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Restricted hom-Lie algebras
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Abstract

The paper studies the structure of restricted hom-Lie algebras. More
specifically speaking, we first give the equivalent definition of restricted
hom-Lie algebras. Second, we obtain some properties of p-mappings
and restrictable hom-Lie algebras. Finally, the cohomology of restricted
hom-Lie algebras is researched.
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1. Introduction

The concept of a restricted Lie algebra is attributable to N. Jacobson in 1943. It is
well known that the Lie algebras associated with algebraic groups over a field of charac-
teristic p are restricted Lie algebras [14]. Now, restricted theories attract more and more
attentions. For example: restricted Lie superalgebras|6], restricted Lie color algebras[2],
restricted Leibniz algebras[4], restricted Lie triple systems[8] and restricted Lie algebras
[5] were studied, respectively.

However, The notion of hom-Lie algebras was introduced by Hartwig, Larsson and
Silvestrov in [7] as part of a study of deformations of the Witt and the Virasoro algebras.
In a hom-Lie algebra, the Jacobi identity is twisted by a linear map, called the hom-Jacobi
identity. Some g-deformations of the Witt and the Virasoro algebras have the structure
of a hom-Lie algebra [7]. Because of close relation to discrete and deformed vector
fields and differential calculus [7, 9, 10|, hom-Lie algebras are widely studied recently
[1, 3, 11, 12, 16, 17, 18]. As a natural generalization of a restricted Lie algebra, it seems
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desirable to investigate the possibility of establishing a parallel theory for restricted
hom-Lie algebras. As is well known, restricted Lie algebras play predominant roles in
the theories of modular Lie algebras [15]. Analogously, the study of restricted hom-Lie
algebras will play an important role in the classification of the finite-dimensional modular
simple hom-Lie algebras.

The paper study the structure of restricted hom-Lie algebras. Let us briefly describe
the content and setup of the present article. In Sec. 2, the equivalent definition of
restricted hom-Lie algebras is given. In Sec. 3, we obtain some properties of p-mappings
and restrictable hom-Lie algebras. In Sec. 4, we research the cohomology of restricted
hom-Lie algebras.

In the paper, F is a field of prime characteristic. Let L denote a finite-dimensional
restricted hom-Lie algebra over F.

1.1. Definition. [14] Let L be a Lie algebra over F. A mapping [p] : L — L,a — o) is
called a p-mapping, if

(1) ada?! = (ada)?, Va € L,

(2) (ka)P! = kPalP! Ya € L,k €T,

p—1
(3) (a+ )Pl = glP! 4 plPl 4 3 si(a, b),
i=1

P .
where (ad(a® X +b®1))? " Ha®1) = 3. isi(a,b) ® X~ in L @ F[X],Va,b € L, The
i=1

pair (L, [p]) is referred to as a restricted Lie algebra.

1.2. Definition. [13] (1) A hom-Lie algebra is a triple (L, [-, -], &) consisting of a linear
space L, a skew-symmetric bilinear map [-,-]z : A2L — L and a linear map o : L — L
satisfying the following hom-Jacobi identity:

[a(z), [ZJ, Z]L]L + [oz(y), [Z,Z‘]L]L + [oz(z), [xv y]L]L =0

for all z,y,z € L;

(2) A hom-Lie algebra is called a multiplicative hom-Lie algebra if « is an algebraic
morphism, i.e., for any z,y € L, we have a([z,y]r) = [a(z), a(y)]L;

(3) A sub-vector space n C L is called a hom-Lie subalgebra of (L, [+, ‘|1, «) if a(n) C n
and 7 is closed under the bracket operation [-, -]z, i.e., [z,y]r € n for all z,y € n;

(4) A sub-vector space n C L is called a hom-Lie ideal of (L, [-, |1, ) if a(n) C n and
[z,y]r €nforall z €n,y € L.

2. The equivalent definition of restricted hom-Lie algebras

Let (L, [, ‘], @) be a multiplicative hom-Lie algebra over F. For ¢ € L satisfying a(c) =
¢, we define adc(a) := [a(a), ]. Put Lo := {z|a(z) # x} U {0} and L := {z|a(z) = z}.
Then L = Lo U Ly and L; is a hom-Lie subalgebra of L.

