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A new efficient multi-parametric homotopy approach for
two-dimensional Fredholm integral equations of the

second kind

Y. Khan∗ and M. Fardi †

Abstract
In this paper, a new multi-parametric homotopy approach is proposed to find
the approximate solution of linear and non-linear two-dimensional Fredholm
integral equations of the second kind. In this framework, convergence of the
proposed approach for these types of equations is investigated. This homo-
topy contain two auxiliary parameters that provide a simple way of controlling
the convergence region of series solution. The results of present method are
compared with Adomian decomposition method (ADM) results which provide
confirmation for the validity of proposed approach. Two examples are presented
to illustrate the accuracy and effectiveness of the proposed approach.
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1. Introduction
Homotopy analysis method (HAM) has been presented by Liao [1, 2] to obtain the analytical

solutions for various nonlinear problems. There are many eminent researchers that deal with the
Homotopy analysis method such as, Alomari et al. [3,4] applied the HAM to study the delay differ-
ential equations and the hyperchaotic Chen system, Turkyilmazoglu [5] constructed the convergent
series solutions of strongly nonlinear problems via HAM, Gupta [6] implemented the HAM to
obtain the approximate analytical solution of nonlinear fractional diffusion equation, Abbasbandy
applied the uni-parametric homotopy method to solve the Fredholm integral equations [7], Marinca
and Herisanu [8, 9] proposed the OHAM for fluid mechanics problem and nonlinear differential
equations. Recently Turkyilmazoglu [10] constructed the explicit analytic solution of the Thomas-
Fermi equation thorough a new kind of homotopy analysis technique. He used new base functions
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and auxiliary linear operator to form a better homotopy method.The basic motivation of the present
study is proposed a new multi-parametric homotopy approach to develop an approximate solution
for the linear and nonlinear two-dimensional Fredholm integral equations. The present method is
much easier to implement as compared with the decomposition method where huge complexities are
involved. Moreover, we prove the convergence of the solution for two-dimensional Fredholm inte-
gral equations. It is shown that the approximate solutions given by the proposed approach are more
accurate than the numerical solution given by the traditional homotopy analysis method (THAM)
and the Adomian decomposition method (ADM) [11, 12].

2. Description of approach
To illustrate the procedure, consider the following second kind of two-dimensional Fredholm

integral equation:

F (u(t, x)) = u(t, x)− f(t, x)−
∫ b

a

∫ d

c

K(t, s, x, ξ)N(u(s, ξ))dξds, (t, x) ∈ D,(2.1)

where f(t, x) andK(t, s, x, ξ) are analytical functions onD = L2([a, b]× [c, d]) andE = D×D,
respectively.
We choose u0(t, x) = f(t, x) as initial approximation guess for simplicity, in order to obtain
convergent series solutions to two-dimensional Fredholm integral equation (2.1), we first construct
the zeroth order deformation equation

(1−A(q;$1))[ϕ(t, x; q) − u0(t, x)] = B(q; ~)[ϕ(t, x; q)− f(t, x)

−
∫ b

a

∫ d

c

K(t, s, x, ξ)N(ϕ(s, ξ; q))dξds],(2.2)

where

(2.3) A(q;$) = (1−$)

∞∑
j=1

$j−1qj , |$| < 1, B(q; ~) = q~, ~ 6= 0.

Due to Taylor’s theorem, we can write

(2.4) ϕ(t, x; q) = u0(t, x) +

∞∑
j=1

uj(t, x)q
j ,

where

(2.5) uj(t, x) =
1

j!

∂jϕ(t, x; q)

∂qj
∣∣
q=0

.

The convergence of series (2.4) depends upon ~ and $. Assume that ~ and $ are properly chosen
so that the power series of (2.4) converges at q = 1, then we have under these assumption the
solution series

(2.6) u(t, x) = u0(t, x) +

∞∑
j=1

uj(t, x).

By differentiating (2.2) m times with respect to q, then dividing the equation by m! and setting
q = 0, the mth-order deformation equation is formulated as follows

um(t, x)−
m−1∑
k=1

(1−$)$m−k−1uk(t, x) = ~Hm(u0(t, x), ..., um−1(t, x)),(2.7)



where

Hm = um−1(t, x) − (1− χm)f(t, x)

−
∫ b

a

∫ d

c

K(t, s, x, ξ)
∂m−1N(ϕ(s, ξ; q))

(m− 1)!∂qm−1
|q=0 dξds,(2.8)

(2.9) um(t, x) =
∂mϕ(t, x; q)

m!∂qm
|q=0,

and

(2.10) χm =

{
0, m ≤ 1;
1, m > 1.

