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Non existence of totally contact umbilical
GCR-lightlike submanifolds of indefinite Kenmotsu

manifolds
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Abstract
In present paper, after finding the conditions for the integrability of
various distributions of a GCR-lightlike submanifold of indefinite Ken-
motsu manifolds, we prove that there do not exist totally contact um-
bilical GCR-lightlike submanifolds of indefinite Kenmotsu manifolds
other than totally contact geodesic GCR-lightlike submanifolds and
moreover it is a totally geodesic GCR-lightlike submanifold.
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1. Introduction
Theory of lightlike submanifolds of semi-Riemannian manifolds is one of the most im-

portant topic of differential geometry since in this theory, the normal vector bundle in-
tersects with the tangent bundle, contrary to classical theory of submanifolds. Therefore
the theory of lightlike (degenerate) submanifolds becomes more interesting and remark-
ably different from the theory of non-degenerate submanifolds. In the development of
the theory of lightlike submanifolds, Duggal and Bejancu [6] played a very crucial role.
Since there is a significant use of the contact geometry in differential equations, optics,
and phase spaces of a dynamical system (see Arnold [1], Maclane [11], Nazaikinskii et
al. [12]). Therefore Duggal and Sahin [7] introduced contact CR-lightlike submanifolds
and contact SCR-lightlike submanifolds of indefinite Sasakian manifolds. But there does
not exist any inclusion relation between invariant and screen real submanifolds so a new
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class of submanifolds called, Generalized Cauchy-Riemann GCR-lightlike submanifolds
of indefinite Sasakian manifolds (which is an umbrella of invariant, screen real, contact
CR-lightlike submanifolds) was derived by Duggal and Sahin [8]. Recently Gupta and
Sharfuddin [10], defined GCR-lightlike submanifold of indefinite Kenmotsu manifolds.

In present paper we further elaborate the theory of GCR-lightlike submanifold of in-
definite Kenmotsu manifolds. In section 3, we find the conditions for the integrability of
various distributions and for the distributions to define totally geodesic foliation in sub-
manifold. In section 4, we study totally contact umbilical GCR-lightlike submanifolds
and prove that there do not exist totally contact umbilical GCR-lightlike submanifolds
of indefinite Kenmotsu manifolds other than totally contact geodesic GCR-lightlike sub-
manifolds and moreover it is a totally geodesic GCR-lightlike submanifold.

2. Lightlike Submanifolds
We recall notations and fundamental equations for lightlike submanifolds, which are

due to the book [6] by Duggal and Bejancu.
Let (M̄, ḡ) be a real (m+n)-dimensional semi-Riemannian manifold of constant index

q such that m,n ≥ 1, 1 ≤ q ≤ m + n − 1 and (M, g) be an m-dimensional submanifold
of M̄ and g the induced metric of ḡ on M . If ḡ is degenerate on the tangent bundle TM
of M then M is called a lightlike submanifold of M̄ . For a degenerate metric g on M

TM⊥ = ∪{u ∈ TxM̄ : ḡ(u, v) = 0, ∀v ∈ TxM,x ∈M},

is a degenerate n-dimensional subspace of TxM̄ . Thus, both TxM and TxM
⊥ are de-

generate orthogonal subspaces but no longer complementary. In this case, there exists
a subspace RadTxM = TxM ∩ TxM⊥ which is known as radical (null) subspace. If the
mapping

RadTM : x ∈M −→ RadTxM,

defines a smooth distribution on M of rank r > 0 then the submanifold M of M̄ is called
an r-lightlike submanifold and RadTM is called the radical distribution on M .

Let S(TM) be a screen distribution which is a semi-Riemannian complementary dis-
tribution of Rad(TM) in TM , that is,

(2.1) TM = RadTM⊥S(TM),

and S(TM⊥) is a complementary vector subbundle to RadTM in TM⊥. Let tr(TM)
and ltr(TM) be complementary (but not orthogonal) vector bundles to TM in TM̄ |M
and to RadTM in S(TM⊥)⊥ respectively. Then we have

(2.2) tr(TM) = ltr(TM)⊥S(TM⊥).

(2.3) TM̄ |M= TM ⊕ tr(TM) = (RadTM ⊕ ltr(TM))⊥S(TM)⊥S(TM⊥).

