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On a new reproducing kernel Hilbert space and a
boundary value problem for harmonic functions
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Abstract
In this paper we continue to develop a theory on a new reproducing
kernel Hilbert space related to the decomposition theorem for harmonic
functions on a domain of the form Ω\K, where Ω is an open subset of
Rn and K a compact subset of Ω.
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1. Introduction
There is a lot of papers about reproducing kernel Hilbert spaces since [1]. This theory

found her place also in the area of applied mathematics (see [4]). There are also results
about reproducing kernel Hilbert spaces in the framework of real harmonic functions (see
[2]) and in the framework of harmonic Bergman spaces (see [3]). In [3] there are explicit
formulas for reproducing kernels in the case of a unit ball and a half space. There is no
explicit formula for the general case of a reproducing kernels for a harmonic Bergman
space on arbitrary domain. In [5] we introduced a new spaces Ap (Ω\K) of harmonic
functions on Ω\K, where Ω is an open subset of Rn and K is a compact subset of Ω.
For these spaces we introduced a new norm and a new inner product (in the case p = 2).
Then we obtained a new reproducing kernel for the space A2 (Ω\K) and found a relation
to the standard reproducing kernel on harmonic Bergman space.
This paper is a continuation of [5]. First of all, for an arbitrary nonempty open set E of
Ω\K we introduce a new space Ap (E) and we consider the problem of equalness of Ap (E)
and bp (E) and find it’s connection to the harmonic extendability. Then we consider the
problem of equivalence of norms on the space Ap (Ω\K). In some cases norms under
consideration are equivalent, so we restrict ourselves to those that are equivalent and find
some useful properties. For the standard L2 inner product on A2 (Ω\K) we obtain a new
reproducing kernel KΩ\K on A2 (Ω\K) and prove that this kernel is actually a projection
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of a kernel RΩ\K on A2 (Ω\K). After that, we introduce a new integral operator on
L2 (Ω\K) related to the reproducing kernel SΩ\K and obtain some useful properties. In
final, a new kind of a boundary value problem related to the space Ap (Ω\K) is introduced
in the last section. This new boundary value problem is a new type of a boundary value
problem for harmonic functions on domains of the form Ω\K. On annular regions we
show that this problem has a unique solution. A general case remains open.

2. Preliminaries
Let n ≥ 2, Ω an open subset of Rn and K a compact subset of Ω. If u is a harmonic

function on Ω\K, there exists functions v and w such that u = v + w on Ω\K, where
v is harmonic on Ω and w is harmonic on Rn\K. If we impose condition on w that
lim|x|→∞ w (x) = 0 in the case n > 2, or lim|x|→∞ w (x)−α log |x| = 0 (for some constant
α) in the case n = 2, then the decomposition u = v + w is unique. The proof of this
can be found in [3]. Let 1 ≤ p < ∞. If E is a nonempty open subset of Rn, we denote
by bp (E) a set of all functions from Lp (E) that are harmonic on E. This is a Banach
space called harmonic Bergman space. More on these spaces can be found in [3]. In [5]
we introduced a space Ap (Ω\K) of all functions u ∈ bp (Ω\K) such that u = v + w on
Ω\K, where v ∈ bp (Ω) and w ∈ bp (Rn\K). In [5] we proved that

A
p (Ω\K) = bp (Ω) |Ω\K ⊕ bp (Rn\K) |Ω\K .

This is the motivation for the following definition.

2.1. Definition. Let 1 ≤ p < ∞, Ω an open subset of Rn and K a compact subset of
Ω. Let E be an arbitrary nonempty open subset of Ω\K. We define

A
p (E) = bp (Ω) |E ⊕ bp (Rn\K) |E .

2.2. Remark. We should use notation A
p
Ω,K (E) instead of Ap (E) because the previous

definition depends also on Ω and K, not just of E. We will continue to use notation
Ap (E) because Ω and K will be seen from the context.

2.3. Lemma. For every open set E in Ω\K it holds

A
p (Ω\K) |E = A

p (E) .

Proof. Let u ∈ Ap (E). There are v ∈ bp (Ω) and w ∈ bp (Rn\K) such that u = v +w on
E. Obviously v+w is harmonic on Ω\K. Let U = v+w on Ω\K. We have U ∈ Ap (Ω\K)
and u = U |E , so u ∈ Ap (Ω\K) |E . The other direction is obvious. �

In [5] we introduced a problem to find all (n, p,Ω,K) such that Ap (Ω\K) = bp (Ω\K).
Here we introduce an analogous problem, to see when Ap (E) = bp (E) for some open set
E in Ω\K. We now prove the following theorem.

2.4. Theorem. Let E be a nonempty open subset of Ω\K. Then Ap (E) = bp (E) if and
only if Ap (Ω\K) = bp (Ω\K) and bp (Ω\K) |E = bp (E).

Proof. Suppose Ap (E) = bp (E). By previous lemma we have Ap (Ω\K) |E = bp (E).
Let u ∈ bp (Ω\K). Then u|E ∈ bp (E) = Ap (Ω\K) |E , so there is ũ ∈ Ap (Ω\K) such
that u|E = ũ|E . This and the fact that u and ũ are harmonic on Ω\K, implies u = ũ on
Ω\K. So, u = ũ ∈ Ap (Ω\K). We conclude that Ap (Ω\K) = bp (Ω\K). From this we
get bp (E) = Ap (Ω\K) |E = bp (Ω\K) |E , so one direction of the theorem is proved.
Suppose now that Ap (Ω\K) = bp (Ω\K) and bp (Ω\K) |E = bp (E). We have Ap (E) =
Ap (Ω\K) |E = bp (Ω\K) |E = bp (E), so the other direction of the theorem also holds,
and the proof is finished. �

This theorem is a motivation for the following definition.
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2.5. Definition. Let n ≥ 2 and 1 ≤ p < ∞. Let Ω be an open subset of Rn and K
a compact subset of Ω. We say that a nonempty open subset E of Ω\K is harmonic
p-extendable to Ω\K if bp (Ω\K) |E = bp (E).

So, the last theorem says that Ap (E) = bp (E) if and only if E is a harmonic p-
extendable to Ω\K and Ap (Ω\K) = bp (Ω\K).

2.6. Corollary. If Ap (Ω\K) 6= bp (Ω\K), then Ap (E) 6= bp (E) for every nonempty
open subset E of Ω\K.

2.7. Corollary. If Ap (Ω\K) = bp (Ω\K), then Ap (E) = bp (E) if and only if E is
harmonic p-extendable to Ω\K.

It would be interesting to characterize all harmonic p-extendable sets E to Ω\K.

3. Equivalence of norms
In [5] we proved the following lemma.

3.1. Lemma. Let 1 ≤ p <∞ and u ∈ Ap (Ω\K) is arbitrarily chosen. Then

‖u‖bp(Ω\K) ≤ 2
p−1
p ‖u‖Ap(Ω\K).

From this lemma we could ask: Is there a C > 0 such that ‖u‖Ap(Ω\K) ≤ C‖u‖bp(Ω\K)

for every u ∈ Ap (Ω\K)?

3.2. Remark. If Ω = Rn and K an arbitrary compact set of Rn, then these norms are
equal because u = v + w, where v = 0 on Rn. Also, in the case when K = {a}, where
a ∈ Ω, we have u = v + w, where v ∈ bp (Ω), w ∈ bp (Rn\ {a}) = {0}. So, w = 0 on
Rn\ {a} and ‖u‖Ap(Ω\{a}) = ‖v‖bp(Ω) = ‖v‖bp(Ω\{a}) = ‖u‖bp(Ω\{a}). In both cases we
have C = 1. A general case remains open.

In this section we will consider the case of (n, p,Ω,K) such that

‖u‖Ap(Ω\K) ≤ C‖u‖bp(Ω\K)

for every u ∈ Ap (Ω\K). This condition with the previous lemma is equivalent that
‖ · ‖Ap(Ω\K) and ‖ · ‖bp(Ω\K) are equivalent. So, without further assumption, we suppose
that this equivalence of norms is satisfied in the rest of this section.

3.3. Theorem. If ‖ ·‖Ap(Ω\K) and ‖ ·‖bp(Ω\K) are equivalent, then Ap (Ω\K) is a closed
subspace of bp (Ω\K).

Proof. We proved in [5] that Ap (Ω\K) is a Banach space with respect to ‖ · ‖Ap(Ω\K). If
these norms are equivalent, then Ap (Ω\K) is a Banach space with respect to ‖·‖bp(Ω\K).
Since bp (Ω\K) is a Banach space with respect to ‖ · ‖bp(Ω\K) and Ap (Ω\K) is a Banach
space with respect to ‖ · ‖bp(Ω\K), this implies that Ap (Ω\K) is a closed subspace of
‖ · ‖bp(Ω\K) and the proof is finished. �

In [5] we proved the following theorem

3.4. Theorem. Suppose x ∈ Ω\K. Then

|u (x) | ≤
2

p−1
p ‖u‖Ap(Ω\K)

V (B)1/p d (x, ∂ (Ω\K))n/p

for every u ∈ Ap (Ω\K) .
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If we impose condition that the norms ‖ · ‖Ap(Ω\K) and ‖ · ‖bp(Ω\K) are equivalent,
then we have

|u (x) | ≤
2

p−1
p C‖u‖bp(Ω\K)

V (B)1/p d (x, ∂ (Ω\K))n/p

In the case p = 2 this means that point evaluation is a bounded linear functional on
the Hilbert space A2 (Ω\K) with respect to ‖ · ‖b2(Ω\K). This implies that A2 (Ω\K)
is a reproducing kernel Hilbert space. If x ∈ Ω\K is arbitrarily chosen, there is a
KΩ\K (x, ·) ∈ A2 (Ω\K) such that

u (x) = 〈u,KΩ\K (x, ·)〉

for all u ∈ A2 (Ω\K) with respect to inner product from b2 (Ω\K).
Because A2 (Ω\K) is a closed subspace of b2 (Ω\K) and b2 (Ω\K) is a closed subspace of
L2 (Ω\K), we have that A2 (Ω\K) is a closed subspace of the Hilbert space L2 (Ω\K),
which implies that there is a unique orthogonal projection of L2 (Ω\K) onto A2 (Ω\K).
We denote this projection by PΩ\K . Let RΩ\K be a reproducing kernel for b2 (Ω\K). So,

u (x) = 〈u,RΩ\K (x, ·)〉

for every u ∈ b2 (Ω\K). If we use the fact that A2 (Ω\K) ⊆ b2 (Ω\K), we get that KΩ\K
is a projection of RΩ\K to A2 (Ω\K).

3.5. Theorem. If x ∈ Ω\K, then

PΩ\K [u] (x) =

∫
Ω\K

u (y)KