. Additionally, if T is equipped with a Radon measure p and the function t — ||z¢|| is
integrable, then, the so-called Bochner integral fT z¢du(t) can be formed. More precisely,
the Bochner integral is the unique element in A such that the relation

. ( / xtdmw) ~ [ vt

holds for every linear functional ¢ in the norm dual A* (see [5]).

Assume furthermore that there is a field (¢¢)¢cr of positive linear mappings ¢ : A — B
from A to another C*-algebra B. Such field is said to be continuous if the function
t — ¢¢(x) is continuous for every x € A. If the C*-algebras are unital and the field
t — ¢¢(1) is integrable with integral 1, we say that (¢:)icr is unital. We assume that
such field is continuous.

If f: I — R is operator convex function, where [ is a real interval of any type, and
(¢¢)ter is a unital field, then the Jensen operator inequality (see Hansen et.al., [6]) asserts
that

(11) f( / ¢z($t)du(t)> < [ o)

holds for every bounded continuous field (z+):er of self-adjoint elements in A with spectra
contained in I. If f : I — R is operator concave function, then the sign of inequality in
(1.1) is reversed.

Observe that the above inequality refers to an operator convex function. Recall that
a continuous function f : I — R is operator convex if

fQz+ (1 =Ny) <Af(z)+ (1= N)f(y)
holds for each A € [0,1] and every pair of self-adjoint operators z and y (acting) on an
infinite dimensional Hilbert space H with spectra in I (the ordering is defined by setting
x <y if y — x is positive semi-definite).
In the same paper, Hansen et.al. obtained the following inequality which holds for an
usual convex function f : [m, M] — R (see [6], proof of Theorem 2):

(12) /T bu(F@))dp(t) < of /T do(we)du(t) + By1.

In this matter, the usual notation is used:

_ fM) — f(m) _ Mf(m)—mf(M)

4= M—-m and - fy = M—m
Inequality (1.2) will be referred to as the Lah-Ribari¢ operator inequality. Observe that
the operator inequality (1.2) is established by applying the functional calculus to the

well-known inequality

(1.3)  f(t) S ast+ B,

which holds for every convex function on the interval [m, M]. Recall that I(t) = ast + B¢
is the linear function limiting convex function f(t) on interval [m, M| from the above.

The main objective of this paper is to derive converses of the above inequalities (1.1)
and (1.2). Although inequality (1.1) holds for an operator convex function, both series
of converses will be established for convex functions in the classical real sense.

The paper is organized in the following way: after this Introduction, in Section 2
we derive our main results, that is, we obtain two series of converses that correspond
to the Jensen and the Lah-Ribari¢ operator inequality. Further, in Sections 3 and 4
general results are then applied to quasi-arithmetic operator means, with a particular




1047

emphasis to power operator means. In such a way, we obtain converse inequalities for
quasi-arithmetic and power operator means.

The techniques that will be used in the proofs are mainly based on the classical real and
functional calculus, especially on the well-known monotonicity principle for self-adjoint
elements of a C*-algebra A: If x € A with a spectra Sp(z), then

(14)  f(t) 2 9(t), teSp(z) = [f(x) =g(2),

where f and g are real valued continuous functions.

2. Basic results

In this section we give our main results, that is, converses of the Jensen and the Lah-
Ribari¢ operator inequality in a general setting presented in the Introduction. As we have
already discussed, the results that follow refer to an usual convex function. Although
regarding different inequalities, it appears that these two series of converses are closely
connected.

First we give a series of converses for the Jensen operator inequality. It should be
noticed here that the following theorem in the classical real case was proved by Dragomir
in the recent paper [2]. In fact, such series of scalar inequalities will be exploited in
establishing the corresponding operator form.

2.1. Theorem. Let f : I — R be a continuous convex function, and let m, M € R,
m < M, be such that interval [m, M] belongs to the interior of interval I. Further,
suppose A and B are unital C*-algebras, and (¢i)ier is a unital field of positive linear
mappings ¢+ : A — B defined on a locally compact Hausdorff space T with a bounded
Radon measure p. Then the series of inequalities

/¢t (w¢))dp(t) (/@ﬂﬁtdﬂ )
B8 1 ) )

(21) < (M —m)(fL(M) ~ fLm)

holds for every bounded continuous field (x¢)ier of self-adjoint elements in A with spectra
contained in [m, M]. If f is concave on I, then the signs of inequalities in (2.1) are
reversed.