Let u be a local coordinate neighborhood ofM and consider the local quasi-orthonormal
fields of frames of M̄ along M , on u as {ξ1, ..., ξr,Wr+1, ...,Wn, N1, ..., Nr, Xr+1, ..., Xm},
where {ξ1, ..., ξr}, {N1, ..., Nr} are local lightlike bases of Γ(RadTM |u), Γ(ltr(TM) |u)
and {Wr+1, ...,Wn}, {Xr+1, ..., Xm} are local orthonormal bases of Γ(S(TM⊥) |u) and
Γ(S(TM) |u) respectively. For this quasi-orthonormal fields of frames, we have

2.1. Theorem. ([6]). Let (M, g, S(TM), S(TM⊥)) be an r-lightlike submanifold of a
semi-Riemannian manifold (M̄, ḡ). Then there exists a complementary vector bundle
ltr(TM) of RadTM in S(TM⊥)⊥ and a basis of Γ(ltr(TM) |u) consisting of smooth
section {Ni} of S(TM⊥)⊥ |u, where u is a coordinate neighborhood of M , such that

(2.4) ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0, for any i, j ∈ {1, 2, .., r},
where {ξ1, ..., ξr} is a lightlike basis of Γ(Rad(TM)).



Let ∇̄ be the Levi-Civita connection on M̄ . Then according to the decomposition
(2.3), the Gauss and Weingarten formulae are given by

(2.5) ∇̄XY = ∇XY + h(X,Y ), ∀ X,Y ∈ Γ(TM),

(2.6) ∇̄XU = −AUX +∇⊥XU, ∀ X ∈ Γ(TM), U ∈ Γ(tr(TM)),

where {∇XY,AUX} and {h(X,Y ),∇⊥XU} belongs to Γ(TM) and Γ(tr(TM)), respec-
tively. Here ∇ is a torsion-free linear connection on M , h is a symmetric bilinear form
on Γ(TM) which is called the second fundamental form, AU is linear a operator on M ,
known as a shape operator.

Considering the projection morphisms L and S of tr(TM) on ltr(TM) and S(TM⊥),
respectively then using (2.2), the Gauss and Weingarten formulae become

(2.7) ∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ),

(2.8) ∇̄XU = −AUX +Dl
XU +Ds

XU,

where we put hl(X,Y ) = L(h(X,Y )), hs(X,Y ) = S(h(X,Y )), Dl
XU = L(∇⊥XU), Ds

XU =
S(∇⊥XU).

As hl and hs are Γ(ltr(TM))-valued and Γ(S(TM⊥))-valued respectively, therefore
they are called as the lightlike second fundamental form and the screen second funda-
mental form on M . In particular, we have

(2.9) ∇̄XN = −ANX +∇lXN +Ds(X,N),

(2.10) ∇̄XW = −AWX +∇sXW +Dl(X,W ),

where X ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). By using (2.2)-(2.3) and
(2.7)-(2.10), we obtain

(2.11) ḡ(hs(X,Y ),W ) + ḡ(Y,Dl(X,W )) = g(AWX,Y ),

for any X,Y ∈ Γ(TM) and W ∈ Γ(S(TM⊥)).
Let P be the projection morphism of TM on S(TM). Then using (2.1), we can induce

some new geometric objects on the screen distribution S(TM) on M as

(2.12) ∇XPY = ∇∗XPY + h∗(X,Y ),

(2.13) ∇Xξ = −A∗ξX +∇∗tXξ,
for any X,Y ∈ Γ(TM) and ξ ∈ Γ(RadTM), where {∇∗XPY,A∗ξX} and {h∗(X,Y ),∇∗tXξ}
belong to Γ(S(TM)) and Γ(RadTM), respectively. ∇∗ and ∇∗t are linear connec-
tions on complementary distributions S(TM) and RadTM , respectively. h∗ and A∗

are Γ(RadTM)-valued and Γ(S(TM))-valued bilinear forms and called as the second
fundamental forms of distributions S(TM) and RadTM , respectively.

An odd-dimensional semi-Riemannian manifold M̄ is said to be an indefinite almost
contact metric manifold if there exist structure tensors (φ, V, η, ḡ), where φ is a (1, 1)
tensor field, V is a vector field called structure vector field, η is a 1-form and ḡ is the
semi-Riemannian metric on M̄ satisfying

(2.14) ḡ(φX, φY ) = ḡ(X,Y )− η(X)η(Y ), ḡ(X,V ) = η(X),

(2.15) φ2X = −X + η(X)V, η ◦ φ = 0, φV = 0, η(V ) = 1,

for X,Y ∈ Γ(TM̄), where TM̄ denotes the Lie algebra of vector fields on M̄ .
An indefinite almost contact metric manifold M̄ is called an indefinite Kenmotsu

manifold if (see [4]),

(2.16) (∇̄Xφ)Y = −ḡ(φX, Y )V + η(Y )φX, and ∇̄XV = −X + η(X)V,

for any X,Y ∈ Γ(TM̄), where ∇̄ denote the Levi-Civita connection on M̄ .



3. Genralized Cauchy-Riemann (GCR)-Lightlike Submanifold
Calin[5], proved that if the characteristic vector field V is tangent to (M, g, S(TM))

then it belongs to S(TM). We assume characteristic vector V is tangent toM throughout
this paper.

3.1. Definition. Let (M, g, S(TM), S(TM⊥)) be a real lightlike submanifold of an indef-
inite Kenmotsu manifold (M̄, ḡ) thenM is called a generalized Cauchy-Riemann (GCR)-
lightlike submanifold if the following conditions are satisfied

(A) There exist two subbundles D1 and D2 of Rad(TM) such that

(3.1) Rad(TM) = D1 ⊕D2, φ(D1) = D1, φ(D2) ⊂ S(TM).

(B) There exist two subbundles D0 and D̄ of S(TM) such that

(3.2) S(TM) = {φD2 ⊕ D̄}⊥D0⊥V, φ(D̄) = L⊥S.
where D0 is invariant non degenerate distribution onM , {V } is one dimensional distribu-
tion spanned by V and L, S are vector subbundles of ltr(TM) and S(TM)⊥, respectively.

Then tangent bundle TM of M is decomposed as

(3.3) TM = {D ⊕ D̄ ⊕ {V }}, D = Rad(TM)⊕D0 ⊕ φ(D2).

A GCR-lightlike submanifold of indefinite Kenmotsu manifold is said to be proper if
D0 6= {0}, D1 6= {0}, D2 6= {0} and L1 6= {0}.

Let Q, P1, P2 be the projection morphism on D, φL, φS respectively, therefore any
X ∈ Γ(TM) can be written as

(3.4) X = QX + V + P1X + P2X.

Applying φ to (3.4), we obtain

(3.5) φX = fX + ωP1X + ωP2X,

where fX ∈ Γ(D), ωP1X ∈ Γ(L) and ωP2X ∈ Γ(S), or, we can write (3.5), as

(3.6) φX = fX + ωX,

where fX and ωX are the tangential and transversal components of φX, respectively.
Similarly,

(3.7) φU = BU + CU, U ∈ Γ(tr(TM)),

where BU and CU are the sections of TM and tr(TM), respectively.
Differentiating (3.5) and using (2.7)-(2.10) and (3.7), we have

(3.8) Dl(X,ωP2Y ) = −∇lXωP1Y + ωP1∇XY − hl(X, fY ) +Chl(X,Y ) + η(Y )ωP1X,

(3.9) Ds(X,ωP1Y ) = −∇sXωP2Y +ωP2∇XY − hs(X, fY ) +Chs(X,Y ) + η(Y )ωP2X,

for all X,Y ∈ Γ(TM). By using Kenmotsu property of ∇̄ with (2.7) and (2.8), we have
the following lemmas.

3.2. Lemma. LetM be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold
M̄ then we have

(3.10) (∇Xf)Y = AωYX +Bh(X,Y )− g(φX, Y )V + η(Y )fX,

and

(3.11) (∇tXω)Y = Ch(X,Y )− h(X, fY ) + η(Y )ωX,

where X,Y ∈ Γ(TM) and

(3.12) (∇Xf)Y = ∇XfY − f∇XY,
(3.13) (∇tXω)Y = ∇tXωY − ω∇XY.