The mth-order deformation equations (2.7) are linear in principle. The code is developed by using
symbolic computation software MAPLE. Then, the Nth-order approximate solution of (2.7) can be
written as

(2.11) UN (t, x) = u0(t, x) +

N∑
j=1

uj(t, x).

If $ = 0 the mth-order deformation equation defined by (2.7) becomes

u1(t, x) = ~[u0(t, x)− f(t, x)−
∫ b

a

∫ d

c

K(t, s, x, ξ)N(u0(s, ξ; q))dξds],(2.12)

and

um(t, x)− um−1(t, x) = ~[um−1(t, x)−
∫ b

a

∫ d

c

K(t, s, x, ξ)
∂m−1N(ϕ(s, ξ; q))

(m− 1)!∂qm−1
|q=0 dξds],(2.13)

Then, we can derive the following remarks instantly.

Remark1: The value $ = 0 reduces the present approach to the traditional HAM.

Remark2: The values ~ = −1 and $ = 0 reduce the present approach to the ADM.

2.1. Convergence theorems.

Theorem 1. If the solution series

u(t, x) = u0(t, x) +

∞∑
j=1

uj(t, x),(2.14)

is convergent, then we have the following statement
∞∑

m=1

Hm = 0.(2.15)

Proof.
Since the solution series

u(t, x) = u0(t, x) +

∞∑
j=1

uj(t, x),(2.16)

is convergent, we have

(2.17) lim
m→∞

um(t, x) = 0.



Using the the left-hand side of (2.6) satisfies

∞∑
m=1

[
um(t, x) −

m−1∑
k=1

(1−$)$m−k−1uk(t, x)
]

= u1(t, x)

+ u2(t, x)− (1−$)u1(t, x)

+ u3(t, x)− (1−$)$u1(t, x)− (1−$)u2(t, x)

...

= (1− (1−$)

∞∑
j=0

$j)

∞∑
j=0

uj(t, x) = 0.(2.18)

Then, from (2.7) and (2.18) we have
∞∑

m=1

Hm = 0.(2.19)

Theorem 2. Assume that the operator N [u(t, x)] be contraction and the solution series

u(t, x) = u0(t, x) +

∞∑
j=1

uj(t, x),(2.20)

is convergent, it must be the solution of two-dimensional Fredholm integral equation.

Proof.
Let

ε(t, x; q) = ϕ(t, x; q)− f(t, x)−
∫ b

a

∫ d

c

K(t, s, x, ξ)N(ϕ(s, ξ; q))dξds.(2.21)

Using Taylor’s series around q = 0 for ε(t, x; 1), we have

ε(t, x; 1) =

∞∑
m=0

1

m!

∂mϕ(t, x; q)

∂qm
|q=0 − f(t, x)

−
∫ b

a

∫ d

c

K(t, s, x, ξ)

∞∑
m=0

1

m!

∂mN(ϕ(s, ξ; q))

∂qm
|q=0dξds.(2.22)

If the solution series

u(t, x) = u0(t, x) +

∞∑
j=1

uj(t, x),(2.23)

is convergent, then the series
∞∑

m=0

1

m!

∂mN(ϕ(t, x; q))

∂qm
|q=0,(2.24)

will converge to N [u(t, x)] (see [12]).
Now, by using theorem 1 we have

ε(t, x; 1) = u(t, x)− f(t, x)−
∫ b

a

∫ d

c

K(t, s, x, ξ)N(u(s, ξ))dξds = 0.(2.25)

This completes the proof.



3. Main results
The Nth-order approximation of the solution u(t, x) can be expressed as

(3.1) UN (t, x) = u0(t, x) +

N∑
j=1

uj(t, x),

which is mathematically dependent upon the convergence-control parameters ~ and$. In our work
for optimal values of ~ and $, we use a technique that has been shown to produce a fast converging
approximation. In principle, the technique seeks to minimize the exact residual error (ERE) of (2.1)
at the Nth-order approximation. The ERE is given by

ÊM (~, $) =

∫ b

a

∫ d

c

(F (UN (s, ξ)))2dξds,(3.2)

In practice, however, the evaluation of ÊM (~, $) tends to be time-consuming. A simpler alternative
consists of calculating the averaged residual error (ARE). We use here the ARE defined by

En
M (~, $) =

(b− a)(d− c)
n2

n∑
j=0

n∑
i=0

(F (UN (ti, xj)))
2,(3.3)

where

ti =
(b− a)i

n
, i = 1, 2, ..., n, xj =

(d− c)j
n

, j = 1, 2, ..., n.(3.4)

At the Nth-order of approximation, the ARE contain two unknown convergence-control parameters,
whose "optimal" values are determined by solving the nonlinear algebraic equations

(3.5)
∂En

M

∂~
= 0,

∂En
M

∂$
= 0.