Proof. Taking into account the operator version of the Lah-Ribari¢ inequality (1.2), it

follows that
/<Z5t (z¢))dp(t) </ (e d,u(t)

2.2 <as [ outedutt) + 551~ £ ( [ antwodnv).
T T
On the other hand, regarding convexity of f, we have the so-called gradient inequality,
f&) = fF(M) > fL(M)(t - M),
which holds for every ¢t € [m, M], that is,
(t —m)f(t) = (t —m)f(M) > fL(M)(t - M)(t—m), te[m,M]
after multiplying with ¢ — m. In the same way, it follows that

(M =) f(t) = (M = t)f(m) > fr(m)(M = t)(t —m), t€ [m, M].
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Now, adding the above two inequalities, and then, dividing by m — M, we have

_ SO0~ fim)

(23)  ast+ By — f(t) S T (M = 1)t —m).

Moreover, taking into account the arithmetic-geometric mean inequality, the following
series of inequalities holds for all ¢ € [m, M] (see also [2]):

fL(M) — £ (m)
M—-m

1 ! /

1M —m)(f= (M) = £ (m)).

Now, since ml < z; < M1 for every t € T, it follows that m¢:(1) < ¢¢(x:) < Mpe(1),

that is, m1 < [, ¢¢(x:)du(t) < M1. Hence, applying the functional calculus to the above
series of inequalities, that is, setting [ ¢¢(x:)du(t) instead of ¢, we have

IA

agt+ By — f(t) (M —t)(t —m)

(2.4)

IN

as [ onteautt) + 51 1 ( / @(m)dmw)

< FOOEE (i [ suwoano) ( [ oeautt) - ma)
(25) < (M —m)(fL(M) ~ f(m)L.
Finally, comparing (2.2) and (2.5), we obtain (2.1), as claimed. O

2.2. Remark. Observe that in the statement of Theorem 2.1 the interval [m, M] be-
longs to the interior of the interval I. This condition assures finiteness of the one-sided
derivatives in (2.1). Without this assumption these derivatives might be infinite.

2.3. Remark. It should be noticed here that the first expression in the series of inequal-
ities (2.1), that is, the element [ ¢¢(f(x:))du(t) — f ([, ¢¢(we)du(t)) is not positive in
general. This element is positive if f is in addition operator convex function, due to the
Jensen operator inequality (1.1).

The following result represents converses of the Lah-Ribari¢ operator inequality (1.2):

2.4. Theorem. Suppose f : I — R is a continuous convex function, and m,M € R,
m < M, are such that interval [m, M| belongs to the interior of interval I. Further, let
(dt)ter be a unital field of positive linear mappings ¢+ : A — B, where A and B are
unital C*-algebras, defined on a locally compact Hausdorff space T with a bounded Radon
measure . Then the series of inequalities

0<a /T bl )dp(t) + Br1 — /T Ge(f () dpa(2)

LOD=F [ g, (011~ o = ma]) dute)

LOD L0 (w1 - [ outeiant®) ( [ antwodutt) —ma )

(26) < {(M—m)(fL(M) ~ f(m)1

IN

IN

holds for every bounded continuous field (x+)ter of self-adjoint elements in A with spectra
contained in [m, M]. If f is concave on I, then the signs of inequalities in (2.6) are
reversed.
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Proof. The first inequality in (2.6) holds by virtue of the Lah-Ribari¢ inequality (1.2).
Further, starting from the scalar inequality (2.3), it follows that relation

fL(M) — fi(m)

M—-—m
holds for every t € T. Now, applying the positive linear mappings ¢: to the above
relation, we obtain

arze + Bl — f(xe) < (M1 — z¢)(xy — ml)

btz + Br9u(0) — u(fw) < FOD I g vps e, —may),

while integrating yields
or [ ouledu(t) + 1= [ oi(r@)dntt)

< % ~/T¢t (IM1 — z][ze — m1]) du(t),

so that the second inequality in (2.6) holds.
Taking into account Theorem 2.1, it is enough to justify the third inequality sign in
(2.6). To prove our assertion, we note that the function

h(t) = (M —t)(t —m) = —t> + (M +m)t — Mm, t & [m, M]

is operator concave (see e.g. [3]). Finally, applying the Jensen operator inequality (1.1)
to the above function h, it follows that

/T b0 (IM1 — ][z, — m1]) dp(t)

< (1~ [ atwan®) ( [ teiaut) - m1).

and the proof is completed. O

Below, series of inequalities in (2.1) and (2.6) will be applied to quasi-arithmetic and
power operator means.