3.3. Lemma. LetM be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold
M̄ then we have

(3.14) (∇XB)U = ACUX − fAUX − g(φX,U)V,

and

(3.15) (∇tXC)U = −ωAUX − h(X,BU),

where X ∈ Γ(TM) and U ∈ Γ(tr(TM)) and

(3.16) (∇XB)U = ∇XBU −B∇tXU,

(3.17) (∇tXC)U = ∇tXCU − C∇tXU.

3.4. Theorem. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu man-
ifold M̄ then

(A) The distribution D ⊕ {V } is integrable, if and only if

(3.18) h(X, fY ) = h(Y, fX), ∀ X,Y ∈ Γ(D ⊕ {V }).

(B) The distribution D̄ is integrable, if and only if

(3.19) AφZU = AφUZ, ∀ Z,U ∈ Γ(D̄).

Proof: Using (3.8) and (3.9), we have ω∇XY = h(X, fY ) − Ch(X,Y ), for any
X,Y ∈ Γ(D ⊕ {V }. Here replacing X by Y and subtracting the resulting equation from
this equation, we get ω[X,Y ] = h(X, fY )− h(Y, fX), which proves (A).

Next from (3.10) and (3.12), we have −f(∇ZU) = AωUZ + Bh(Z,U), for all Z,U ∈
Γ(D̄). Then, similarly as above, we obtain f [Z,U ] = AφZU − AφUZ, which completes
the proof of (B).

3.5. Theorem. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu man-
ifold M̄ . Then the distribution D ⊕ {V } defines a totally geodesic foliation in M , if and
only if, Bh(X,φY ) = 0, for any X,Y ∈ D ⊕ {V }.

Proof: Since D̄ = φ(L⊥S), therefore D ⊕ {V } defines a totally geodesic foliation in
M , if and only if

g(∇XY, φξ) = g(∇XY, φW ) = 0,

for any X,Y ∈ Γ(D ⊕ {V }), ξ ∈ Γ(D2) and W ∈ Γ(S).
Using (2.7) and (2.16), we have

(3.20) g(∇XY, φξ) = −ḡ(∇̄XφY, ξ) = −ḡ(hl(X, fY ), ξ),

(3.21) g(∇XY, φW ) = −ḡ(∇̄XφY,W ) = −ḡ(hs(X, fY ),W ).

Hence, from (3.20) and (3.21) the assertion follows.

3.6. Theorem. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu man-
ifold M̄ . Then the distribution D̄ does not define a totally geodesic foliation in M .

Proof: We know that D̄ defines a totally geodesic foliation in M , if and only if

g(∇XY,N) = g(∇XY, φN1) = g(∇XY, V ) = g(∇XY, φZ) = 0,

for X,Y ∈ Γ(D̄) , N ∈ Γ(ltr(TM)) , Z ∈ Γ(D0) and N1 ∈ Γ(L). But using (2.5) and
(2.16), we obtain g(∇XY, V ) = g(∇̄XY, V ) = −g(Y, ∇̄XV ) = −g(Y,X), which may be
non zero because φS ⊂ D̄ is non degenrate. Hence the assertion follows.



3.7. Theorem. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu man-
ifold M̄ . Then the induced connection ∇ is metric connection, if and only if

A∗φξX −∇∗tXφξ ∈ Γ(φD2⊥D1), for ξ ∈ Γ(D1),

∇∗Xφξ + h∗(X,φξ) ∈ Γ(φD2⊥D1), for ξ ∈ Γ(D2),

h(X,φξ) ∈ Γ(L⊥S)⊥ and A∗ξX ∈ Γ(D̄⊥D0⊥φD2),

for ξ ∈ Γ(Rad(TM)) and X ∈ Γ(TM).

Proof: For any X ∈ Γ(TM) and ξ ∈ ΓRad(TM), using (2.16), we have

φ∇̄Xξ = ∇̄Xφξ + g(φX, ξ)V,

applying φ to both sides of above equation and then using (2.13) and (2.15), we obtain

(3.22) ∇Xξ + h(X, ξ) = −φ(∇Xφξ + h(X,φξ)) + g(A∗ξX,V )V.

Let ξ ∈ Γ(D1) then again using (2.13) in (3.22), we obtain

∇Xξ + h(X, ξ) = −φ(−A∗φξX +∇∗tXφξ)−Bh(X,φξ)− Ch(X,φξ) + g(A∗ξX,V )V.

