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model with gamma innovations
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Abstract

In this study, the explicit estimators of the model parameters in one-
way classi�cation AR(1) model with gamma innovations are derived
by using modi�ed maximum likelihood (MML) methodology. We also
propose a new test statistic for testing linear contrasts. Monte Carlo
simulation results show that the MML estimators have higher e�cien-
cies than the traditional least squares (LS) estimators and the proposed
test has much better power and robustness properties than the normal-
theory test.
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1. Introduction

Linear contrasts are widely used to make comparisons among the treatment means of
interest. The usage of them require the independence assumption for the observations in
each treatment. However, in numerous situations, the present state of a variable in each
treatment is in�uenced by its past and this gives rise to autocorrelated time series struc-
ture. For instance in the agricultural and the biological sciences, the observations that
are recorded over some time-space coordinate are extremely common, see, for example
[7]. Some of the reasons for the lack of independence are (see [15]):

• Biased measurements,
• A poor allocation of treatments to experimental units,
• Adjacent experimental units or plots in a �eld.
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Another standard assumption is that the error terms are i.i.d (identically and indepen-
dently distributed) as normal N(µ, σ2). From the practical point of view, this assumption
is also not realistic since nonnormal error distributions are more prevalent. There exists
huge literature on the subject of nonnormal error distributions, see, for example, [8], [11],
[5], [20], [31].

The normal theory test statistics for testing linear contrasts have low e�ciencies when
the normality assumption is not satis�ed, see [18]. However, they can still be used for
the situations where the normality assumption is violated to a slight or moderate degree.
On the other hand, if the independence assumption is not met, traditional test statistics
do not work well and give misleading results even if the observations exhibit low levels
of correlation over time, see [16] and [12].

In recent years, the MML method has been applied to various time series models by
Tiku and his colleagues. [21] developed a unit root test for the AR(1) model. The �rst
order autoregressive model, AR(1), has been considered in [22] with asymmetric innova-
tions of the gamma type. [24] extended the results of [22] to the symmetric non-normal
innovations. [25] gave some engineering applications of the AR(1) models with nonnormal
errors. [23] and [1] considered the simple regression model with �rst-order autoregressive
errors when the error distribution is symmetric and asymmetric nonnormal, respectively.
[26] and [3] extended this methodology to various independent sources of information
and to multiple autoregressive model under non-normality; respectively. [31] extended
the results of [23] to the generalized logistic distribution family representing very wide
skew distributions ranging from highly right skewed to the highly left skewed.

Skew distributions are observed frequently in the context of experimental design; see
for example, [18] and [17]. In their real life applications, they observed that the error
terms are distributed as Generalized Logistic(b,σ) with shape parameters b = 1, 2, 6
and Weibull(p,σ) with shape parameter p = 4; respectively. Thus, positively skewed
distributions �tted very well to the error terms. Therefore, di�erent than the earlier
studies, we assume that the error terms have Gamma which is another widely used and
well known positive skewed distribution. Besides, we assume that the observations in
each treatment are �rst order autocorrelated. This is the �rst study, dealing with both
autocorrelation and non-normality in experimental design as far as we know. Thus, we
aim to �ll this gap in the literature.

We derive the estimators of the model parameters in this one-way classi�cation model
by using MML methodology. The methodology was �rst initiated by [19]. We also
propose a new test statistic based on these MML estimators for testing linear contrasts
and show that our solutions are much more e�cient than the traditional normal-theory
solutions.

The methodology developed in this paper can be extended to other designs, time
series models (e.g. factorial designs AR(2) model) and any location-scale distribution
(e.g., long-tailed symmetric and short-tailed symmetric distributions).

2. One-way classi�cation AR(1) model

Consider the following one-way classi�cation model with �rst-order autoregressive
errors:

yi,j − φyi,j−1 =µi + ei,j , − 1 < φ < 1; −∞ < µi <∞;

i = 1, . . . , a; j = 1, . . . , n(2.1)
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or alternatively reparametrized as

yi,j − φyi,j−1 =µ+ τi + ei,j , − 1 < φ < 1;−∞ < τi <∞;

−∞ < µ <∞; i = 1, . . . , a; j = 1, . . . , n(2.2)

where yi,j is the jth observation in the ith treatment; µ is the constant representing
the overall mean; µi is the mean of the ith treatment; τi is the ith treatment e�ect and
ei,j is the error term.

Without loss of generality, we assume that
∑
τi = 0. Besides assume that ei,j are iid

and have the gamma distribution

f(e) =
1

σkΓ(k)
exp(− e

σ
)ek−1; 0 < e <∞(2.3)

where k is the shape parameter and is assumed to be known. Conditional on yi,0, the
likelihood function ignoring the constant term which has no e�ect on the estimators is

L =
1

σn
e
∑a

i=1

∑n
j=1 zi,j

a∏
i=1

n∏
j=1

zk−1
i,j(2.4)

where zi,j = ei,j/σ = (yi,j − φyi,j−1 − µ− τi)/σ.
The corresponding likelihood equations can be written as

∂lnL

∂µ
=
N

σ
− (k − 1)

σ

a∑
i=1

n∑
j=1

g(zi,j) = 0

∂lnL

∂τi
=
n

σ
− (k − 1)

σ

n∑
j=1

g(zi,j) = 0

∂lnL

∂φ
=

1

σ

a∑
i=1

n∑
j=1

yi,j−1 −
(k − 1)

σ

a∑
i=1

n∑
j=1

yi,j−1g(zi,j) = 0

∂lnL

∂σ
= −N

σ
+

1

σ

a∑
i=1

n∑
j=1

zi,j −
(k − 1)

σ

a∑
i=1

n∑
j=1

zi,jg(zi,j) = 0(2.5)

where g(z) = 1/z and N = an : total number of observations.
These equations are in terms of 1/zi,j and have no explicit solutions. Therefore they

have to be solved by iteration which might be problematic especially when the data
contains outliers, see, for example, [14], [27] and [28]. We, therefore, utilize the method
of modi�ed likelihood estimation which captures the beauty of maximum likelihood but
alleviates its computational di�culties, see [20].

3. The MML estimators

The �rst step of obtaining the MML estimators is to express the likelihood equations
(2.5) in terms of ordered zi,(j)'s (i = 1, . . . , a; j = 1, . . . , n), since the complete sums are
invariant to ordering. The second step is to linearize the term g(zi,(j)) = 1/zi,(j) around
t(j) by the use of the �rst two terms of a Taylor series expansion, since for large n, zi,(j)
is close to its expected value t(j) = E(zi,(j)). Thus,

g(zi,(j)) ∼= g(t(j)) + (zi,(j) − t(j))
{
∂g(z)

∂z

}
z=t(j)

= αj − βjzi,(j)(3.1)
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where αj = 2/t(j) and βj = 1/t2(j). Although the exact values of the t(j) are avail-
able, for convenience, we use their approximate values generated from the equation

1
Γ(k)

∫ t(j)
0 e−zzk−1dz = j

n+1
, 1 ≤ j ≤ n for each treatment (i.e., for i = 1, . . . , a).

Incorporating the linear approximation 3.1 into the likelihood equations 2.5 yields the
modi�ed likelihood equations. Then the MML estimators are obtained by solving these
modi�ed likelihood equations as:

µ̂ = µ̂.[.] +
∆

m
σ̂, τ̂i = µ̂i[.] − µ̂.[.],

φ̂ = K +Dσ̂, σ̂ =
B +

√
B2 + 4NC

2
√
N(N − a− 1)

(3.2)

where

µ̂i[.] =

∑n
j=1 βj(yi,[j] − φyi,[j]−1)

m
, µ̂.[.] =

∑a
i=1

∑n
j=1 βj(yi,[j] − φyi,[j]−1)

am
,

∆j =
1

k − 1
− αj , ∆ =

n∑
j=1

∆j , m =

n∑
j=1

βj ,

K =

∑a
i=1

∑n
j=1 βjyi,[j]yi,[j]−1 − 1

m

∑a
i=1(

∑n
j=1 βjyi,[j])(

∑n
j=1 βjyi,[j]−1)∑a

i=1

∑n
j=1 βjy

2
i,[j]−1 −

1
m

∑a
i=1(

∑n
j=1 βjyi,[j]−1)2

,

D =

∑a
i=1

∑n
j=1(∆j − βj ∆

m
)yi,[j]−1∑a

i=1

∑n
j=1 βjy

2
i,[j]−1 −

1
m

∑a
i=1(

∑n
j=1 βjyi,[j]−1)2

,

B = (k − 1)

a∑
i=1

n∑
j=1

(yi,[j] − φyi,[j]−1 − µ̂i[.])∆j , and

C = (k − 1)

a∑
i=1

n∑
j=1

βj(yi,[j] − φyi,[j]−1 − µ̂i[.])2.(3.3)

