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function spaces
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Abstract
In this paper, using the concept of strong summation process, we give a
Korovkin type approximation theorem for a sequence of positive linear
operators acting from Lp,q (loc) into itself. We also study modulus of
continuity for Lp,q (loc) approximation and give the rate of convergence
of these operators.
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1. Introduction
The classical theorem of Korovkin [7] on approximation of continuous functions on a

compact interval gives conditions in order to decide whether a sequence of positive linear
operators converges to the identity operator. Some results concerning the Korovkin type
approximation theorem in the space Lp[a, b] of the Lebesgue integrable functions on a
compact interval may be found in [4]. If the sequence of positive linear operators does
not converge then it might be benefical to use matrix summability methods.

Approximation theory has important applications in the theory of polynomial approx-
imation, in functional analysis, numerical solutions of differential and integral equations
[1], [8].

The purpose this paper is to study a Korovkin type approximation theorem of a
function f by means of sequence of positive linear operators from the space of locally
integrable functions into itself with the use of a matrix summability method which in-
cludes both convergence and almost convergence. We also obtain rate of convergence in
Lp,q (loc) approximation with positive linear operators by means of modulus of continuity.

Now we recall some information of locally integrable functions given in [6].
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Let q(x) = 1 + x2 ; −∞ < x < ∞ . For h > 0, by Lp,q(loc) we will denote the space
of measurable functions f satisyfing the inequality,

(1)

 1

2h

x+h∫
x−h

|f(t)|p dt

1/p

≤Mf q (x) ,−∞ < x <∞

where p ≥ 1 and Mf is a positive constant which depends on the function f.
It is known [6] that Lp,q(loc) is a linear normed space with norm,

(2) ‖f‖p,q = sup
−∞<x<∞

(
1
2h

x+h∫
x−h
|f(t)|p dt

)1/p

q (x)

where ‖f‖p,q may also depend on h > 0. To simplify the notation, we need the following.
For any real numbers a and b put

‖f ;Lp (a, b)‖p,q :=

 1

b− a

b∫
a

|f(t)|p dt

1/p

,

‖f ;Lp,q (a, b)‖p,q = sup
a<x<b

‖f ;Lp (x− h, x+ h)‖p,q
q(x)

,

‖f ;Lp,q (|x| ≥ a)‖p,q = sup
|x|≥a

‖f ;Lp (x− h, x+ h)‖p,q
q(x)

.

With this notation the norm in Lp,q (loc) may be written in the form

‖f‖p,q = sup
x∈R

‖f ;Lp (x− h, x+ h)‖
q(x)

.

It is known [6] that Lkp,q (loc) is the subspace of all functions f ∈ Lp,q (loc) for which
there exists a constant kf such that

lim
|x|→∞

‖f − kfq;Lp (x− h, x+ h)‖
q(x)

= 0.

As usual, if T is a positive linear operator from Lp,q (loc) into Lp,q (loc), then the operator
norm ‖T‖ is given by ‖T‖ := sup

f 6=0

‖Tf‖p,q
‖f‖p,q

.

2. Strong A−summation process in Lp,q (loc)

The main aim of the present work is to study a Korovkin type approximation theorem
for a sequence of positive linear operators acting on the weighted space Lp,q (loc) by using
matrix summability method which includes both convergence and almost convergence.
We also give an example of positive linear operators which verifies our Theorem 2.5. but
does not verify the classical one ( see Theorem 2.1 below).

Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with nonnegative real

entries. Let {Tj} be a sequence of positive linear operators from Lp,q (loc) into itself. If

(3) lim
k

∑
j

ankj ‖Tjf − f‖p,q = 0, uniformly in n,

then we say that {Tjf} is strongly A−summable to f for every f in Lp,q (loc) where it is
assumed that the series converges for each k, n and f. Some results concerning summation
processes on some other spaces may be found in [2], [9] and [10].
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We recall the following result of [6] that we need in the sequel.
2.1. Theorem. Let {Tj} be a sequence of positive linear operators from Lp,q (loc)

into itself and satisfy the conditions
i) The sequence (Tj) is uniformly bounded, that is, ‖Tj‖ ≤ C < ∞, where C is a

constant independent of j,
ii) limj ‖Tj (fi;x)− fi (x)‖p,q = 0 where fi (y) = yi, i = 0, 1, 2.Then

lim
j
‖Tjf − f‖p,q = 0

for each function f ∈ Lkp,q (loc) , (see [6]) .
The next result shows that Korovkin type theorem does not hold in the whole space

Lp,q (loc) .