Equating tangential components of above equation both sides, we get

∇Xξ = fA∗φξX − f∇∗tXφξ −Bh(X,φξ) + g(A∗ξX,V )V,

therefore ∇Xξ ∈ Γ(RadTM), if and only if, Bh(X,φξ) = 0, fA∗φξX − f∇∗tXφξ ∈
Γ(RadTM) and g(A∗ξX,V ) = 0 or, if and only if,

(3.23) h(X,φξ) ∈ Γ(L⊥S)⊥, A∗φξX −∇∗tXφξ ∈ Γ(φD2⊥D1),

and

(3.24) A∗ξX ∈ Γ(D̄⊥D0⊥φD2).

Similarly, let ξ ∈ Γ(D2) then using (2.12) in (3.22) and then compare the tangential
components of the resulting equation, we obtain

∇Xξ = −f∇∗Xφξ − fh∗(X,φξ)−Bh(X,φξ) + (A∗ξX,V )V,

therefore ∇Xξ ∈ Γ(RadTM), if and only if, Bh(X,φξ) = 0, f∇∗Xφξ + fh∗(X,φξ) ∈
Γ(RadTM) and g(A∗ξX,V ) = 0 or, if and only if,

(3.25) h(X,φξ) ∈ Γ(L⊥S)⊥, ∇∗Xφξ + h∗(X,φξ) ∈ Γ(φD2⊥D1),

and

(3.26) A∗ξX ∈ Γ(D̄⊥D0⊥φD2).

Hence from (3.23) to (3.26), the assertion follows.

4. Totally Contact Umbilical GCR-Lightlike Submanifolds
4.1. Definition. ([13]). If the second fundamental form h of a submanifold tangent to
characteristic vector field V , of a Sasakian manifold M̄ is of the form

(4.1) h(X,Y ) = {g(X,Y )− η(X)η(Y )}α+ η(X)h(Y, V ) + η(Y )h(X,V ),

for any X,Y ∈ Γ(TM), where α is a vector field transversal to M , then M is called a
totally contact umbilical submanifold. M is called a totally contact geodesic submanifold
if α = 0 and a totally geodesic submanifold if h = 0.

The above definition also holds for a lightlike submanifold M . For a totally contact
umbilical lightlike submanifold M , we have

(4.2) hl(X,Y ) = {g(X,Y )− η(X)η(Y )}αL + η(X)hl(Y, V ) + η(Y )hl(X,V ),

(4.3) hs(X,Y ) = {g(X,Y )− η(X)η(Y )}αS + η(X)hs(Y, V ) + η(Y )hs(X,V ),



where αL ∈ Γ(ltr(TM)) and αS ∈ Γ(S(TM⊥)).

4.2. Lemma. LetM be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold
M̄ then ∇XX ∈ Γ(D ⊕ {V }), for any X ∈ Γ(D).

Proof: Since D̄ = φ(L⊥S) therefore ∇XX ∈ Γ(D ⊕ {V }), if and only if,

g(∇XX,φξ) = g(∇XX,φW ) = 0,

for any ξ ∈ Γ(D2) and W ∈ Γ(S). Since M is totally contact umbilical GCR-lightlike
submanifold therefore for any X ∈ Γ(D), using (2.5), (2.7), (2.16) and (4.2), we obtain

g(∇XX,φξ) = ḡ(∇̄XX,φξ) = −ḡ(∇̄XφX − (∇̄Xφ)X, ξ) = −ḡ(hl(X,φX), ξ)

= −ḡ(X,φX)ḡ(αL, ξ) = 0.(4.4)

Also

g(∇XX,φW ) = ḡ(∇̄XX,φW ) = −ḡ(∇̄XφX − (∇̄Xφ)X,W ) = −ḡ(hs(X,φX),W )

= −ḡ(X,φX)ḡ(αS , ξ) = 0.(4.5)

Hence using (4.4) and (4.5), the assertion follows.

4.3. Theorem. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M̄ then α ∈ Γ(L⊥S).

Proof: Using (3.9), for anyX ∈ Γ(D0), we obtain hs(X, fX) = ωP2∇XX+Chs(X,X),
then using (4.3) we get g(X,φX)αS = ωP2∇XX+g(X,X)CαS . By virtue of the Lemma
(4.2), we get g(X,X)CαS = 0, then the non degeneracy of the distribution D0 implies
that CαS = 0. Hence αS ∈ Γ(S).

Similarly by using (3.8) and (4.2) we can prove αL ∈ Γ(L). Hence α ∈ Γ(L⊥S).

4.4. Remark. Since α ∈ Γ(L⊥S) therefore for any X ∈ D0 with (4.1), we have
h(X,X) = g(X,X)α, this implies that h(X,X) ∈ Γ(L⊥S).

4.5. Theorem. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M̄ then αL = 0.

Proof: Since M is a totally contact umbilical GCR-lightlike submanifold then, by
direct calculations, using (2.7), (2.8) and (2.16) and then taking tangential parts of the
resulting equation, we obtain

AφZZ + f∇ZZ +Bhl(Z,Z) +Bhs(Z,Z) = 0,

where Z ∈ φ(S). Hence for ξ ∈ Γ(D2), we obtain

ḡ(AφZZ, φξ) + ḡ(hl(Z,Z), ξ) = 0,

then using (2.11), we get ḡ(hs(Z, φξ), φZ) + ḡ(hl(Z,Z), ξ) = 0. Therefore using (4.2) and
(4.3), we obtaing(Z,Z)ḡ(αL, ξ) = 0, then the non degeneracy of φS implies that αL = 0,
which completes the proof.

4.6. Lemma. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M̄ then ∇XφX = φ∇XX, for any X ∈ Γ(D0).

Proof: For any X ∈ Γ(D0) using (3.11) and (3.13), we have ω∇XX = h(X, fX) −
Ch(X,X). SinceM be a totally contact umbilical therefore using (4.1), we have ω∇XX =
g(X,φX)α − Ch(X,X), then using remark (4.4), we get ω∇XX = 0. Hence ∇XX ∈
Γ(D). Let Y ∈ Γ(D0) then using(2.14) to (2.16), we obtain

g(∇XφX, Y ) = ḡ(∇̄XφX, Y ) = ḡ(φ∇̄XX,Y ) = −g(∇XX,φY ) = g(φ∇XX,Y ),

this implies g(∇XφX − φ∇XX,Y ) = 0, then the non degeneracy of the distribution D0

gives the result.



4.7. Theorem. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M̄ then αS = 0.

Proof: Let W ∈ Γ(S(TM⊥)) and X ∈ Γ(D0) the using (2.16), (4.1) and the Lemma
(4.6), we have

ḡ(φ∇̄XX,φW ) = ḡ(∇̄XφX, φW )

= ḡ(∇XφX, φW ) + ḡ(h(X,φX), φW )

= ḡ(φ∇XX,φW )

= ḡ(∇XX,W )

= 0.(4.6)

Also using (4.3), we have

ḡ(φ∇̄XX,φW ) = ḡ(∇̄XX,W )− η(W )η(φ∇̄XX)

= ḡ(∇XX + hs(X,X) + hl(X,X),W )

= ḡ(∇XX,W ) + ḡ(hs(X,X),W )

= g(X,X)g(αs,W ).(4.7)

Therefore using (4.6) and (4.7), we get g(X,X)g(αS ,W ) = 0, then the non degeneracy
of D0 and S(TM⊥) implies that αS = 0.

4.8. Theorem. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M̄ then M is a totally contact geodesic GCR-lightlike sub-
manifold.

Proof: The result follows from the Theorems (4.5) and (4.7).

4.9. Theorem. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M̄ such that ∇̄XV ∈ Γ(TM) then the induced connection
∇ is a metric connection on M .

Proof: Using the Theorem (4.5), we have αL = 0. Since ∇̄XV ∈ Γ(TM) therefore
this implies that hl(X,V ) = 0, hence using (4.2) we obtain

(4.8) hl = 0.

Thus using the Theorem 2.2 in [6] at page 159, the induced connection ∇ becomes a
metric connection on M .

4.10. Theorem. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M̄ such that ∇̄XV ∈ Γ(TM) then M is totally geodesic
GCR-lightlike submanifold.

Proof: Using the Theorem (4.7), we have αS = 0. Since ∇̄XV ∈ Γ(TM) therefore
this implies that hs(X,V ) = 0, hence using (4.3), we obtain

(4.9) hs = 0.

Thus using (4.8) and (4.9), the assertion follows.
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