2.1. Definition. Let (L, [, ]1, @) be a multiplicative hom-Lie algebra over F. A mapping
[p] : L1 — Li,a ~ al?! is called a p-mapping, if

(1) [a(y), =] = (ade)?(y), Vz € L1,y € L,

(2) (kx)P! = kP2 Vo € L1,k €,

p—1
(3) (@ + ) =2l + 47+ 5% 5i(2, ),
i=1
p—1 )
where (ad(z @ X +y®1))P Hz®1) = 3 isi(z,y) @ X in LerF[X],Vz,y € L1,a(z®

1=

X) = a(z) ® X. The pair (L, [,]r, a, [p]) is referred to as a restricted hom-Lie algebra.
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From the above definition, we may see that (i) a(z)) = (a(x))®! for all z € L1, i.e.,
ao[p] = [p] o a; (ii) By (1) of the definition, one gets adz!”! = (adx)? for all z € L.

Let (L,a) be a hom-Lie algebra over F and f : L — L be a mapping. f is called a
p-semilinear mapping, if f(kz+y) = kP f(z)+ f(y), Vz,y € L, Vk € F. Let S be a subset
of a hom-Lie algebra (L, ). We put Cr(S) := {z € L| [a(y),z] = 0,Vy € S}. CL(S) is
called the centralizer of S in L. Put C(L) := {z € L| [a(y),z] = 0,Vy € L}. C(L) is
called the center of L.

2.2. Definition. Let (L, [, ]z, «) be a restricted hom-Lie algebra over F. A hom-Lie
subalgebra H of L is called a p-subalgebra, if z”! € H; for all € H;, where H; = {z €
Hla(z) = x}.

2.3. Proposition. Let L be a hom-Lie subalgebra of a restricted hom-Lie algebra (G, [-, ‘],
a, [p]) and [p]1 : L1 — L1 a mapping. Then the following statements are equivalent:

(1) [p]1 is a p-mapping on L1.

(2) There exists a p-semilinear mapping f : L1 — Cc(L) such that [p]1 = [p] + f.

Proof. (1)=(2). Consider f : L1 — G, f(z) = 2P —z[?) Since adf(x)(y) = [a(y), f(z)] =
0,Vz € L1,y € L, f actually maps Ly into Cg(L). For z,y € L1,k € F, we obtain

flkxz +vy)

p—1 p—1
= kPPl 4 y[ph + Zsi(kl’,y) — kPPl y[p] _ si(kz,y)

i=1 i=1

= k' f(x) + f(y),

which proves that f is p-semilinear.
(2)=-(1). We next will check three conditions of the definition step and step. For
z,y € Ly, we have

(z+ )P =@+ )P+ fz+y)

p—1
=2 4 o)+ + fly) + Z si(z,y)
=1

p—1

— Pl _|_y[ph +Zsi($7y)

and
(k2)!"* = (k)" + f (k)
= kP + kP f(x)
— 1@ 1 f(@))
— kPPl
For x € L1,z € L, one gets
ade™ (2) = ad(e" + f(2))(2)
= adz!(2) + adf(z)(z)
ad:c[p](
= (adz)”(2).

z)
z)

The proof is complete. O
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2.4. Corollary. The following statements hold.

(1) If C(L) = 0, then L admits at most one p-mapping.

(2) If two p-mappings coincide on a basis, then they are equal.

3) If (L, [, ], o, [p]) is restricted, then there exists a p-mapping [p], of L such that
2Pl =0, vz € C(La).

Proof. (1) We set G = L. Then C¢(L) = C(L), the only p-semilinear mapping occurring
in Proposition 2.3 is the zero mapping.

(2) If two p-mappings coincide on a basis, their difference vanishes since it is p-
semilinear.

(3) [pllc(r,) defines a p-mapping on C(L1). Since C(L1) is abelian, it is p-semilinear.
Extend this to a p-semilinear mapping f : L1 — C(L1). Then [p]/ := [p]—f is a p-mapping
of L, vanishing on C(L1). O

From the proof of Theorem 2 in [18], we see the following definition:

2.5. Definition. Let (L,[-,-]z,@r) be a hom-Lie algebra, and let j : L — Ugrie(L)
be the composition of the maps L — Funas(L) - Unrie(L). The pair (Unrie(L), ) is
called a universal enveloping algebra of L if for every hom-associative algebra (A, pa, @a)
and every morphism f : L — HLie(A) of hom-Lie algebras, there exists a unique mor-
phism h : Unprie(L) — A of hom-associative algebras such that f = h o j (as morphisms
of F-modules).

In the special case of G = Unrie(L)” D L, where Unrie(L) is the universal enveloping
algebra of hom-Lie algebra L (see [18]) and Unric(L)~ denotes a hom-Lie algebra given
by hom-associative algebra Ug (L) via the commutator bracket. We have the following
theorem:

2.6. Theorem. Let (ej);cs be a basis of L1 such that there are y; € L1 with (ade;)? =
ady;. Then there ezists exactly one p-mapping [p] : L1 — L such that eg-p] =y;,Vj e J

Proof. For z € L1, we have 0 = ((ade;)” — ady;)(z) = [a(z),e} — y;]. Then e —y; €
Cupypiey(L1),Vj € J. We define a p-semilinear mapping f : L1 — Cuy,,,,.(z,)(L1) by

means of
FO ajey) = al(y; —€b).

Consider V := {x € L1|z? + f(z) € L1}. The equation

p—1

(kz +y)” + f(kx +y) = k2" + o + Y si(kz,y) + K f(z) + f(y)

i=1
ensures that V is a subspace of L. Since it contains the basis (e;);es, we conclude that
xP + f(z) € L1, Y € Ly. By virtue of Proposition 2.3, [p] : L1 — L,z := a? + f(x)
is a p-mapping on L. In addition, we obtain eg-p] = ef + f(ej) = yj, as asserted. The
uniqueness of [p] follows from Corollary 2.4. O
2.7. Definition. A multiplicative hom-Lie algebra (L, [-, ]z, ar) is called restrictable, if
(adz)? € adL for all z € Ly, where adL; = {adz|z € L,}.

2.8. Theorem. L is a restrictable hom-Lie algebra if and only if there is a p-mapping
[p] : L1 — L1 which makes L a restricted hom-Lie algebra.

Proof. (<) By the definition of p-mapping [p], for z € L1, there exists 2z e L, such
that (adz)? = adz”! € adL,. Hence L is restrictable.

(=) Let L be restrictable. Then for x € L1, we have (adz)? € adLi, that is, there
exists y € L1 such that (adz)? = ady. Let (e;)jes be a basis of Li. Then there exists
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y; € L1 such that (ade;)? = ady;(j € J). By Theorem 2.6, there exists exactly one
p-mapping [p] : L1 — L1 such that eg-p] = y;,VYj € J, which makes L a restricted hom-Lie
algebra. O

3. Properties of p-mappings and restrictable hom-Lie algebras

In the section, we will discuss some properties of p-mappings and restrictable hom-Lie
algebras.

3.1. Definition. [13] Let (L, [, "]z, @) and (T, [, -]r, B) be two hom-Lie algebras. A lin-
ear map ¢ : L — T is said to be a morphism of hom-Lie algebras if

(31) ¢[u7 U]L = [(]5(’&), d’(v)h—‘v Yu,v € L,
(32) goa=pLoo.
Denote by 84 = {(z,¢(z))|x € L} C L@ T the graph of a linear map ¢ : L — T

3.2. Definition. A morphism of hom-Lie algebras ¢ : (L, [-, ]z, o, [p]1) — (T, [, -Ir, B, [p]2)
is said to be restricted if ¢(zP11) = (¢(z))P12 for all 2 € L.

3.3. Proposition. Given two restricted hom-Lie algebras (L, |-, ], o, [p]1) and (T, [, ], B,
[p]2), there is a restricted hom-Lie algebra (L ® T, [, -|rer, a + B, [p]), where the bilinear
map [, ]rer : A2(L®T) = LOT is given by
[ur + v1, uz +U2]L@F = [u1,u2]; + [v1,v2]p, VYui,u2 € L,vi,v2 €T,

and the linear map (o« + B) : L®T — LT is given by

(a+ B)(u+v) =a(u) + Bv), Yue LveTl,
the p-mapping [p] : L& T — L@ T is given by

(u+ )P =yl 4 Pl2) Yue L,vel.
Proof. Recall that Ly = {z € Lla(z) = z} and 'y = {z € I'|f(z) = z}. For any
ui,u2 € Lyv1,v2 € ', we have
[ug + v2,u1 + vilLer = [u2,u1]L + [U2,U1]F
= *[“th]L - [1’171’2]1“
= —[u1 +vi,u2 +v2]rer.

The bracket is obviously skew-symmetric. By a direct computation we have

[(a+ B)(u1 + v1), [ue + v2,us + v3]Ler]LeT

+e.p.((ur + v1), (u2 + v2), (us + v3))
= [a(u1) + B(v1), [uz, us]L + [v2, vs]r]Ler + c.p.
= [a(u1), [uz, us]r]r + c.p.(ur, uz, us) + [B(v1), [va2, vs]r]r

+c.p.(v1,v2,v3)

= 0,

where c.p.(a, b, ¢) means the cyclic permutations of a,b, c. For any u1 € L1,v1 € I'1,us €
L,vs € T', we obtain

ad(us +v1)? (uz + v2) = [(a + B) (u2 + v2), (ur +v1) "] Ler
= la(w) + B(v2), ™ + 0o
= [a(uz), uf™ ] + [B(v2), v}"2]r

= adu[lp]1 (u2) + advgpb(vz)
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= (adu1)?(u2) + (adv1)?(ve)

and

(ad(u1 + v1))" (u2 + v2)

= [[[a” (uz2) + B"(v2),u1 +v1],ur +vi],- -+ w1 +vilrer
P p
= [[[@”(u2), wa],wa], -+ ur]r + [[[B7(v2), v1], 1], - -, v1]e

= (adu1)?(u2) + (adv1)? (v2).