3. Applications to quasi-arithmetic operator means

Roughly speaking, an arbitrary C*-algebra is isomorphic to a C*-algebra of bounded
operators on a Hilbert space H, denoted by B(H). It is a consequence of the well-known
Gelfand-Naimark theorem (see [4]). Hence, for the reader convenience, from now on,
C*-algebras will be regarded as algebras of bounded operators on a Hilbert space.

Now, for the Hilbert spaces H and X, let P [B(H), B(X)] denotes the set of all fields
(¢t)ter of positive linear mappings ¢: : B(H) — B(K), defined on a locally compact
Hausdorff space T" with a bounded Radon measure p, which are unital.

A generalized quasi-arithmetic operator mean is defined by

(3.1) My (2,0) =" ( / qzst(w(wt))du(t)),

where (x¢)ier is a continuous field of operators in B(H) with spectra in [m, M] C R,
(¢t)ter € P[B(H),B(X)], and ¢ : [m, M] — R is a continuous strictly monotone func-
tion.

Throughout this section we also use the notation

Ym = min{y(m), (M)}, ¢ = max{y(m),y(M)},

for a continuous strictly monotone function ¢ : [m, M] — R.
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In paper [9], Mic¢i¢ et.al. investigated an order among the above quasi-arithmetic
means. More precisely, they obtained that the inequality

(3'2) My (1‘, ¢) < My (x7 ¢)

holds if one of the following two conditions is fulfilled:
(i) x o' is operator convex and x ' is operator monotone,
(ii) x o 1™t is operator concave and fx_l is operator monotone.
On the other hand, if
(i") x 0¥~ ! is operator concave and x ! is operator monotone,
(ii’) x o 1~ is operator convex and —x ! is operator monotone,
then the sign of inequality in (3.2) is reversed.
Moreover, if 9p~! is operator convex and x ! is operator concave, then

(33) My (2,0) < M (2,9) < My (x,¢),

while for operator concave function 1~ and operator convex function x~! the signs of
inequalities in series (3.3) are reversed.

As we see, the above relations (3.2) and (3.3), regarding order among quasi-arithmetic
means, are derived via operator convexity and operator monotonicity. For more details
about an order among operator means, the reader is referred to papers [7], [8] and [9].

As distinguished from the above relations (3.2) and (3.3), converses of quasi-arithmetic
operator means are derived by virtue of the convexity and monotonicity in the classical
real sense. The corresponding result can be carried out by virtue of our Theorem 2.1.

3.1. Theorem. Let x,% : I — R be continuous strictly monotone functions and let the
interval [m, M] belongs to the interior of interval 1. Further, suppose that x o ¢~ ' is
well-defined and convex on Y(I). If (¢t)ier € P[B(IH),B(X)], where H, X are Hilbert
spaces and T is a locally compact Hausdorff space with a bounded Radon measure p, then
the series of inequalities

X (My(2,9)) = x (Mo (2, )
< 0ov™) W) = (X0 9™ ()
- Vv — Ym
X [ (Mo (2, 6)) — ¥m1]
7 @ar = ¥m) [0 w ™) (ar) = (o vy (¥m)] 1

holds for every continuous field (z¢)ier of operators in B(H) with spectra in [m, M].
Further, if x o™ " is concave on (I), then the signs of inequalities in (3.4) are reversed.

[l — o (My(x, ¢))]

(3.4)

IA

Proof. Since 1 : I — R is a continuous strictly monotone function, it follows that ., <
P(t) < Y, for all ¢ € [m, M]. Moreover, by virtue of the functional calculus, it follows
that ¢¥ml < ¥P(x¢) < Yuml for every t € T. This means that the spectra of the field
(yt)ter = (¥(2¢))ter is contained in the interval [, ¥ar].

On the other hand, since the function x o ¢~* is obviously continuous on (I), the
interval [tm,¥ar] belongs to the interior of ¥ (I).

Finally, utilizing Theorem 2.1, that is, the series of inequalities in (2.1) with ¥m,, ¥,
x 0¥t (yi)ter respectively instead of m, M, f, (z:)ier, and with definition (3.1) of
quasi-arithmetic means, we obtain (3.4). O

3.2. Remark. Clearly, with assumptions as in Theorem 3.1, the operator x (M (z, ¢))—
X (My(x, ¢)) is not positive in general. It is positive if the function x o ™! is operator
convex on the corresponding interval. Moreover, applying operator convexity and mono-
tonicity to suitable functions, one obtains relations (3.2) and (3.3). For more details the
reader is referred to [9].
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With the same setting as in the previous result, Theorem 2.4 can also be exploited
in deriving converses of the Lah-Ribari¢ operator inequality involving quasi-arithmetic
means.