It is clear that the MML estimators have closed forms. It should also be noted that
they have exactly the same forms as other MML estimators irrespective of the underlying
distribution besides having the invariance property, see [20]. The MML estimators are
known to be asymptotically fully e�cient, i.e. they are unbiased and minimum variance
bounds (MVB) estimators, see [4] and [29]. For small sample sizes, they have very little
or no bias and the true variances of the MML estimators are very close to minimum
variance bounds, see [28].

For the computation of the MML estimators µ̂, τ̂i, φ̂ and σ̂, �rst the ordered variates
of zi,j = ei,j/σ = (yi,j − φyi,j−1 − µ − τi)/σ (i = 1, . . . , a; j = 1, . . . , n) has to be
obtained. Since the ordering of zi,j only depends on φ (µ and τi are additive constants

and σ is positive), it is done by using the LS estimate φ̂LS of φ as an initial estimate.
Then using the concomitants (yi,[j], yi,[j]−1) corresponding to ordered variates wi,(j) =

yi,[j] − φ̂LSyi,[j]−1, the MML estimates µ̂, τ̂i, φ̂ and σ̂ are calculated from 3.2. A second

iteration is carried out by replacing φ̂LS with φ̂ in the ordering of wi,(j) variates and new

µ̂, τ̂i, φ̂ and σ̂ values are calculated. This is repeated till the estimates stabilize su�ciently
enough. In our computations, two iterations were enough. Actually, in literature based
on MML, it can be seen that at most three iterations are enough.
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4. E�ciency of the MML estimators

In practice the LS estimators are widely used which will be shown that they are
considerably less e�cient than the MML estimators. Relative e�ciencies (RE) of the LS
estimators de�ned as

RE = 100× (variance of MMLE)/(variance of LSE)(4.1)

are calculated by simulation based on [100000/n] Monte Carlo runs. Although much
other values are tried, the simulation results performed for sample sizes n = 30, 60 and
120 with the shape parameter taking the values k = 2, 3, 5 and 10 for φ = 0.0, 0.5 and
0.9 are given in Table 1. It must be noted that the values for other φ values including
negative ones yield the similar results so that they are not reported.

The model parameters µi, τi and σ are set as 0, 0 and 1 without loss of generality.
Realize that for φ = 0.0, the model 2.1 turns to be the usual one-way classi�cation where
the errors are distributed as gamma rather than normal. In fact, this is by its own a
contribution since the model parameters in one-way classi�cation model have not been
estimated with gamma distributions so far.

The LS estimators of the model parameters are given by

µ̃i =

∑n
j=1(yi,j − φyi,j−1)

n
− kσ̃, µ̃ =

∑a
i=1

∑n
j=1(yi,j − φyi,j−1

an
− kσ̃,

τ̃i = µ̃i − µ̃, φ̃ =

∑a
i=1

∑n
j=1 yi,jyi,j−1 − 1

n

∑a
i=1(

∑n
j=1 yi,j)(

∑n
j=1 yi,j−1)∑a

i=1

∑n
j=1 y

2
i,j−1 − 1

n

∑a
i=1(

∑n
j=1 yi,j−1)2

,

σ̃2 =

∑a
i=1

∑n
j=1((yi,j − φyi,j−1)− µ̃i)2

(N − a− 1)k
.(4.2)

Note that the LS estimators µ̃ and σ̃2 are corrected for bias so that they become com-

parable with MML estimators. Besides, the initial values yi,0 are taken as ei,0/
√

1− φ2,
which is, in fact, Model II of [30].

It can be seen from Table 1 that the MML estimators are more e�cient than the LS
estimators especially for the small values of the shape parameter k. It should be noted
that the relative e�ciency of the LS estimators decrease as the sample size n increase.
This is another result of interest.
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Table 1. Simulated means (1), n×variances (2) and the relative e�-
ciencies (RE) of the LS and MML estimators.

n k = 2.0, φ = 0.0
∼
µi µ̂i RE

∼
τ i τ̂i RE

∼
φ φ̂ RE

∼
σ σ̂ RE

30 (1) 0.073 0.160
30

0.001 0.001
28

-0.031 -0.009
39

0.991 0.973
53

(2) 0.125 0.038 1.444 0.404 0.309 0.121 0.426 0.227

60 (1) 0.031 0.087
24

0.000 0.000
25

-0.015 -0.002
30

0.997 0.982
51

(2) 0.060 0.015 1.346 0.334 0.317 0.096 0.408 0.210

120 (1) 0.019 0.050
19

-0.001 -0.001
21

-0.008 0.000
21

1.000 0.988
45

(2) 0.032 0.006 1.289 0.269 0.344 0.070 0.424 0.193

k = 2.0, φ = 0.5
30 (1) 0.242 0.229

32
0.008 0.004

27
0.441 0.478

38
0.993 0.972

52
(2) 0.229 0.073 1.710 0.455 0.262 0.099 0.417 0.215

60 (1) 0.109 0.109
26

0.004 0.002
22

0.473 0.493
30

0.999 0.983
50

(2) 0.105 0.027 1.500 0.326 0.239 0.071 0.424 0.213

120 (1) 0.058 0.063
20

-0.001 0.003
21

0.485 0.496
24

0.999 0.987
48

(2) 0.054 0.011 1.513 0.317 0.255 0.060 0.405 0.196

k = 2.0, φ = 0.9
30 (1) 0.414 0.327

33
-0.008 -0.004

27
0.875 0.888

35
0.990 0.970

53
(2) 0.413 0.136 1.974 0.529 0.039 0.014 0.410 0.218

60 (1) 0.289 0.190
28

0.002 0.001
22

0.884 0.894
28

0.997 0.981
49

(2) 0.218 0.061 1.933 0.415 0.036 0.010 0.415 0.204

120 (1) 0.230 0.123
21

-0.003 0.000
19

0.888 0.896
22

0.999 0.987
48

(2) 0.172 0.036 1.690 0.325 0.052 0.011 0.463 0.221

k = 3.0, φ = 0.0
30 (1) 0.115 0.183

48
-0.005 -0.001

47
-0.032 -0.013

56
0.993 0.978

60
(2) 0.237 0.114 2.178 1.020 0.318 0.177 0.344 0.205

60 (1) 0.055 0.093
43

-0.004 -0.003
42

-0.014 -0.004
51

0.998 0.986
57

(2) 0.122 0.052 2.040 0.854 0.345 0.175 0.337 0.192

120 (1) 0.031 0.055
39

0.006 0.002
40

-0.009 -0.002
45

1.000 0.991
54

(2) 0.060 0.024 2.106 0.841 0.330 0.148 0.335 0.180

k = 3.0, φ = 0.5
30 (1) 0.377 0.333

49
0.003 0.003

43
0.440 0.468

53
0.991 0.978

57
(2) 0.471 0.229 2.599 1.127 0.258 0.137 0.345 0.198

60 (1) 0.178 0.153
41

-0.003 0.000
41

0.472 0.488
43

0.995 0.985
56

(2) 0.231 0.095 2.230 0.911 0.266 0.116 0.331 0.186

120 (1) 0.093 0.083
40

0.001 0.000
38

0.486 0.495
42

0.997 0.989
53

(2) 0.107 0.043 2.001 0.767 0.261 0.109 0.363 0.192

k = 3.0, φ = 0.9
30 (1) 0.459 0.411

53
-0.006 0.000

44
0.882 0.889

53
0.992 0.977

60
(2) 0.611 0.323 2.652 1.176 0.025 0.013 0.321 0.192

60 (1) 0.359 0.269
43

0.000 -0.002
41

0.887 0.893
42

0.995 0.983
55

(2) 0.395 0.169 2.463 1.004 0.027 0.012 0.317 0.173

120 (1) 0.262 0.189
42

0.010 0.007
40

0.891 0.895
41

1.001 0.993
54

(2) 0.257 0.109 2.431 0.980 0.034 0.014 0.336 0.180

k = 5.0, φ = 0.0
30 (1) 0.214 0.269

67
0.002 0.003

65
-0.033 -0.020

72
0.994 0.986

70
(2) 0.582 0.388 3.685 2.393 0.333 0.241 0.273 0.192

60 (1) 0.085 0.122
62

-0.001 -0.002
64

-0.013 -0.006
66

0.996 0.991
66

(2) 0.291 0.181 3.401 2.175 0.337 0.221 0.263 0.173

120 (1) 0.063 0.082
61

-0.004 -0.001
61

-0.011 -0.006
64

1.001 0.996
65

(2) 0.136 0.083 3.192 1.952 0.302 0.193 0.262 0.171

k = 5.0, φ = 0.5
30 (1) 0.550 0.515

69
-0.009 -0.008

64
0.446 0.463

72
0.995 0.985

69
(2) 1.157 0.795 4.091 2.618 0.253 0.182 0.274 0.190

60 (1) 0.320 0.299
66

0.001 0.002
63

0.468 0.478
67

0.998 0.991
64

(2) 0.569 0.373 3.690 2.340 0.250 0.167 0.295 0.188

120 (1) 0.144 0.138
61

-0.004 -0.001
59

0.485 0.491
65

1.000 0.995
63

(2) 0.262 0.160 3.417 2.029 0.232 0.152 0.263 0.165

k = 5.0, φ = 0.9
30 (1) 0.503 0.510

68
0.008 0.005

63
0.888 0.891

69
0.991 0.984

67
(2) 1.058 0.722 3.973 2.518 0.015 0.011 0.268 0.181

60 (1) 0.384 0.368
65

0.005 -0.002
62

0.892 0.894
67

0.999 0.991
63

(2) 0.727 0.470 3.888 2.417 0.017 0.012 0.274 0.174

120 (1) 0.267 0.255
62

-0.016 -0.007
60

0.894 0.896
65

1.001 0.996
62

(2) 0.509 0.314 3.828 2.302 0.023 0.015 0.269 0.168
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Table 1.(cont.ed.)
k = 10.0, φ = 0.0

∼
µi µ̂i RE

∼
τ i τ̂i RE

∼
φ φ̂ RE

∼
σ σ̂ RE

30 (1) 0.420 0.469
82

0.002 -0.001
81

-0.036 -0.029
87

0.994 0.991
81

(2) 2.082 1.711 6.969 5.624 0.326 0.284 0.223 0.181

60 (1) 0.178 0.215
81

0.001 0.000
80

-0.015 -0.011
82

0.997 0.994
78

(2) 0.903 0.732 7.191 5.752 0.320 0.263 0.223 0.173

120 (1) 0.105 0.138
76

0.005 0.005
80

-0.008 -0.006
80

0.998 0.995
77

(2) 0.491 0.375 6.897 5.514 0.318 0.254 0.221 0.170

k = 10.0, φ = 0.5
30 (1) 1.095 1.069

84
0.011 0.013

81
0.448 0.456

86
0.995 0.991

82
(2) 3.973 3.322 8.117 6.609 0.223 0.191 0.222 0.181

60 (1) 0.527 0.522
80

-0.012 -0.012
80

0.474 0.479
83

0.999 0.995
81

(2) 2.103 1.684 7.936 6.369 0.234 0.191 0.228 0.184

120 (1) 0.292 0.287
79

-0.010 -0.005
78

0.486 0.489
81

0.997 0.995
75

(2) 0.948 0.753 7.838 6.137 0.227 0.185 0.223 0.167

k = 10.0, φ = 0.9
30 (1) 0.570 0.636

86
0.008 0.009

82
0.893 0.894

86
0.995 0.990

82
(2) 2.334 2.005 7.448 6.068 0.008 0.007 0.210 0.172

60 (1) 0.441 0.476
81

-0.001 0.001
80

0.895 0.896
82

0.995 0.992
78

(2) 1.573 1.275 7.433 5.924 0.009 0.008 0.218 0.170

120 (1) 0.368 0.385
75

0.012 0.012
79

0.896 0.896
78

1.000 0.997
76

(2) 1.223 0.920 7.554 6.001 0.014 0.011 0.213 0.161

5. Power and robustness properties of the proposed test

For testing the null hypothesis H0 :
∑a
i=1 liτi =

∑a
i=1 liµi = 0 (µi = µ+τi);

∑a
i=1 li =

0, traditionally, where li (1 ≤ i ≤ a) are constant coe�cients of a linear contrast; we use
the following test statistics based on the LS estimators given in 4.2

t =

∑a
i=1 liµ̃i√∑a
i=1 l

2
i
σ̃2

n

.(5.1)

However, in this study, we propose the following test statistics based on MML esti-
mators

t∗ =

∑a
i=1 liµ̂i√∑a

i=1 l
2
i

σ̂2

m(k−1)

,(5.2)

where the large values of t∗ lead to the rejection of H0. The null distribution of t∗ is
asymptotically normal N(0,1) due to the following lemmas:

5.1. Lemma. For a given φ (σ known), the asymptotic distribution of µ̂i(φ, σ) = µ̂i. +
(∆/m)σ which is the minimum variance bound estimator of µi = µ + τi (1 ≤ i ≤ a) is
normal with variance V {µ̂i(φ, σ)} ∼= σ2/m(k − 1).

Proof. Proof of the Lemma 5.1. The result follows from the fact that asymptotically
∂lnL∗/∂µi is equivalent to ∂lnL/∂µi [29] and assumes the form

∂lnL∗

∂µi
=
m(k − 1)

σ2
(µ̂i(φ, σ)− µi)

[10]. The normality follows from the fact that E(∂lnL∗/∂µri ) = 0 for all r ≥ 3. �

5.2. Lemma. For a given φ(µ known),the asymptotic distribution of Nσ̂2(φ, µ)/σ2 is
chi-square with N = na degrees of freedom.
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Proof. Proof of the Lemma 5.2. Let

B0 = (k − 1)

a∑
i=1

n∑
j=1

(yi,(j) − φyi,(j−1) − µi)∆j and

C0 = (k − 1)

a∑
i=1

n∑
j=1

βj(yi,(j) − φyi,(j−1) − µi)2.

Since B0/
√
nC0

∼= 0, αj and βj are bounded,

∂lnL

∂σ
∼=

∂lnL∗

∂σ

= −N
σ3

(σ −
B0 +

√
B2

0 + 4NC0

N
)(σ −

B0 −
√
B2

0 + 4NC0

N
)

∼=
N

σ3
(
C0

N
− σ2).

The result then follows from the values of E(∂rlnL∗/∂σr) as in [20]. �

5.3. Lemma. Since σ̂ converges to σ as n tends to in�nity, the asymptotic distribution

of
√
n/v11(µ̂(φ, σ̂) − µ)/σ̂ is N(0,1) where v11 is the �rst element in the asymptotic

covariance matrix.

Proof. Proof of the Lemma 5.3. This follows from the well-known Slutsky's theorem.
See [20]. �

Thus, when we have a linear contrast of 'a' MML estimators and σ̂2 is the pooled MML
estimator of σ2, the [2] conditions are satis�ed and

∑a
i=1 liµi and σ̂

2 are asymptotically
independently distributed resulting the asymptotic distribution of√
m(k − 1)

∑a
i=1 liµ̂i/(σ̂

√∑a
i=1 l

2
i ) being N(0,1).

Some of the simulated values of the probabilities P (t∗ ≥ z0.05 = 1.645|H0) for di�erent
sample sizes are given in Table 2.

Table 2. Values of the type I error of the t∗ test; α = 0.050.

k = 2.0 k = 3.0 k = 5.0 k = 10.0 k = 15.0
n φ = 0.0
50 0.030 0.042 0.046 0.046 0.048
100 0.032 0.053 0.052 0.055 0.051
150 0.032 0.042 0.054 0.054 0.053
200 0.032 0.048 0.050 0.056 0.046

φ = 0.4
50 0.034 0.047 0.054 0.058 0.048
100 0.030 0.045 0.047 0.053 0.040
150 0.030 0.041 0.053 0.051 0.056
200 0.036 0.046 0.054 0.052 0.040

φ = 0.8
50 0.044 0.057 0.053 0.059 0.052
100 0.033 0.050 0.054 0.052 0.043
150 0.039 0.048 0.047 0.047 0.053
200 0.030 0.046 0.044 0.056 0.048

It can be seen that the normal distribution provides satisfactory approximations to
the percentage points. To have an idea about the power of the two tests given in 5.1 and
5.2, the simulated values for n = 100 where l1 = 1, l2 = −2 and l3 = 1 for di�erent k
and φ values are reported in Table 3. We carried out simulations for several other k, n
and li values but did not report since they give the similar results.

