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Non existence of totally contact umbilical
G C R-lightlike submanifolds of indefinite Kenmotsu
manifolds
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Abstract

In present paper, after finding the conditions for the integrability of
various distributions of a GC R-lightlike submanifold of indefinite Ken-
motsu manifolds, we prove that there do not exist totally contact um-
bilical GC R-lightlike submanifolds of indefinite Kenmotsu manifolds
other than totally contact geodesic GC R-lightlike submanifolds and
moreover it is a totally geodesic GC R-lightlike submanifold.
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1. Introduction

Theory of lightlike submanifolds of semi-Riemannian manifolds is one of the most im-
portant topic of differential geometry since in this theory, the normal vector bundle in-
tersects with the tangent bundle, contrary to classical theory of submanifolds. Therefore
the theory of lightlike (degenerate) submanifolds becomes more interesting and remark-
ably different from the theory of non-degenerate submanifolds. In the development of
the theory of lightlike submanifolds, Duggal and Bejancu [6] played a very crucial role.
Since there is a significant use of the contact geometry in differential equations, optics,
and phase spaces of a dynamical system (see Arnold [1], Maclane [11], Nazaikinskii et
al. [12]). Therefore Duggal and Sahin [7] introduced contact C R-lightlike submanifolds
and contact SC R-lightlike submanifolds of indefinite Sasakian manifolds. But there does
not exist any inclusion relation between invariant and screen real submanifolds so a new
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class of submanifolds called, Generalized Cauchy-Riemann GC R-lightlike submanifolds
of indefinite Sasakian manifolds (which is an umbrella of invariant, screen real, contact
CR-lightlike submanifolds) was derived by Duggal and Sahin [8]. Recently Gupta and
Sharfuddin [10], defined GC R-lightlike submanifold of indefinite Kenmotsu manifolds.

In present paper we further elaborate the theory of GC R-lightlike submanifold of in-
definite Kenmotsu manifolds. In section 3, we find the conditions for the integrability of
various distributions and for the distributions to define totally geodesic foliation in sub-
manifold. In section 4, we study totally contact umbilical GC R-lightlike submanifolds
and prove that there do not exist totally contact umbilical GC R-lightlike submanifolds
of indefinite Kenmotsu manifolds other than totally contact geodesic GC R-lightlike sub-
manifolds and moreover it is a totally geodesic GC R-lightlike submanifold.

2. Lightlike Submanifolds

We recall notations and fundamental equations for lightlike submanifolds, which are
due to the book [6] by Duggal and Bejancu.

Let (M, g) be a real (m +n)-dimensional semi-Riemannian manifold of constant index
g such that myn > 1,1 < q¢<m+n—1and (M,g) be an m-dimensional submanifold
of M and g the induced metric of § on M. If g is degenerate on the tangent bundle T'M
of M then M is called a lightlike submanifold of M. For a degenerate metric g on M

TM* =U{u € Tu M : g(u,v) = 0,Yv € T, M,z € M},

is a degenerate n-dimensional subspace of T, M. Thus, both T, M and T, M+ are de-
generate orthogonal subspaces but no longer complementary. In this case, there exists
a subspace Radl,M = T, M NT, M 1 which is known as radical (null) subspace. If the
mapping
RadTM : x € M — RadT,M,

defines a smooth distribution on M of rank 7 > 0 then the submanifold M of M is called
an r-lightlike submanifold and RadT M is called the radical distribution on M.

Let S(T'M) be a screen distribution which is a semi-Riemannian complementary dis-
tribution of Rad(T'M) in T M, that is,

(2.1) TM = RadTM LS(TM),

and S(T'M™) is a complementary vector subbundle to RadTM in TM>. Let tr(TM)
and ltr(T'M) be complementary (but not orthogonal) vector bundles to TM in TM |
and to RadTM in S(TM*)* respectively. Then we have

(2.2)  tr(TM) = ltr(TM)LS(TM™").

(2.3)  TM |y=TM & tr(TM) = (RadTM @ ltr(TM))LS(TM)LS(TM™").

Let u be a local coordinate neighborhood of M and consider the local quasi-orthonormal
fields of frames of M along M, on was {£1, ..., &, Wit oo, Wi, N1y ooy Ney Xote1, ooy X 3,
where {{1,...,&r}, {N1, ..., N;-} are local lightlike bases of I'(RadT'M |.), T'(itr(TM) |.)
and {W,t1, ..., Wp }, {X;41, ..., Xm} are local orthonormal bases of I'(S(TM™) |,) and
D(S(TM) |.) respectively. For this quasi-orthonormal fields of frames, we have

2.1. Theorem. ([6]). Let (M,g,S(TM),S(TMJ‘)) be an r-lightlike submanifold of a
semi-Riemannian manifold (M,g). Then there exists a complementary vector bundle
ltr(TM) of RadTM in S(TM*)* and a basis of T(ltr(TM) |u) consisting of smooth
section {N;} of S(TM*)* |u, where u is a coordinate neighborhood of M, such that
(24)  g(Ni,&) =i,  g(Ni,N;) =0, forany i,j€{1,2,.,r},

where {&1,...,&} is a lightlike basis of I'(Rad(TM)).



Let V be the Levi-Civita connection on M. Then according to the decomposition
(2.3), the Gauss and Weingarten formulae are given by

(25) VxY =VxY+h(X,Y), V X,YeI(TM),

(2.6) VxU=—-ApuX +VxU, Y X eD(TM),U e (tr(TM)),

where {VxY, Ay X} and {h(X,Y),VxU?} belongs to T(T'M) and T'(tr(TM)), respec-
tively. Here V is a torsion-free linear connection on M, h is a symmetric bilinear form
on I'(T'M) which is called the second fundamental form, Ay is linear a operator on M,
known as a shape operator.

Considering the projection morphisms L and S of tr(T M) on ltr(TM) and S(TM™),
respectively then using (2.2), the Gauss and Weingarten formulae become

(27)  VxY =VxY +h'(X,Y) +h°(X,Y),

(2.8)  VxU=-AyX + DXU + DXU,
where we put h'(X,Y) = L(h(X,Y)),h*(X,Y) = S(h(X,Y)), DxU = L(VxU), D%U =
S(VxU).

As h! and h® are T'(Itr(TM))-valued and I'(S(TM*))-valued respectively, therefore
they are called as the lightlike second fundamental form and the screen second funda-
mental form on M. In particular, we have

(2.9) VxN =—AyX + V5N + D*(X,N),

(2.10) VxW = —AwX + VW + D' (X, W),

where X € I'(TM), N € T(ltr(T'M)) and W € T'(S(TM™)). By using (2.2)-(2.3) and
(2.7)-(2.10), we obtain

(2.11)  g(h*(X,Y), W) +g(¥, D' (X, W)) = g(Aw X, Y),

for any X, Y € I(TM) and W € T'(S(TM™)).
Let P be the projection morphism of TM on S(TM). Then using (2.1), we can induce
some new geometric objects on the screen distribution S(TM) on M as

(2.12) VxPY = ViPY +h*(X,Y),

(2.13) Vx&=—-A{X + V¥,

for any X,Y € I'(T'M) and £ € I'(RadT M), where {VX PY, A{ X} and {h*(X,Y), V¥¢}
belong to I'(S(TM)) and I'(RadT'M), respectively. V* and V*' are linear connec-
tions on complementary distributions S(T'M) and RadT M, respectively. h* and A*
are I'(RadT M)-valued and I'(S(TM))-valued bilinear forms and called as the second
fundamental forms of distributions S(T'M) and RadT M, respectively.

An odd-dimensional semi-Riemannian manifold M is said to be an indefinite almost
contact metric manifold if there exist structure tensors (¢,V,n,g), where ¢ is a (1,1)
tensor field, V' is a vector field called structure vector field, n is a 1-form and g is the
semi-Riemannian metric on M satisfying

(215) *X =-X+n(X)V, nop=0, ¢V =0, nV)=1,
for X,Y € T(TM), where TM denotes the Lie algebra of vector fields on M.

An indefinite almost contact metric manifold M is called an indefinite Kenmotsu
manifold if (see [4]),

(216) (Vxd)Y = 56X, VIV +n(Y)6X, and VxV = —X + n(X)V,
for any X,Y € I'(T M), where V denote the Levi-Civita connection on M.



3. Genralized Cauchy-Riemann (GCR)-Lightlike Submanifold

Calin[5], proved that if the characteristic vector field V' is tangent to (M, g, S(TM))
then it belongs to S(T'M). We assume characteristic vector V is tangent to M throughout
this paper.

3.1. Definition. Let (M, g, S(TM), S(TM*1)) be a real lightlike submanifold of an indef-
inite Kenmotsu manifold (M, g) then M is called a generalized Cauchy-Riemann (GCR)-
lightlike submanifold if the following conditions are satisfied

(A) There exist two subbundles Dy and D2 of Rad(TM) such that
(31)  Rad(TM) =Dy ® Dy, $(D1)=D1, ¢(D2)C S(TM).

(B) There exist two subbundles Dy and D of S(T'M) such that
(3.2)  S(T'M)={¢D:® D}LDoLlV, ¢(D)=LLS.

where Dy is invariant non degenerate distribution on M, {V'} is one dimensional distribu-
tion spanned by V and L, S are vector subbundles of itr(TM) and S(T M), respectively.

Then tangent bundle TM of M is decomposed as
33) TM={D®D®{V}}, D= Rad(TM)® Do ¢(D2).

A GCR-lightlike submanifold of indefinite Kenmotsu manifold is said to be proper if

Do # {0}, D1 # {0}, D # {0} and L # {0}.
Let @Q, P1, P> be the projection morphism on D, ¢L, ¢S respectively, therefore any
X € I'(TM) can be written as

(34) X=QX+V+PX +PX.

Applying ¢ to (3.4), we obtain

(35)  6X = fX +wP X +wPX,

where fX € I'(D), wP1 X € T'(L) and wP>,X € I'(S), or, we can write (3.5), as
(3.6)  ¢X = fX +wX,

where fX and wX are the tangential and transversal components of ¢.X, respectively.
Similarly,

(3.7) ¢U=BU+CU, U eT(tr(TM)),

where BU and CU are the sections of TM and tr(T M), respectively.
Differentiating (3.5) and using (2.7)-(2.10) and (3.7), we have

(3.8)  D'X,wPY)=—-VkwPY + wPIVxY — b (X, fY) 4+ Ch (X,Y) +n(Y)wP: X,
(3.9) D*(X,wPY) = —ViwPY +wP,VxY —h*(X, fY) + Ch*(X,Y) +n(Y)wP: X,

for all X,Y € I'(TM). By using Kenmotsu property of ¥V with (2.7) and (2.8), we have
the following lemmas.

3.2. Lemma. Let M be a GC R-lightlike submanifold of an indefinite Kenmotsu manifold
M then we have

(3.10) (Vxf)Y = Auy X + Bh(X,Y) — g(¢X, V)V +n(Y) fX,
and

(3.11) (Vxw)Y = Ch(X,Y) — h(X, fY) + n(Y)wX,

where X, Y € I'(T'M) and

(3.12) (Vxf)Y =VxfY — fVxY,

(3.13) (Vxw)Y = VkwY —wVxY.



3.3. Lemma. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold
M then we have

(3.14) (VxB)U = AcuX — fAuX — g(¢X,U)V,
and
(3.15) (V5C)U = —wAu X — h(X, BU),
where X € T'(TM) and U € I'(tr(T'M)) and
(3.16) (VxB)U = VxBU — BV&U,
(3.17) (V5C)U = V5CU — CVkU.
3.4. Theorem. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu man-
ifold M then
(A) The distribution D @ {V'} is integrable, if and only if
(3.18) Ah(X,fY)=h(Y,fX), V X, Yel(Da{V}).
(B) The distribution D is integrable, if and only if
(3.19) A¢ZU:A¢UZ, A Z,UGF(D).

Proof: Using (3.8) and (3.9), we have wVxY = h(X, fY) — Ch(X,Y), for any
X,Y € I'(D @ {V}. Here replacing X by Y and subtracting the resulting equation from
this equation, we get w[X,Y] = h(X, fY) — h(Y, fX), which proves (A).

Next from (3.10) and (3.12), we have —f(VzU) = AwvZ + Bh(Z,U), for all Z,U €

T'(D). Then, similarly as above, we obtain f[Z,U] = AyzU — AguZ, which completes
the proof of (B).

3.5. Theorem. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu man-
ifold M. Then the distribution D & {V'} defines a totally geodesic foliation in M, if and
only if, Bh(X,¢Y) =0, for any X, Y € D {V}.

Proof: Since D = ¢(LLS), therefore D @ {V'} defines a totally geodesic foliation in
M, if and only if
for any X, Y e (D @ {V}), £ € I'(D2) and W € I'(S).
Using (2.7) and (2.16), we have
(3:20)  g(VxY,€) = —g(Vx oY, €) = —g(h'(X, fY),¢),

(3:21) g(VxY,¢W) = —g(Vx oY, W) = —g(h° (X, fY),W).
Hence, from (3.20) and (3.21) the assertion follows.

3.6. Theorem. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu man-
ifold M. Then the distribution D does not define a totally geodesic foliation in M.

Proof: We know that D defines a totally geodesic foliation in M, if and only if
9(VxY,N) =g(VxY,pN1) = g(VxY,V) = g(VxY,90Z) =0,

for X, Y € I'(D) , N € T(ltr(TM)) , Z € I'(Do) and N1 € T'(L). But using (2.5) and
(2.16), we obtain g(VxY,V) = g(VxY,V) = —g(Y,VxV) = —g(Y, X), which may be
non zero because ¢S C D is non degenrate. Hence the assertion follows.



3.7. Theorem. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu man-
ifold M. Then the induced connection V is metric connection, if and only if

AjeX — Viog € T(@DaLDy), for €€ T(Dy),
Vo€ + h" (X, ¢€) € [(¢D2LD1), for € €T (D),
h(X,¢€) € T(LLS)" and A{X € T(DLDoLl¢Ds),
for § € T'(Rad(TM)) and X € T(TM).
Proof: For any X € I'(T'M) and £ € T'Rad(T M), using (2.16), we have
PVxE = Vx o€+ g(¢X, )V,
applying ¢ to both sides of above equation and then using (2.13) and (2.15), we obtain
(322) Vx&+h(X,§) = —d(Vxe + h(X, $€)) + g(Ac X, V)V.
Let £ € I'(D1) then again using (2.13) in (3.22), we obtain
Vx€+h(X,€) = —p(—Aje X + VX 6€) — Bh(X, ¢€) — Ch(X, ¢€) + g(A: X, V)V.
Equating tangential components of above equation both sides, we get
Vx& = fALeX — fVX¢E — Bh(X, ¢€) + g(A: X, V)V,
therefore Vx¢ € I'(RadT'M), if and only if, Bh(X,¢f) = 0, fALX — fVX®E €
I'(RadT'M) and g(AfX,V) = 0 or, if and only if,
(3.23)  h(X,¢f) € T(LLS)", AjX — Vot € T(¢pDaLDy),
and
(3.24)  A{X € T(DL1DoLpDs).

Similarly, let £ € I'(D2) then using (2.12) in (3.22) and then compare the tangential
components of the resulting equation, we obtain

Vx€&=—fVx¢€ — fh"(X,¢€) — Bh(X, ¢€) + (AcX, V)V,
therefore Vx¢& € T'(RadT'M), if and only if, Bh(X,¢¢) = 0, fVXdE + fh*(X,PE) €
I'(RadT M) and g(A;X,V) = 0 or, if and only if,
(325) h(X,0¢) € D(LLS)", Vg€ +h*(X,€) € [(¢D21Dy),
and
(3.26) A{X € T(DLDoLlgDs).
Hence from (3.23) to (3.26), the assertion follows.

4. Totally Contact Umbilical GC R-Lightlike Submanifolds

4.1. Definition. ([13]). If the second fundamental form A of a submanifold tangent to
characteristic vector field V, of a Sasakian manifold M is of the form
(4.1 (X, Y) = {g(X,Y) =n(X)n(Y)} e +n(X)h(Y, V) +n(Y)h(X, V),

for any X,Y € I'(TM), where « is a vector field transversal to M, then M is called a
totally contact umbilical submanifold. M is called a totally contact geodesic submanifold
if &« = 0 and a totally geodesic submanifold if A = 0.

The above definition also holds for a lightlike submanifold M. For a totally contact
umbilical lightlike submanifold M, we have

(42)  A(X,Y) = {g(X,Y) = n(X)n(Y)}ar + n(X)R (Y, V) +n(Y)h' (X, V),
(4.3)  RI(X,)Y) ={g(X,Y) = n(X)n(Y)}as + n(X)h* (Y, V) + n(Y)h* (X, V),



where ar, € D(Itr(TM)) and as € T(S(TM™)).

4.2. Lemma. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold
M then VxX € (D & {V}), for any X € T'(D).

Proof: Since D = ¢(LLS) therefore VxX € I'(D @ {V'}), if and only if,
9(Vx X, ¢8) = g(Vx X, oW) =0,

for any £ € T'(D2) and W € I'(S). Since M is totally contact umbilical GC R-lightlike
submanifold therefore for any X € I'(D), using (2.5), (2.7), (2.16) and (4.2), we obtain

g(VXX, ¢£) = g(?XX, ¢£) = _g(?X(bX - (?X(]S)X,{) = _g(hl(Xv ¢X)7§)

(4.4) =—g(X, ¢X)g(ar,§) = 0.
Also

g(VxX,oW) =g(VxX,¢oW)=—g(VxoX — (Vx¢)X,W) = —g(h*(X,¢X), W)
(4.5) = —g(X,¢X)g(as,§) = 0.