2.2. Theorem. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices

with nonnegative real entries. Let {Tj} be a sequence of positive linear operators from
Lp,q (loc) into itself satisfying

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(fi;x)− fi (x)‖p,q = 0

where fi (y) = yi for i = 0, 1, 2. Then there exists a function f∗ in Lp,q (loc) for which

(4) lim
k

sup
n

∑
j

a
(n)
kj ‖Tjf

∗ − f∗‖p,q ≥ 2
1− 1

p .

Proof. We consider the sequence of operators Tj given in [6] :

Tj (f ;x) =

{
x2

(x+h)2
f (x+ h) , x ∈ [2 (j − 1)h, (2j + 1)h)

f (x) , otherwise.

It is shown in [6] that

‖Tjf‖p,q ≤ 4 ‖f‖p,q .

Assume now that A :=
{
A(n)

}
=
{
a
(n)
kj

}
is a sequence of infinite matrices defined by

a
(n)
kj =

{
1
k+1

, n ≤ j ≤ n+ k

0 , otherwise.

Consider the following function f∗ given in [6] :

f∗ (x) =


x2 , if x ∈

∞⋃
k=1

[(2k − 1)h, 2kh)

−x2 , if x ∈
∞⋃
k=1

[2kh, (2k + 1)h)

0 , if x < 0.

Then f∗ ∈ Lp,q (loc) and it is shown in [6] that

‖Tjf∗ − f∗‖p,q ≥ 2
1− 1

p
(2j − 1)2 h2

1 + 4j2h2
.

Hence

1

k + 1

k+n∑
j=n

‖Tjf∗ − f∗‖p,q ≥
1

k + 1

k+n∑
j=n

2
1− 1

p
(2j − 1)2 h2

1 + 4j2h2
.
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On applying the operator lim
k

sup
n

on both sides one can see that

lim
k

sup
n

1

k + 1

k+n∑
j=n

‖Tjf∗ − f∗‖p,q ≥ 21−1/p.

Therefore the theorem is proved.
Now we show that the above mentioned problem has a positive solution in the subspace

Lkp,q (loc) . First we give the following
2.3. Lemma. LetA : =

{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with non-

negative real entries. Let {Tj} be a sequence of positive linear operators from Lp,q (loc)
into itself satisfying

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(fi;x)− fi (x)‖p,q = 0

where fi (y) = yi for i = 0, 1, 2. Assume that

(5) H
′
= sup

n,k

∑
j

a
(n)
kj <∞.

Then, for any continuous and bounded function f on the real axis,

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(f ;x)− f (x) ;Lp,q (a, b)‖ = 0

holds, where a and b are any real numbers.
Proof. Since f is uniformly continuous function on any closed interval, given ε > 0 there
exists a positive number δ = δ (ε) such that if |t− x| < δ implies that

(6) |f (t)− f (x)| < ε , for all x ∈ [a, b], t ∈ R.

Also, setting M = sup
x∈R
|f (x)|, we can write if |t− x| ≥ δ that

(7) |f (t)− f (x)| < 2M , for all x ∈ [a, b], t ∈ R.

Combining (6) and (7) we have

(8) |f (t)− f (x)| < ε+
2M

δ2
(t− x)2 ,

where -∞ < t < ∞; x ∈ [a, b]. Let c := maks {|a| , |b|} and using the positivity and
linearity of operators Tj we obtain from (8) that∑

j

a
(n)
kj ‖Tj(f (t) ;x)− f (x) ;Lp,q (a, b)‖

≤
∑
j

a
(n)
kj ‖Tj(|f (t)− f (x)| ;x)‖p,q + |f (x)|

∑
j

a
(n)
kj ‖Tj(1;x)− 1‖p,q

<
∑
j

a
(n)
kj

∥∥∥∥Tj(ε+ 2M

δ2
(t− x)2 ;x)