Hence ad(u14v1)P (ua+v2) = (ad(u14v1))P (uz+vs), thus ad(ui +v1)P' = (ad(u1+v1))P.
Moreover, for any ui,u2 € L1,v1,v2 € ['1, one gets

((ur +v1) + (u2 + Uz))[p] = ((u1 +u2) + (1 + Uz))[p] = (u1 + uz)[ph + (v1 + U2)[p]2

p—1 p—1
= ol 4 ylP! +Zszu1,u2)+v + ol +Eszv1,v2)
=1 =1

— p—1

( [P]_|_,U[])+( [p] Z ’U,1,U2 ZSi(Ul,U2))

=1 i=1

p—1
= (u1 4 v1)? + (u2 + vo)! Z (si(ur,u2)) + si(v1,v2))
i=1

1
= (u1 + Ul)[p] + (u2 +v2) [p + pzsz ((u1,v1) + (u2,v2))
i=1
and
(k(ur + o)) = (kuy + kv1)PP! = (kut) Pt 4 (kop ) P12
— kPu p]1 + kPl pl2 _ = kP (ul 1251 +v[p]2)
= kP (u1 +v1) ].
Therefore, (L® T, [, ]rer,a+ B,[p]) is a restricted hom-Lie algebra. O

3.4. Proposition. A linear map ¢ : (L,[,"]r, o, [pl1) = (T, [, -], B, [pl2) is a restricted
morphism of restricted hom-Lie algebras if and only if the graph &4 C LT is a restricted
hom-Lie subalgebra of (L® T, [, Jrer,a+ B, [p]).

Proof. Let ¢ : (L,[,"]r,a) = (I, [, -]r, B) be a restricted morphism of restricted hom-Lie
algebras. By (3.1), we have

[u+@(w), v+ ¢(v)]rar = [u,v]L + [#(w), d(v)]r = [u, v]L + Plu, v]L.

Then the graph &, is closed under the bracket operation [-, -]zer. Furthermore, by (3.2),
we have

(a4 B)(u+ ¢(u)) = a(u) + B o p(u) = a(u) + ¢ o a(u),
which implies that (a + 8)(64) C &4. Thus, &4 is a hom-Lie subalgebra of (L &
I, [, ]cer, @ + B). Moreover, for u + ¢(u) € G4, one gets

(u+ ¢(u))[P] =Pl 4 (¢(u))[p]2 =Pl 4 ¢(u[p]1) €6,

Thereby, the graph &, C L& T is a restricted hom-Lie subalgebra of (L& T, [, |Ler, o+
B, [p)-
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Conversely, if the graph &4 C L @ I is a restricted hom-Lie subalgebra of (L &
L[, ]zer, @ + B, [p]), then we have

[u+¢(u), v+ d(v)Ler = [u,v]L + [d(u), p(v)]r € By,
which implies that
[6(w), p(v)]r = lu, v]L.
Furthermore, (a+ 5)(&4) C &4 yields that
(a+B)(u+ d(u)) = alu) + S o d(u) € &,
which is equivalent to the condition 8o ¢(u) = ¢poa(u), i.e. fod = ¢oa. Therefore, ¢ is
a morphism of restricted hom-Lie algebras. Since &, is a restricted hom-Lie subalgebra
of (L 3] F7 [', ']LEDF7 a+ /67 [p])7 we have
(wt o) =l + ()" € 6.

Thus, (qb(u))[p]2 = ¢(u[ph) for u € L, i.e., ¢ is a restricted morphism. |

One advantage in considering restrictable hom-Lie algebras instead of restricted ones
rests on the following theorem.

3.5. Theorem. Let f : (L,[-,"]z, e, [p]1) — (L, [, -]/ 5 B, [pl2) be a surjective restricted
morphism of hom-Lie algebras. If L is restrictable, so is L.