The values of power given in Table 3 are obtained by adding a constant d to the ob-
servations in the �rst and the third treatments and subtracting 2d from the observations
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Table 3. Values of the power of the t∗ and t tests; n = 100.

k = 2.0 k = 3.0 k = 5.0 k = 10.0 k = 15.0
d t∗ t t∗ t t∗ t t∗ t t∗ t

φ = 0.0
0.000 0.035 0.040 0.035 0.044 0.034 0.041 0.044 0.066 0.056 0.065
0.013 0.120 0.091 0.100 0.103 0.094 0.088 0.100 0.093 0.088 0.086
0.025 0.304 0.175 0.232 0.166 0.170 0.140 0.152 0.153 0.135 0.137
0.038 0.589 0.257 0.382 0.234 0.332 0.277 0.259 0.239 0.257 0.244
0.050 0.774 0.331 0.583 0.347 0.469 0.356 0.378 0.330 0.357 0.321
0.063 0.920 0.467 0.735 0.471 0.600 0.487 0.540 0.468 0.473 0.437
0.075 0.966 0.591 0.866 0.589 0.759 0.630 0.658 0.589 0.606 0.557
0.088 0.993 0.704 0.929 0.716 0.860 0.698 0.772 0.703 0.723 0.683
0.100 0.999 0.795 0.979 0.787 0.920 0.780 0.865 0.785 0.839 0.789
0.113 1.000 0.865 0.994 0.888 0.963 0.874 0.906 0.864 0.890 0.856

φ = 0.4
0.000 0.026 0.052 0.035 0.048 0.045 0.059 0.040 0.056 0.048 0.057
0.013 0.082 0.090 0.110 0.113 0.084 0.077 0.067 0.067 0.085 0.078
0.025 0.225 0.130 0.189 0.139 0.160 0.130 0.166 0.164 0.159 0.154
0.038 0.383 0.188 0.322 0.220 0.276 0.223 0.258 0.237 0.264 0.245
0.050 0.623 0.267 0.487 0.322 0.404 0.306 0.372 0.332 0.363 0.338
0.063 0.816 0.368 0.613 0.373 0.549 0.427 0.522 0.441 0.498 0.458
0.075 0.888 0.474 0.758 0.483 0.685 0.520 0.605 0.541 0.609 0.584
0.088 0.960 0.543 0.869 0.594 0.802 0.611 0.752 0.681 0.708 0.676
0.100 0.981 0.607 0.935 0.701 0.874 0.739 0.833 0.768 0.816 0.771
0.113 0.996 0.726 0.967 0.769 0.927 0.781 0.906 0.857 0.894 0.866

φ = 0.8
0.000 0.035 0.054 0.042 0.058 0.040 0.053 0.044 0.043 0.051 0.049
0.013 0.124 0.086 0.125 0.094 0.118 0.103 0.133 0.105 0.115 0.102
0.025 0.357 0.163 0.308 0.210 0.265 0.214 0.246 0.223 0.239 0.223
0.038 0.620 0.271 0.508 0.294 0.457 0.348 0.438 0.380 0.410 0.392
0.050 0.848 0.405 0.705 0.461 0.638 0.499 0.603 0.541 0.621 0.564
0.063 0.951 0.543 0.874 0.580 0.792 0.643 0.777 0.690 0.793 0.739
0.075 0.988 0.685 0.956 0.757 0.920 0.788 0.904 0.830 0.902 0.849
0.088 1.000 0.768 0.990 0.849 0.963 0.879 0.951 0.919 0.955 0.931
0.110 1.000 0.858 0.998 0.927 0.993 0.944 0.988 0.964 0.980 0.969
0.113 1.000 0.913 0.998 0.947 0.997 0.973 0.998 0.987 0.994 0.988

in the second treatment. The results show that t∗ test is much more powerful than the
classical t test.