∥∥∥∥
p,q

+M
∑
j

a
(n)
kj ‖Tj(1;x)− 1‖p,q

= ε
∑
j

a
(n)
kj +

2M

δ2

∑
j

a
(n)
kj

∥∥Tj(t2;x)− x2∥∥p,q + 4Mc

δ2

∑
j

a
(n)
kj ‖Tj(t;x)− x‖p,q

+

(
2Mc2

δ2
+ ε+M

)∑
j

a
(n)
kj ‖Tj(1;x)− 1‖p,q .

Hence the proof is completed.
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2.4. Theorem. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices

with nonnegative real entries. Let {Tj} be a sequence of positive linear operators from
Lp,q (loc) into itself. Assume that

(9) H := sup
n,k

∑
j

a
(n)
kj ‖Tj‖ <∞

and

(10) H
′
:= sup

n,k

∑
j

a
(n)
kj <∞.

Then {Tj} is an A − strong summation process in Lkp,q (loc) , i.e.,for any function f ∈
Lkp,q (loc) we have

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(f ;x)− f (x)‖p,q = 0

if and only if

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(fi;x)− fi (x)‖p,q = 0

where fi (y) = yi for i = 0, 1, 2.
Proof. We follow [6] up to a certain stage. If f ∈ Lkp,q (loc) then f − kf .q ∈ L0

p,q (loc) .

So it is sufficient to prove the theorem for the function f ∈ L0
p,q (loc) . For ε > 0, there

exists a point x0 such that the inequality

(11)

 1

2h

x+h∫
x−h

|f (t)|p dt

1/p

< εq (x)

holds for all x, |x| ≥ x0. By the well known Lusin Theorem, there exists a continuous
function ϕ on the finite interval [−x0 − h, x0 + h] such that the inequality

(12) ‖f − ϕ;Lp (−x0, x0)‖ < ε

is fulfilled. Setting

(13) δ < min

{
2hεp

Mp (x0)
, h

}
,

where M (x0) = max

{
max

|x|≤x0+h
|ϕ (x)| , 1

}
, we can define a continuous function g by

g (x) =


ϕ (x) , if |x| ≤ x0 + h
0 , if |x| ≥ x0 + h+ δ

linear , otherwise.

Then by (11) , (12) , (13) and the Minkowski inequality, we obtain

(14) ‖f − g‖p,q < ε

for any ε > 0 (see [6]).
Now we can find a point x1 > x0 such that

(15) q (x1) >
M (x0)

ε
and g (x) = 0 for |x| > x1,
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where M (x0) is defined above. Then by (12), (13), (14) and the definiton of g and
Lemma 2.1. we get∑

j

a
(n)
kj ‖Tj (f ;x)− f (x)‖p,q ≤

∑
j

a
(n)
kj ‖Tj (f − g)‖p,q +

∑
j

a
(n)
kj ‖Tjg − g‖p,q

+
∑
j

a
(n)
kj ‖f − g‖p,q

≤ ε

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj

)
+
∑
j

a
(n)
kj ‖Tjg − g;Lp,q (−x1, x1)‖

+
∑
j

a
(n)
kj ‖Tjg − g;Lp,q (|x| ≥ x1)‖

≤ ε

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj + 1

)
+
∑
j

a
(n)
kj ‖Tjg;Lp,q (|x| ≥ x1)‖ .(16)

Since |g (x)| ≤M (x0) for all x ∈ R, we can write∑
j

a
(n)
kj ‖Tjg;Lp,q (|x| ≥ x1)‖p,q ≤M (xo)

∑
j

a
(n)
kj ‖Tj1;Lp,q (|x| ≥ x1)‖

≤M (xo)
∑
j

a
(n)
kj ‖Tj1− 1;Lp,q (|x| ≥ x1)‖

+M (xo)
∑
j

a
(n)
kj ‖1;Lp,q (|x| ≥ x1)‖

≤M (xo)
∑
j

a
(n)
kj ‖Tj1− 1‖p,q

+
M (xo)

q (x1)

∑
j

a
(n)
kj .