Proof. 1t follows from f is a surjective mapping that L = f(L). Then for z € L1, we
h%}ve B(f(xn = f(a(z)) = f(z) and f(z) € L}, where L; = {z € L|a(xz) = z} and
L, ={xz € L|B(z) =z}. For y € L, one gets
(adf(2))" (f(y)) = (adf ()" [B(f (), f(@)]
= (adf(2))"[[B*(f (v)), B(f ()], f(2)]
=[[[B"f (), f@)], f(@)],---, f(2)]

= BPIf ), f(@)), f(@)), -, ()]

=p"o fllly, z],2],--- 2] = fllla"(y), 7], 2], -, ]
P P
=f((ad$)p(y)) = f((ade)(y)) = fla(y), =]
= fla(y), (@) = f o aly,a”] = B o fly, 2]
= Blf (), f ")) = [B(f(y )) B(f ("))
= B/ W), F)] = ad f (@) (f(3))
= ad(f())™2(f(y))-
We have (adf(z))” = ad(f(z))”)> € adL:". Hence L is restrictable. O

3.6. Theorem. Let A and B be hom-Lie ideals of hom-Lie algebra (L,[-,"]r, ) such
that L = A& B. Then L is restrictable if and only if A, B are restrictable.

Proof. (<) If A, B are restrictable, for x € L1 with a(z) = x, we may suppose that
T = x1 + 2, where 1 € A,z € B. Then a(z1 + z2) = a(x1) + a(x2) = 1 + x2. Since
A and B are hom-Lie ideals, one gets a(z1) € A, a(x2) € B. we obtain a(z1) = z1 and
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a(z2) = x2. As A, B are restrictable, then there exists y1 € A1,y2 € By with a(y1) =
and a(y2) = y2, such that (adz1)? = ady: and (adz2)? = adyz. Thus,

(ad(z1 + 72))? = (adz1 + adxa)?
= (adz1)” + (adz2)? = ady: + ady-
= ad(y1 + y2).

Therefore, L is restrictable.

(=) If L is restrictable , so are A~ L/B, B~ L/A by Theorem 3.5. O

3.7. Corollary. Let A, B be restrictable hom-Lie ideals of a restricted hom-Lie algebra
(L, [, "]z, a, [p]) such that L =A+ B and [A, B] = 0. Then L is restrictable.

Proof. Define a mapping f : A® B — L,(z,y) — x +y. Clearly, f is a surjection. For
(z1,y1), (z2,y2) € A® B, by [A, B] =0, one gets [z1,y2] = [y1, z2] = 0. We have
fl@1,m1), (2, 92)] = fle1, @2], [y1, y2])
= [z, m2] + [y1, v2] = [w1, w2] + [0, 2] + [y1, w2] + [y1, 92
= [z1 + 1,22 + y2] = [f (@1, 01), f(22,92)]-
Moreover, one gets
ao f(z,y) = alz +y)
=a(z) + a(y) = f((a(z), a(y)))
= foa(z,y).
Therefore, ao f = foa. For x € A,y € B, a(z,y) = (z,y), we have

Fl@,9)) = f((@,y2))
=gl y[Plz = (z+ y)[P]

= (f(z,y)".
Thus, f is a restricted morphism. By Theorem 3.6, we have A & B is restrictable. By
Theorem 3.5, one gets L is restrictable. O

3.8. Definition. Let (L, [, ]z, «) be a hom-Lie algebra and 1 be a symmetric bilinear
form on L. 9 is called associative, if ¥(z, [z, y]) = ¥ ([a(z), z],y).

3.9. Definition. Let (L, [, ]z, @) be a hom-Lie algebra and 1) a symmetric bilinear form
on L. Set L™ = {x € L|¢(x,y) =0,V y € L}. L is called nondegenerate, if L+ = 0.

3.10. Theorem. Let L be a subalgebra of the restricted hom-Lie algebra (G, [+, ]a, a, [p])
with C(L) = {0}. Assume A : G x G — F to be an associative symmetric bilinear form,
which is nondegenerate on L x L. Then L is restrictable.

Proof. Since X is nondegenerate on L x L, every linear form f on L is determined by a
suitably chosen element y € L : f(z) = A(y,2),Vz € L. Let € L;. Then there exists
y € L such that

M@, 2) = My, 2),Vz € L.
This implies that 0 = A(z! — y, [L, L]) = A([a(L), z?' — y], L) and (L), z?) — ] = 0.
Therefore, 2P — y € C(L) = {0} and y = 2! € L,. Moreover, we obtain

(adz|r)? = adz)|L = ady|y,

which proves that L is restrictable. O
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3.11. Proposition. Let (L, [, |1, a) be a restrictable hom-Lie algebra and H a subalgebra
of L. Then H is a p-subalgebra for some mapping [p] on L if and only if (adH1|r)? C
adH1 |L-

Proof. (=) If H is a p-subalgebra, then for z € Hy, ! € Hy, and (adz)? = adz!?) C
adH1|r. Hence, (adH1|r)? C adH1|L.