3.3. Theorem. Let x,% : I — R be continuous strictly monotone functions and let the
interval [m, M| belongs to the interior of interval I. Further, suppose that x o ¢~ ' is
well-defined and convex on Y(I). If (¢¢)ier € P[B(H), B(X)], where H, K are Hilbert
spaces and T is a locally compact Hausdorff space with a bounded Radon measure u, then
the series of inequalities
x(M) — x(m)
0 < ==Y (My(z,9)) +

v (1) —w(m) ¥ M)
(xoy ™) (Wn) = (x o ™)} (¥m)

7/)M - wm

x /T b0 (el — (e)][(@0) — ml]) duu(t)

< xo Y (m) — (x o ™) (¥m)
- Vm — Ym
[ (My(x, ¢)) — ml]

($ar = vm) [0 ™) (¥nr) = (x 0 ™)} (¥m)] 1

1 — x (Mx(z, $))

[l — 9 (My(z,9))]

(3.5)

IA
A~ = X

holds for every continuous field (x+)ter of operators in B(H) with spectra in [m, M]. If
x o™t is concave on (I), then the signs of inequalities in (3.5) are reversed.

Proof. Considering the same setting as in the proof of Theorem 3.1 and with notation
as in Theorem 2.4, we have

o = X(M) = x(m) - Y(M)x(m) — p(m)x(M)
V(M) = g(m)” XY (M) —3p(m) ’
so the result is an immediate consequence of the series of inequalities in (2.6). g

3.4. Remark. The first inequality in (3.5) can be rewritten in the following form:
(D(M) = ¢ (m))x (Mx(z, ¢)) = (X(M) = x(m)) (My (z, ¢))
(3.6) < (P(M)x(m) — P (m)x(M))1.

The above inequality (3.6) can be regarded as an operator analogue of the corresponding
relation for linear functionals (see [10], Theorem 4.3, p. 108).

3.5. Remark. With notations as in Theorems 3.1 and 3.3, suppose that the function
x o9~ ! is differentiable in points 1, and 1as. In this case expressions 1, and s in
(3.4) and (3.5) can respectively be replaced by (m) and (M), due to the symmetry.
In addition, utilizing a chain rule, the expression

(cow™ HL((M) = (xo v )i (w(m))

can be rewritten in a more suitable form, that is,

(37 (xow HL(W(M) = (xow i (w(m) =
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4. Applications to power operator means

As a particular case of a quasi-arithmetic mean defined by (3.1), we may consider a
power operator mean (see e.g. [8]):
1
(4.1) M, (z,¢) = (IT d’t(%’;)du(t)) " r#0
exp (fT o (log mt)d,u(t)) , r=0.

By virtue of relations (3.2) and (3.3), Mici¢ et.al. [9], established the following order
among power operator means:

(42) MT (l’, ¢) S MS ($, ¢) )

for either r < 's, r,s € R\ [-1,1] or % <r<l<sorr<-1<s< —%. However, a
class of inequalities in (4.2) is a consequence of operator convexity and monotonicity of
the corresponding power functions.

On the other hand, regarding the method developed in this paper, converses for power
operator means are established via the classical convexity. The following result appears

to be a consequence of Theorem 3.1 when considering the above power operator means.

4.1. Theorem. Let (¢¢)ier € P[B(H), B(X)], where H, X are Hilbert spaces and T' 1is
a locally compact Hausdorff space with a bounded Radon measure p, and let (z¢)ter be a
continuous field of positive operators in B(H) with spectra in [m, M] C Ry.
(i) If either s <0 <rorr<0<sor0<r<sors<r<O0, then the following
series of inequalities holds:

(M (2, )]" = [My (x, 9)]°

s MS—T‘ _ mS—’I‘
<. - [M"1-[M, MM, (z,¢)] —m"1
< 2 M T ML~ (M (o, O] (M (2, )] — 1)
S r r s—r s—r
(4.3) <M -m") (M —m* ") L.
Further, if 0 < s < r orr < s <0, then the signs of inequalities in (4.3) are
reversed.