Considering hypothesis and (15) we get by (16) that

lim
k

sup
n

∑
j

a
(n)
kj ‖Tjf − f‖p,q = 0.

In the whole space Lp,q (loc) we have the following.
2.5. Theorem. Let A : =

{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries for which (9) and (10) holds. Let {Tj} be a sequence of positive
linear operators from Lp,q (loc) into itself satisfying

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(fi;x)− fi (x)‖p,q = 0

where fi (y) = yi for i = 0, 1, 2. Then for any functions f ∈ Lp,q (loc) we have

lim
k

sup
n

∑
j

a
(n)
kj

(
sup
x∈R

‖Tjf − f ;Lp (x− h, x+ h)‖p,q
q∗ (x)

)
= 0



689

where q∗ is a weight function such that lim
|x|→∞

1+x2

q∗(x) = 0.

Proof. By hypothesis, given ε > 0, there exists x0 such that for all x with |x| ≥ x0 we
have

(17)
1 + x2

q∗ (x)
< ε.

Let f ∈ Lp,q (loc). Then, for all n, k we get

γn :=
∑
j

a
(n)
kj

∥∥∥B(n)
k f − f ;Lp (|x| > x0)

∥∥∥
≤
∑
j

a
(n)
kj ‖Tjf‖p,q +

∑
j

a
(n)
kj ‖f‖p,q

≤ ‖f‖p,q

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj

)
< N, say.

Hence we have sup
n
γn < ∞ is bounded. By Lusin’s theorem we can find a continuous

function ϕ on [−x0 − h, x0 + h] such that

(18) ‖f − ϕ;Lp (−x0 − h, x0 + h)‖ < ε.

Now we consider the following function G given in [6]

G (x) :=


ϕ (−x0 − h) , x ≤ −x0 − h
ϕ (x0) , |x| < x0 + h

ϕ (x0 + h) , x ≥ x0 + h.

We see that G is continuous and bounded on the whole real axis. Now let f ∈
Lp,q (loc)and we get for all n, k that

βn :=
∑
j

a
(n)
kj ‖Tjf − f ;Lp,q (−x0, x0)‖

≤
∑
j

a
(n)
kj ‖Tj (f −G) ;Lp,q (−x0, x0)‖+

∑
j

a
(n)
kj ‖TjG−G;Lp,q (−x0, x0)‖

+
∑
j

a
(n)
kj ‖f −G;Lp,q (−x0 − h, x0 + h)‖

≤
∑
j

a
(n)
kj ‖Tj‖p,q ‖(f −G) ;Lp,q (−x0 − h, x0 + h)‖

+
∑
j

a
(n)
kj ‖TjG−G;Lp,q (−x0, x0)‖

+
∑
j

a
(n)
kj ‖f −G;Lp,q (−x0 − h, x0 + h)‖

≤ ‖f −G;Lp,q (−x0 − h, x0 + h)‖

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj

)
+
∑
j

a
(n)
kj ‖TjG−G;Lp,q (−x0, x0)‖ .

Hence by the hypothesis and Lemma 2.1. we have

(19) lim
k

sup
n
βn = 0.
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On the other hand, a simple calculation shows that

un :=
∑
j

a
(n)
kj ‖Tjf − f‖p,q

<
∑
j

a
(n)
kj sup
|x|<x0

(
1
2h

x+h∫
x−h

∣∣∣∣∣∑j a(n)kj Tjf − f

∣∣∣∣∣
p

dt

)1/p

q∗ (x)

q (x)

q (x)

+
∑
j

a
(n)
kj sup
|x|≥x0

(
1
2h

x+h∫
x−h

∣∣∣∣∣∑j a(n)kj Tjf − f

∣∣∣∣∣
p

dt

)1/p

q∗ (x)

q (x)

q (x)

= βn sup
|x|<x0

q (x)

q∗ (x)
+ γn sup

|x|≥x0

q (x)

q∗ (x)

(20) < βnq (x0) + εγn.