(«=) If (adH1|r)? C adH1|r, then H is restrictable. By Theorem 2.8, H is restricted.
Thereby, H is a p-subalgebra of L. O

4. Cohomology of restricted hom-Lie algebras

In this section, we will discuss the cohomology of restricted hom-Lie algebras in the
abelian case, which is similar to the reference [5].

4.1. Definition. [12] A hom-associative algebra is a triple (V, u, &) consisting of a linear
space V, a bilinear map p: V X V — V and a linear space homomorphism o : V. — V'
satisfying
(@), wly, 2)) = p(p(, y), a(2))-

There is a functor from the category of hom-associative algebras in the category of
hom-Lie algebras.
4.2. Proposition. [12| Let (A, p, ) be a hom-associative algebra defined on the linear
space A by the multiplication u and a homomorphism a. Then the triple (A, [, ], &) where
the bracket is defined for x,y € A by [z,y] = p(z,y) — p(y, x), is a hom-Lie algebra. We
also denote it by (A7, [, ], a).

The following definition is analogous to that of the restricted universal enveloping
algebra in the reference [14].

4.3. Definition. Let (L, [, ]z, @, [p]) be arestricted hom-Lie algebra. The (u(L), ua 1)
consisting of a hom-associative algebra (u(L), ", a/) with unity and a restricted hom-
morphism i : (L,[-,-]n, o, [p]) = (uw(L)™, 1, ) is called a restricted hom-universal en-
veloping algebra of L if given any hom-associative algebra (A, ,u”,a/,) with unity and
any restricted hom-morphism f : (L, [, ]z, o, [p]) — (A7, u”, a”), there exists a unique
morphism f : (u(L), ,u/7 a/) — (4, ,u”7 a”) of hom-associative algebras such that foi = f.
4.4. Definition. [11] Let A = (V, u, «) be a hom-associative F-algebra. An A-module
is a triple (M, f,~) where M is F-vector space and f,~ are F-linear maps, f: M — M
and v: V ® M — M, such that the following diagram commutes:

VveM —1 s M

Ta@’y T’Y
VeveM 2L, ve M

We let S*(L) and A*(L) denote the symmetric and alternating algebras of restricted
hom-Lie algebra (L, [-,]r, @, [p]), respectively. Bases for the homogeneous subspaces of
degree k for these spaces consist of monomials e* = ef* --- e and ez = e;; A+ Aeyy,
respectively, where

p=(p1,- -, pn) € Z" satisfies p; > 0, |u| = 32, pj = k;
i= (i1, - ,ir) € Z* satisfies 1 < i1 < - < ix < n.
Let v : A — AP denote the Frobenius automorphism of F. If V' is an abelian group with
an F-vector space structure given by F — End(V'), then the composition

1
F X — F— End(V)
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gives another vector space structure on V which we will denote by V. Of course V is
isomorphic to V' as an F-vector space (they have the same dimension). We note that if
W is any other F-vector space, then a p-semilinear map V — W is a linear map V — W
and vice versa.

In sequel, (L, [+, -]z, @, [p]) denotes a finite-dimensional restricted hom-Lie algebra over

F such that [g;,g;] = 0 for all g;,9; € L and (u(L),a/,i) denotes the restricted hom-
universal enveloping algebra of L. Here we take a = o and o satisfies a(uiug) =
a(ur)a(uz) for ui, us € u(L). For s,t > 0, we define

Cst = S*L1 ® A°L @ u(L)
with the u(L)-module structure given by
whi - hie®@g A ANgs®@x)=h1--ht Qg1 A+ A gs @ afu)z,
where h;,g; € L and u,x € u(L). If either s < 0 or t < 0, we put Cs+ = 0 and define
Cv= P Csn
2t4s=k

for all k € Z. Note that each Cj is a free u(L)-module. If not both ¢t = 0 and s = 0, we
then define a map
dst 1 Csp = Crs—1 D Cr_1,541

by the formulas
dis(h1-- hi @1 A~ Ngs @)

(4.1) =3 () e ke @alg) A a(g:) - A afgs) ® alg:)e
(4.2) +> hichye e @B AN a(g) A A algs) ® alz)

S

t
(4.3) —Zhl--- j~~~ht®h]-/\a(gl)/\~~~/\a(gs)®h§’_lm.
j=1
For k > 1, we define the map d, : Cx — Ci—1 by di, = @4, ,_; ds,+- Then we obtain the
following theorem.

4.5. Theorem. The maps dy, defined above satisfy dp—1dr = 0 for k > 1, so that
C = (Ck,dr) is an augmented complez of free u(g)-modules.