In this section, two different examples of two-dimensional integral equations are employed to illus-
trate the validity of present approach which is described in Section 2. The convergence, accuracy
and efficiency of this approach are investigated by comparing it with the THAM and the ADM.

3.1. Example 1. Consider the following nonlinear two-dimensional integral equation

(3.6) u(t, x) = x sin(πt)− x

6
+

∫ 1

0

∫ 1

0

(x+ cos(πs))u2(s, ξ)dξds,

with the exact solution

(3.7) u(t, x) = x sin(πt).

For ~ 6= 0 and$ = 0, our approach gives the "optimal" value of the convergence-control parameter
~ 6= 0 by solving the equation dE20

4
dh

= 0, which leads to ~ = −1.456 with the corresponding
minimum ARE E20

4 = 5.483E − 7. For ~ 6= 0 and $ 6= 0, we obtain the "optimal" values of
~ = −1.521 and $ = −0.148 by solving the algebraic equations dE20

4
dh

= 0 and dE20
4

d$
= 0, which

gives with the corresponding minimum ARE E20
4 = 4.458E − 22.

For comparison the solution series given by the present approach with the exact solution, we report
the absolute error which is defined by

|eN (t, x)| = |u(t, x)− UN (t, x)|.

In Table 1, we compared the present approach with the ADM. The approximate solutions given by
the present approach are more accurate than the solution given by the ADM, as shown in Table 1.



Table 1. Absolute errors of the proposed approach and ADM (example 1).

convergence-control parameters (~, $)

t = x (−1.521,−0.148) (−1.456, 0) ADM
with seven terms with seven terms with seven terms

1 1.531E − 4 3.996E − 4 2.503E − 3
1
2

7.651E − 5 1.998E − 4 1.252E − 3
1
22

3.826E − 5 9.999E − 5 6.258E − 4
1
23

1.913E − 5 4.995E − 5 3.129E − 4
1
24

9.567E − 6 2.497E − 5 1.565E − 4
1
25

4.783E − 6 1.249E − 5 7.823E − 5
1
26

2.392E − 6 6.244E − 6 3.911E − 5

Table 2. Absolute errors of the proposed approach and ADM (example 2).

convergence-control parameters (~, $)

t = x (−0.756,−0.755) (−1.581, 0) ADM
with nine terms with nine terms with nine terms

1 3.712E − 6 1.109E − 3 1.699E − 2
1
2

2.520E − 6 9.600E − 4 1.161E − 2
1
22

1.929E − 6 8.953E − 4 8.914E − 3
1
23

1.625E − 6 8.629E − 4 7.567E − 3
1
24

1.481E − 6 8.467E − 4 6.894E − 3
1
25

1.401E − 6 8.386E − 4 6.557E − 3
1
26

1.366E − 6 8.345E − 4 6.389E − 3

3.2. Example 2. Consider the following linear two-dimensional integral equation

(3.8) u(t, x) = xe−t + (
e−2

4
− 1

4
)x+

e−2

6
− 1

6
+

∫ 1

0

∫ 1

0

(x+ ξ)e−(2t−s)u(s, ξ)dξds,

with the exact solution

(3.9) u(t, x) = xe−t.

For ~ 6= 0 and $ = 0, the present approach reduces to traditional HAM and E20
8 has the minimum

1.393E − 7 at the "optimal" value ~ = −1.581. For ~ 6= 0 and $ 6= 0, the optimal convergence
occurs at ~ = −1.155 and $ = −0.306 and has a ARE of E20

8 = 9.892E − 22.
The approximate solutions given by the present approach are more accurate than the solution given
by the ADM and the THAM, as shown in Table 2.

4. Concluding remarks
In this paper, we have proposed a method for solving two-dimensional Fredholm integral equa-

tions. The results have been compared with the THAM and ADM solutions to show the efficiency
of our technique. By introducing this method for two-dimensional Fredholm integral equations, the
following observations have been made:
(i) This approach contains two convergence-control parameters which provide us a simple way to
adjust and control the convergence region and rate of the obtained series solution.
(ii) The obtained results elucidate the very fast convergence of present approach, which does not
need higher-order of approximation.
(iii) All the given examples reveal that the multi-parametric homotopy yields a very effective and
convenient approach to the approximate solutions of two-dimensional Fredholm integral equations.



(iv) The ADM cannot give better results than the present approach.
(v) In fact, the THAM and ADM are special cases of present method.
In conclusion, a new multi-parametric homotopy approach may be considered as a nice refinement
in existing numerical techniques.
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