It follows from (17), (18) , (19) , (20) and Lemma 2.1. that

un < q (x0) ‖f −G;Lp,q (−x0 − h, x0 + h)‖

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj

)

+ q (x0)

∥∥∥∥∥∑
j

a
(n)
kj TjG−G;Lp,q (−x0, x0)

∥∥∥∥∥+ εN

= Kε+ q (x0)

∥∥∥∥∥∑
j

a
(n)
kj TjG−G;Lp,q (−x0, x0)

∥∥∥∥∥
where K :=Mq (x0) +N and M := H + 1. By Lemma 2.1. we get

lim
k

sup
n

∑
j

a
(n)
kj

(
sup
x∈R

‖Tjf − f ;Lp (x− h, x+ h)‖p,q
q∗ (x)

)
= 0.

2.6. Remark. We now present an example of a sequence of positive linear operators
which satisfies Theorem 2.5 but does not satisfy Theorem 2.1. Assume now that A :={
A(n)

}
=
{
a
(n)
kj

}
is a sequence of infinite matrices defined by

a
(n)
kj =

{
1
k+1

, n ≤ j ≤ n+ k

0 , otherwise.

In this case A−summability method reduces to almost convergence,([8]).
Let Tj : Lp,q (loc)→ Lp,q (loc) be given by

Tj (f ;x) =

{
x2

(x+h)2
f (x+ h) , x ∈ [2 (j − 1)h, (2j + 1)h]

f (x) , otherwise

The sequence {Tj} satisfies Theorem 2.1. (see [6]). It is shown that for all j ∈ N,
‖Tjf‖p,q ≤ 4 ‖f‖p,q . Hence {Tj} is an uniformly bounded sequence of positive linear
operators from Lp,q (loc) into itself. Also

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(fi;x)− fi (x)‖p,q = 0

where fi (y) = yi for i = 0, 1, 2. Now define {Pj} by

Pj (f ;x) = (1 + uj)Tj (f ;x)
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where

uj =

{
1 , j = 2n, n ∈ N
0 d.d.

It is easy to see that {uj} almost convergent to zero. Therefore the sequence of positive
linear operators {Pj} satisfies Theorem 2.5. but does not satisfy Theorem 2.1.

3. Rates of Convergence For Strong A−Summation Process in
Lp,q (loc)

In this section, using the modulus of continuity, we study rates of convergence in
Lp,q (loc).
We now turn to introducing some notation and basic definitions to obtain the rate con-
vergence of the operators given in Theorem 2.5.
Also, we consider the following modulus of continuity:

w (f, δ) = sup
|x−y|≤δ

|f (y)− f (x)| ,

where δ is a positive constant, f ∈ Lp,q (loc) . It is easy to see that, for any c > 0 and all
f ∈ Lp,q (loc) ,

w (f, δ) ≤ (1 + [c])w (f, δ) ,

where [c] is defined to be the greatest integer less than or equal to c, [3].
To obtain our main results we first need the following lemma.
3.1. Lemma. Let A : =

{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with non-

negative real entries. Let {Tj} be a sequence of positive linear operators from Lp,q (loc)
into itself.Then for each j ∈ N and δ > 0, and for every function f that is continuous
and bounded on the whole real axis, we have∑

j

a
(n)
kj ‖Tjf − f ;Lp,q (a, b)‖ ≤ w (f ; δ)

∑
j

a
(n)
kj ‖Tjf0 − f0‖p,q

+ 2w (f ; δ)
∑
j

a
(n)
kj + C1

∑
j

a
(n)
kj ‖Tjf0 − f0‖p,q

where f0 (t) = 1, ϕx (t) := (t− x)2 , C1 = sup
a<x<b

|f (x)| and δ := αj =
√
‖Tjϕx‖p,q.