(if) If r <0 then
0 < log[Mo (2, ¢)] — log [M (z, $)]

1
< e ML= (M (2, O] [Me (2, 0)) — 1]
(Mr _ mr)2
4.4 < -1
( ) — 4,’,,Mrmr ’
while for r > 0 the signs of inequalities in (4.4) are reversed.
(iii) If s € R, then the following series of inequalities holds:

[M; (2, ¢)]" = [Mo (2, 9)]°

< U ) fog M1 log [0 (2. )]} og (Mo (s, )] ~ log 1]
(4.5) < Z(longlogm) (M?® —m®)1.

Proof. The proof is a simple consequence of Theorem 3.1, that is, the series of inequalities
in (3.4) with particular choices of functions x and .

More precisely, let x(t) = t° and 9 (t) = t", where s and r are mutually different real
parameters not equal to zero. Then the function (X o 1/)*1) (t) = t* is convex on Ry if
2 <0or 2> 1. It is possible in each of the following four cases: s <O <rorr <0<s
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or 0 <r <sors<r<0. Finally, since (xo 1/1_1)/ ) = ftsv;-T, considering (3.4) with
the above functions x and v on the interval [m, M|, we obtain (4.3).

On the other hand, the function ()( o 1/}71) (t) = t* is concave on Ry if 0 < 2 <1,
hence if 0 < s < r or r < s < 0 we obtain series (4.3) with reversed signs of inequalities.
Clearly, the series of inequalities in (4.3), as well as the series with reversed signs of
inequalities, holds also for s = 0.

It remains to consider the cases when one of the parameters r and s is equal to zero.
If s = 0, then setting x(t) = logt and t(t) = ¢, it follows that (y o9~ ") (t) = Llogt.
Clearly, this function is convex for r» < 0, while it is concave for » > 0. Moreover, since
(Xodfl)/ (t) = %, after a straightforward computation we obtain (4.4) without the
first inequality sign in the convex case, while in the concave case the reversed series of
inequalities holds. The first inequality sign in (4.4), as well as in the reversed series of
inequalities, holds due to the operator convexity of the function %logt when r < 0, that
is, operator concavity when r > 0.

Finally, if » = 0, then setting x(t) = ¢° and ¢ (t) = logt, it follows that the function
(xo9™") (t) = exp(st) is convex for every s # 0. In addition, (x o z/)_l)/ (t) = sexp(st),
which yields (4.5) after a straightforward computation. Of course, the series of inequali-
ties in (4.5) holds also for s = 0. O

4.2. Remark. Observe that the function (X o 1/1_1) (t) = % log t is simultaneously convex
and operator convex, that is, concave and operator concave depending on whether r < 0
or r > 0. Hence, the first expression in (4.4) is the positive operator yielding the inequality

IOg [M’r (‘1‘7 ¢)] S IOg [MO (Iv ()b)]
for r < 0. On the other hand, if » > 0 then the following inequality holds:
log [My (z, ¢)] < log [M. (z, $)] .

It is well-known that the function f(t) = ¢" is operator convex on Ry if either 1 <
r < 2or —1 < r < 0, and is operator concave on Ry when 0 < r» < 1. Hence,
discussing the operator convexity of the function (x ot ~') () = t= (see the proof of
Theorem 4.1), we obtain conditions on parameters r and s under which the operator
[M; (z,¢)]° — [My (z,¢)]° is positive in the series of inequalities (4.3).

4.3. Corollary. With the same assumptions as in the statement of Theorem 4.1, the
series of inequalities

0 < [Ms (2,9)]" — [Mr (2, 9))°

< 8 AT M (M (o, )] (M (2, 6))7 — 1]
(4.6) < (M —m") (M —mT) 1

4r
holds if either0 <r < s<2ror2r<s<r<0or0<s+r<r#0o0or0#r<r+s<0.
Further, if 0 #r < s <0 or 0 < s <r #0, then the signs of inequalities in (4.6) are
reversed.

Proof. Regarding the proof of Theorem 4.1, it follows that the first inequality sign in (4.6)
holds when (X ) 1/;_1) (t) = t+ is operator convex function. This function is operator
convex if either 1 < 2 < 2 or —1 < 2 < 0, that is, when either 0 < r < s < 2r or
2r<s<r<0or0<s+r<r#0or0+#r<r+s <0. Moreover, since the operator
convexity of the function (X o wil) t) = t+ implies its usual convexity, it follows that
the remaining signs of inequalities in (4.6) are also valid under the above conditions.
On the other hand, function (XO 111_1) ) = ¢+ is operator concave if 0 < =<,
that is, when 0 # 7 < s < 0or 0 < s <r # 0. Under these conditions (x oy~ ") (t) =
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t+ is concave in the classical sense, as well. This gives (4.6) with reversed signs of
inequalities. O

4.4. Remark. With the conditions as in Corollary 4.3, we obtain the order among
operators [M; (z,¢)]° and [M, (z,$)]°. Moreover, applying the operator monotonicity of
suitable power functions, one obtains conditions as in (4.2). In fact, it is a more specific
use of relations (3.2) and (3.3), for more details see [9].