Proof. The terms in the sum (4.1) are elements of Ct s—1 whereas the terms in the sums
(4.2) and (4.3) lie in C¢—1,s+1. Therefore, in order to compute di_1di = 0, we must apply
di,s—1 to (4.1) and d¢—1,s4+1 to (4.2) and (4.3). Applying d¢,s—1 to (5), we have

clt,s(Z(—l)i‘lh1 i he®alg) A a(gl) - Aalgs) ® a(g:)x)

s
— —

= T b @ () Ao (a) a7 Ao%(s2)
®a’*(g0)(a(gi)x)

+3 (-1)7hi - he @ aP(g1) A+ aP(gi) - aP(ga) - A aP(gs) @ a*(go) (algi)a)

o>i
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—

+Zh1 e ﬁ; o he ® hgp] A aQ(gl) A-oa2(gs) - A 062(95) ® ala(g:)r)
—Zhl---l@---ht®hjAaQ(gl)Amo?(g\i)m/\aQ(gs)®h§-”1(a(gi)w))
= DT e he@aP(g) A0 (ge) 0 (g) - Aa®(gs)
®(a(go)o(gi))ev()
+ Z(*l)(’hl crhe@a®(g) A a3(gi) - a?(ge) -+ A P (gs) © (alge)algi))a()

—

t
@a)+ S bl he @ P AP (g) A---a2(g0) - A a®(g:) © alalg)e)
j=1

—

(45) = Db hyj--hi®@hy Aa®(gi) A a2(gi) - Aa’(gs) ® (hD alg:)o()).

Since a(gs)a(g;) = a(gj)a(gi) in u(g), the terms in the first two sums in the parentheses
cancel in pairs when summed over all i. This leaves the sum over i of (4.4) and (4.5).
Now we apply di—1,5+1 to (4.2).

t t
dt—l,s+1(zhl"'hj"'ht®h£-p]Aa(gl)A"'Aa(gs)®a(x)) :Z
j=1 j=1

s
—

46) (D (-1)7ha- -y he @ WP AP (1) A 02(gs) - Ao (gs) ® 0 (go) ()
(A7) +hio by he@a’(g) A AP (gs) ® a(hP)a(x)

—

(48) +> hiohyochyohe @ KPP AR AN 0P (g1) A A0 (gs) @ 0F(x)

T#]
(49) = hi-hrohyohe®he ARP A (g) A A 0P (g:) @ B2 al(x)).
T#]

We note that the terms in (4.8) cancel in pairs since interchanging the first two terms in
the alternating product multiplies the term by —1. Finally, we apply di—1,s+1 to (4.3) to
get

t
dt—l,s+1( — Zhl e hj e ht [ hj A 042(g1) A A Ot(gs) [ h?ilx)
j=1

= 72( (71)0h1 e ﬁ; <o-hs @ hy /\a2(g1) A AQQ(gS) ®a2(gg)(h§71$)

3 b b By he @ B ARy AP (1) A A 6P (ga) @ ok )

=S hihehyohe @ he Ay AP (g) A Aa(gs) @ hETH (R )
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(410) = => (D (-1)7ha by he @ hy AP (g1) A A aP(gs) @ algoh? o)

j=1 o=1
(411)  +hiehyehe@a(gr) Ao A a¥(g) @ ha(w)
(412) D> haeehe By he @ P AR AP (g1) A A0 (g0) @ okl )

)

(413) = hihehyoche @ he Ay AP (g1) A Aa®(ge) ® (BT D a(z)).
TH#)

This time the terms in (4.13) cancel in pairs. Moreover, the terms in (4.4) and (4.6)
are identical (with o = i) except for sign and hence they cancel. The terms in (4.5)
and (4.10) cancel in pairs since a(h? ")a(g;) = a(g;)e(h?™"). The terms in (4.9) and
(4.12) have the same sign but are equal apart from interchanging the first two terms
in the alternating part. Finally the terms in (4.7) and (4.11) match except for sign

since h;p I = h;’ in u(g) and hence the entire sum is zero as claimed. This completes the
proof. (]

We next will consider the cohomology of restricted hom-Lie algebras in the case of
simpleness. A basis for the space Ct s consists of the monomials

T T T
" Rere =€t e e, A Nei, Qelt-en,
where,u,: (Hl,"' 7#”)7]-:(1'17"' 7i8)7r: (T17"' ,Tn) and

py >0, 0pl=> py=t,1<i1 < <i;<n,0<r; <p—1.
J

For eachi=1,--- ,n and e; € L1, we let
c=10!@1-10e @™

and we easily note that ¢; € Co 1 is a cycle for all i. Now we define
(0/0e; @ ci) : Cps — Cr_1,641

by the formula

1o} " s Oe! de
(8ei®cz)(e ®61®6)—a—ei e,

If w = (w1, -+ ,un) satisfies |u| = ¢t and I = (i1, -+ ,4s) is increasing, then by the
definition we write