Proof. Let f be any continuous and bounded function on the real axis, and let x ∈ [a, b]
be fixed. Using linearity and monotonicity of Tj and for any δ > 0, by modulus of
continuity, we get

|Tj (f ;x)− f (x)| ≤ Tj
(
w

(
f,
|t− x|
δ

δ

)
, x

)
+ |f (x)| |Tj (f0;x)− f0 (x)|
≤ wq (f, δ) |Tj (f0;x)− f0 (x)|+ wq (f, δ)

+
wq (f, δ)

δ2
|Tj ϕx|+ |f (x)| |Tj (f0;x)− f0 (x)| .
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Let δ := αj =
√
‖Tj ϕx‖p,q. Then we have

‖Tj f − f ;Lp,q (a, b)‖ ≤ wq (f, δ) ‖Tj (f0;x)− f0 (x)‖p,q +
+ wq (f, δ)

+
wq (f, δ)(√
‖Tj ϕx‖p,q

)2 ‖Tj ϕx‖p,q
+ ‖Tj (f0;x)− f0 (x)‖p,q sup

a<x<b
|f (x)|

Now let C1 = sup
a<x<b

|f (x)|. Then we get

∑
j

a
(n)
k,j ‖Tj f − f ;Lp,q (a, b)‖ ≤

∑
j

a
(n)
kj wq (f, δ) ‖Tj (f0;x)− f0 (x)‖p,q

+ 2
∑
j

a
(n)
kj wq (f, δ)

+ C1

∑
j

a
(n)
kj ‖Tj (f0;x)− f0 (x)‖p,q .

3.2. Theorem. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries for which (10) holds. Let {Tj} be a sequence of positive lin-
ear operators from Lp,q (loc) into itself. Assume that for each continuous and bounded
function f on the real line, the following conditions hold:

(i) lim
k

sup
n

∑
j

a
(n)
kj ‖Tj (f0;x)− f0 (x)‖p,q = 0

(ii) lim
k

sup
n

∑
j

a
(n)
kj wq (f, δ) = 0

(iii) lim
k

sup
n

∑
j

a
(n)
kj wq (f, δ) ‖Tj (f0;x)− f0 (x)‖p,q = 0

where δ = αj =
√
‖Tj ϕx‖p,q. Then we have

lim
k

sup
n

∑
j

a
(n)
kj ‖Tjf − f ;Lp,q (a, b)‖ = 0.

Proof. Using Lemma 3.1. and considering (i) , (ii), (iii) and (10) we have

lim
k

sup
n

∑
j

a
(n)
kj ‖Tjf − f ;Lp,q (a, b)‖ = 0

for all continuous and bounded functions on the real axis.
3.3. Theorem. Let A : =

{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries for which (9) and (10) holds. Let {Tj} be a sequence of positive
linear operators from Lp,q (loc) into itself. Assume that

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj (fi;x)− fi (x)‖p,q = 0
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where fi (y) = yi for i = 0, 1, 2. If

(i) lim
k

sup
n

∑
j

a
(n)
kj ‖Tj (f0;x)− f0 (x)‖p,q = 0

(ii) lim
k

sup
n

∑
j

a
(n)
kj wq (G, δ) = 0

(iii) lim
k

sup
n

∑
j

a
(n)
kj wq (G, δ) ‖Tj (f0;x)− f0 (x)‖p,q = 0

where G is given as in the proof of Teorem 2.5. Then we have

lim
k

sup
n

∑
j

a
(n)
kj

(
sup
x∈R

‖Tjf − f ;Lp (x− h, x+ h)‖
q∗ (x)

)
= 0

where q∗ is a weight function such that lim
|x|→∞

1+x2

q∗(x) = 0.

Proof. It is known from Theorem 2.5. that

un < q (x0) ‖f −G;Lp,q (−x0 − h, x0 + h)‖

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj

)
+ q (x0)

∑
j

a
(n)
kj ‖TjG−G;Lp,q (−x0, x0)‖+ εN

= Kε+ q (x0)
∑
j

a
(n)
kj ‖TjG−G;Lp,q (−x0, x0)‖

where K :=Mq (x0) +N and M := H + 1. Then by Lemma 3.1. and Theorem 2.5. we
get

u
(n)
k ≤ Kε+ q (x0)

∑
j

a
(n)
kj wq (G; δ) ‖Tj (f0;x)− f0 (x)‖p,q

+ 2q (x0)
∑
j

a
(n)
kj wq (G; δ)

+ q (x0)C
′
1

∑
j

a
(n)
kj ‖Tj (f0;x)− f0 (x)‖p,q

where C
′
1 := sup

−x0<x<x0
|G (x)| and the proof is completed.
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