4.5. Remark. It should be noticed here that the above discussion as in Corollary 4.3 and
Remark 4.2 can not be applied to the series of inequalities in (4.5) since the exponential
function f(t) = expt is not operator convex (see e.g. [1]).

Guided by the proof of Theorem 4.1, we also obtain an interesting consequence of
Theorem 3.3, that is, the converses of the Lah-Ribari¢ inequality that correspond to
power operator means.

4.6. Theorem. Let (¢¢)ier € P[B(H), B(X)], where H, X are Hilbert spaces and T 1is
a locally compact Hausdorff space with a bounded Radon measure p, and let (z¢)ier be a
continuous field of positive operators in B(H) with spectra in [m, M] C Ry.
(i) If either s <0 <rorr<0<sor0<r<sors<r<DO0, then the following
series of inequalities holds:
M?® —m?® M™m?® —m"M?®
<=~ M, (2,¢)] + —————
0< AT My )+ M T
MS_T - ms—r T T r r
: W/f@ ([M"1 — zi][zy —m"1]) du(t)

S
-
s M«S*’I‘ 7m877‘
2
S

1 — [M(x, ¢)]°

<

IN

[M™1 — [M; (2, ))" [M- (x,$)]" —m"1]

Mr — m”
(4.7) < ym (M"—m") (M*™" —m* ") 1.
Moreover, if 0 < s <1 orr < s <0, then the signs of inequalities in (4.7) are
reversed.

(if) If r <O then
0< log M — logm

M" 1 —m" log M
" ogm — m' log

(M, (2, 6)) S

1 — log [Mo(, ¢)]

Mr —m"

]' T T T T
< g L o (71 = af)laf — 71 ()
«__ 1
- rM™m"
(Mr _ mr)Q

4. <71
(4.8) - 4rMrmr

while for r > 0 the signs of inequalities in (4.8) are reversed.

(iii) The series of inequalities

M?® —m?® m®log M — M?®logm
log [Mo (z, ¢)] + "8 e

[M™1 — [M; (2, )" [[M~ (x,$)]" —m"1]

0

1- [M5($7 ¢)]9

L —
~ log M —logm log M — logm

M —m®

< lg(Mfl”;fn /T o1 ([log M1 — log a.][log #; — log m1]) dyu(t)
M —m®

< 2O fog M1~ tog [My (s, )]} og [ (5, )] ~ log 1]

(4.9) < Z (log M —logm) (M*® —m®)1
holds for all s € R.
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Proof. We use the same procedure as in the proof of Theorem 4.1, applied to the series

of inequalities in (3.5). O
References
[1] R. Bhatia, Matriz Analysis, Springer-Verlag, 1997.
[2] S.S. Dragomir, Reverses of the Jensen’s inequality in terms of first derivative and applica-
tions, RGMIA Res. Rep. Coll. (2011), preprint.
[3] T. Furuta, J. Mi¢i¢ Hot, J. Pecari¢, Y. Seo, Mond-Pecari¢ Method in Operator Inequalities,
Element, Zagreb, 2005.
[4] I. Gelfand, M. Naimark, On the imbedding of normed rings into the ring of operators on a
Hilbert space, Math. Sbornik 12 (1943), 197-217.
[5] F. Hansen, G. Pedersen, Jensen’s operator inequality, Bull. London Math. Soc. 35 (2003),
553-564.
[6] F. Hansen, J. Pecari¢, 1. Peri¢, Jensen’s operator inequality and its converses, Math. Scand.
100 (2007), 61-73.
[7] J. Mi¢i¢, J. Pecari¢, Order among power means of positive operators, II, Sci. Math. Japon.
71 (2010), 93-109.
[8] J. Mi¢i¢, J. Pecari¢, Y. Seo, Converses of Jensen’s operator inequality, Oper. Matrices 4
(2010), 385-403.
[9] J. Mi¢i¢, J. Pecari¢, Y. Seo, Order among quasi-arithmetic means of positive operators,
Math. Reports, in press.
[10] J.E. Pecari¢, F. Proschan, Y.L. Tong, Convez functions, partial orderings and statistical

applications, Academic Press Inc., San Diego, 1992.



1056