In practice, we may be in error when we assume that our data follow a particular
distribution, since the shape parameters might be misspeci�ed or the data might contain
outliers, or be contaminated. When these situations arise, the distribution of the test
statistic may di�er from that expected. Therefore, the accurate estimates of the proba-
bility of type I and type II errors (i.e. power of the test) will not be obtained. When the
underlying assumptions are violated, robust test statistics are preferred to the traditional
test statistics. A test is called robust if its type I error is never substantially higher than
a pre-assigned value for plausible alternatives to an assumed model (Criterion Robust-
ness) and if its power is high (Inference Robustness). It is clear that robustness is very
desirable property for the hypothesis testing procedures. Table 4 summarizes the results
of simulations for k = 3, φ = 0.4 and n = 100 when we assume that the true model is
Gamma(3, σ). For this simulation study, the plausible alternatives used are as follows:

(1) Gamma(2,σ),
(2) Gamma(4,σ),
(3) Outlier model: (n − r) observations come from Gamma(3,σ) but r observation

(we do not know which one) comes from Gamma(3,2σ); r = [0.5 + 0.1n],
(4) Mixture model: 0.90Gamma(3,σ) + 0.10Gamma(3,2σ),
(5) Contamination model: 0.90Gamma(3,σ) + 0.10Gamma(5,σ)
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Table 4. Power of the t∗ and t tests for alternatives to Gamma(3,σ);
k = 3, n = 100 and φ = 0.4.

Model (1) Model (2) Model (3) Moel (4) Model (5)
d t∗ t t∗ t t∗ t t∗ t t∗ t
0.00 0.042 0.058 0.042 0.052 0.030 0.015 0.046 0.048 0.043 0.051
0.02 0.127 0.090 0.163 0.122 0.111 0.026 0.156 0.093 0.131 0.100
0.04 0.335 0.213 0.339 0.232 0.314 0.082 0.368 0.212 0.303 0.163
0.06 0.608 0.341 0.619 0.381 0.569 0.161 0.668 0.334 0.544 0.239
0.08 0.811 0.539 0.809 0.519 0.808 0.303 0.872 0.490 0.739 0.350
0.10 0.946 0.704 0.936 0.685 0.947 0.479 0.970 0.648 0.899 0.489
0.12 0.987 0.819 0.985 0.823 0.981 0.628 0.992 0.786 0.964 0.603

The values are obtained by adding a constant d to the observations in the �rst and
the third treatments and subtracting 2d from the observations in the second treatment
as in e�ciency analysis. From Table 4, we see that the power of the t∗ test is higher than
the t test for all sample models given above. For sample models, except Model (3), in
fact, the t∗ test has a double advantage: not only has it much smaller type I error but
also has higher power. Similar results are obtained for other φ values.

6. Determination of the shape parameter

It is known that when location, scale and shape parameters are to be estimated, maxi-
mum likelihood method is doubtful unless large samples (n > 250 or so) are available; see
[6]. Thus, one should consider estimating location, scale or location and shape parame-
ters when the sample size is small which is the case for experimental design. Therefore,
in this study, it is assumed that the shape parameter k in 2.3 is known. Actually, an
assumption of known shape parameter is found to be quite reasonable for many real-life
problems; see for example, [9]. See also [13] for a better understanding of the importance
of a given shape parameter.

However, in practice, shape parameter is also unknown. A plausible value for it can be
identi�ed by using Q-Q plots, goodness-of-�t tests, or by matching (approximately) the
sample skewness and kurtosis with the corresponding values of the distribution. Also it
can be determined by trying a series of values of this parameter as in [24]. The one that
maximizes the likelihood function is the required estimate. Due to the intrinsic robustness
of MMLE shown in section 5, this value will yield essentially the same estimates and
standard errors for plausible alternatives.

7. Conclusion

In this study, we proposed a new test statistic for testing the assumed values of linear
contrasts in one-way classi�cation AR(1) model. We believe that the results of this study
will be very useful for researchers and practitioners. Since all the procedures related
with linear contrasts are based on the assumption of normality, homogeneity of variances
and independence of error terms. There is a huge literature about nonnormality and
heterogeneity of variances. However, there is no too much work when the independence
assumption of error terms is not satis�ed. Dependency is tried to be prevented at the
design stage by randomization and there is a gap about how to deal with it, if it exists.
This paper �lls this gap not only by dealing with dependency but also with non-normality.
The proposed test directly use the original data rather than the transformed data and is
straightforward both algebraically and computationally.

Besides it has nice properties like e�ciency and being robust to plausible deviations
from the assumed model, i.e. not much a�ected from the outliers, contamination or the
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misspesi�cation of the shape parameter. The robustness of the test is due to the half-
umbrella ordering of the βj coe�cients, i.e. they decrease in the direction of the long
tail(s). Thus, the extreme observations in the direction of the long tail(s) automatically
receive small weights. That is instrumental to achieve robustness; see [8] and [20].
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