@ el Aaler) @ a(e) ®ei Aaler) ® el a(eh).

doer= . (=Dt fi AN fi @ e
Jc{1,---,s}
and
e @aler)= Y. (D" @a(fi) A Aalfi) @alel) - alel),
Jc{1,---,s}
where

i = €ij, jedJ o p—1, j€J
ST Ggs WTV o0 ggd

We then define €; ; to be the F-subspace of C; s spanned by the elements {e" ® a(cr) :
|u] =t and I is increasing } and
&%= P <.

2t+s=k
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The boundary operator 9y = 0 : €, — €,_; is defined by
"9
8 = Z 676] ® Cj.
Jj=1

Then we may show that % = 0. In fact,
(" @ cr) = A(A(e" @ cr))

n o i1 i
:8(287@]4@0]'( Z (_1)‘J|6H®fl‘1/\"'/\f"s®ej1 ej;))
j=1

JC{1,- s}

= e i i
=0y >, (WG e nalfi) A Aalfi) @ alel!) - aler)
j=1Jc{1,-,s} J
et qiq

~ 50 @eiNalfu) A Aalfi) ® e la(efn) - alel)))

=33 Y (0 walse o Aai) A Aalf) @alel)
1=1 j=1JC{1,--,s} J
a(ell)) = g @ G S Nalf) A nalf) @ alel) alel)}
n n %
:ZZ Z (_1)|J|{(E)Leelj)®egp]/\a(egp])/\OéQ(fn)/\"'/\OéQ(fis)

I=1j3=1JC{1,--,s}

(4.14) ®a’(eft) - a’(ef’*)
a(%) o] 2 2 1 2, @ 2, 4
(4.15) — Oelj ®el/\a(ej YA (fi )N Ao (fi,) @€l a“(e; ') a(e”)
a(gee‘;) (o] 2 2 p—1y 2/ dig 2, 4
(4.16) Tel(@el Nafe) N (fi ) A At (fiy) @ alel )a (et ) --a(e;.")
8(%2:) 2 2 p—1 p—1\ 2/ iy 2/ 4i
Oe; @eNale;) Na”(fiy) A Ao (fi) @el ale] at(e;t) (e
(4.17)

This time the terms in (4.14) cancel in pairs, and the terms in (4.17) cancel in pairs

since ef_la(eﬁ.’_l) = a(ef’_l)ef_l. Moreover, the terms in (4.15) and (4.16) are identical

except for sign and hence they cancel, so that € = {€, Ok } x>0 is a complex.
4.6. Theorem. If € is the complez defined above, we define Hy(€) := Kerdy /Imdy. Then

o UresA(g)7 k=0
H’“(@_{O, 0<k<np.

Proof. Define a map D : €, — €41 by the formula

D(e" ®@aler) =Y (—1)" etes, @ciy -Gy ooy

a=1

and compute for any monomial e* ® a(cr) :
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DI(e* @ afer)) = D(‘

n
Jj=

1(% ® ¢j)(e" ® afer)))

n
= Y Dl e e @ o’ (en)
J=1,J#i1, i

n
1

= > D(ugeft €T e @ aley)a’(er))
F=L AT e i
n

(> meea)

J=1,g#i1, - ,is

n S
3 S (-ne B
+ (=1)%pseq €j iq en

J=1,j#i1, yis a=1

—

(4.18) ®a(cj)ale) - ale,) - ale,)

and 0D (e* ® a(cr)) = O( XS: (=D ete, @ciy -G ciy)

= Z(_l)a—la(egl celtia et @y G )

la
a=1
= (ZM“ +1)e" ® aler)
a=1
S n
_Z(_l)a Z el ...e;ﬁ‘l : ..e:a“ ek
a=1 G=1,761, s
(4.19) ®a(ei)aley ) ale,) - ale,).

Clearly the terms (4.18) and (4.19) are identical apart from sign so that we have

(DO+aD)(e" @aler) = (Y.  mi+Y_ mi.+s)(e"®aler)) = (t+s)(e" ®a(er)).
G=1,5500 0 is a=1

Therefore we see that every cycle in € (k = 2t + s) is a boundary provided that ¢ 4+ s #

0(modp). In particular, if 0 < k < p, then 0 < t + s < p so that Hy(¢) = 0. Moreover,

¢1 = €p,1 is spanned by the ¢; and d¢; = 0 for all 4. Therefore Ho(€) = €o = Ures.(9),

the proof of the theorem is complete. O
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