Hence using (4.4) and (4.5), the assertion follows.

4.3. Theorem. Let M be a totally contact umbilical GC R-lightlike submanifold of an
indefinite Kenmotsu manifold M then o € T'(LLS).

Proof: Using (3.9), for any X € I'(Dy), we obtain h°(X, fX) = wP,Vx X+Ch*(X, X),
then using (4.3) we get g(X, pX)as = wPoVx X +g(X, X)Cas. By virtue of the Lemma
(4.2), we get g(X, X)Cas = 0, then the non degeneracy of the distribution Dg implies
that Cas = 0. Hence as € T'(S).

Similarly by using (3.8) and (4.2) we can prove ar € I'(L). Hence o € T'(LLS).

4.4. Remark. Since a € TI'(LLS) therefore for any X € Do with (4.1), we have
h(X,X) = g(X, X)a, this implies that h(X,X) € I'(LLS).
4.5. Theorem. Let M be a totally contact umbilical GC R-lightlike submanifold of an

indefinite Kenmotsu manifold M then ar, = 0.

Proof: Since M is a totally contact umbilical GC R-lightlike submanifold then, by
direct calculations, using (2.7), (2.8) and (2.16) and then taking tangential parts of the
resulting equation, we obtain

ApzZ + fN 27 + Bh(Z,Z) + Bh*(Z,Z) = 0,
where Z € ¢(S). Hence for £ € I'(D2), we obtain

9(Asz2,68) + g(h'(Z, 2),€) =0,
then using (2.11), we get G(h*(Z, #¢), 9Z) +gG(h'(Z, Z),€) = 0. Therefore using (4.2) and
(4.3), we obtaing(Z, Z)g(ar,£) = 0, then the non degeneracy of ¢S implies that az, = 0,
which completes the proof.

4.6. Lemma. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M then Vx¢X = ¢Vx X, for any X € T'(Dy).

Proof: For any X € I'(Dy) using (3.11) and (3.13), we have wVxX = h(X, fX) —
Ch(X, X). Since M be a totally contact umbilical therefore using (4.1), we have wVx X =
9(X,6X)a — Ch(X, X), then using remark (4.4), we get wVxX = 0. Hence VxX €
(D). Let Y € I'(Dy) then using(2.14) to (2.16), we obtain

9(VxdXY) = g(VxdX,Y) = g(¢VxX,Y) = —g(Vx X, 9Y) = g(¢Vx X, Y),

this implies g(Vx¢X — ¢VxX,Y) = 0, then the non degeneracy of the distribution Do
gives the result.



4.7. Theorem. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M then as = 0.

Proof: Let W € I'(S(TM™)) and X € I'(Dy) the using (2.16), (4.1) and the Lemma
(4.6), we have
9(eVxX,0W) =g(VxoX,¢W)

(4.6) =
Also using (4.3), we have
gV X, oW) = g(VxX, W) —n(W)n(éVxX)
VxX +h° (X, X)+h(X,X), W)
VxX, W)+ g(h*(X, X), W)
(4.7) =g(X, X)g(as, W).
Therefore using (4.6) and (4.7), we get g(X, X)g(as, W) = 0, then the non degeneracy
of Dy and S(TM™) implies that as = 0.

4.8. Theorem. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M then M is a totally contact geodesic GC R-lightlike sub-
manifold.

Proof: The result follows from the Theorems (4.5) and (4.7).

4.9. Theorem. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M such that VxV € T'(T'M) then the induced connection
V is a metric connection on M.

Proof: Using the Theorem (4.5), we have az = 0. Since VxV € I'(T'M) therefore
this implies that h'(X,V) = 0, hence using (4.2) we obtain
(4.8) Kl =o.
Thus using the Theorem 2.2 in [6] at page 159, the induced connection V becomes a

metric connection on M.

4.10. Theorem. Let M be a totally contact umbilical GCR-lightlike submanifold of an
indefinite Kenmotsu manifold M such that VxV € I'(TM) then M is totally geodesic
GC R-lightlike submanifold.

Proof: Using the Theorem (4.7), we have as = 0. Since VxV € T'(T' M) therefore
this implies that h°(X, V) = 0, hence using (4.3), we obtain
(4.9)  h*=0.
Thus using (4.8) and (4.9), the assertion follows.
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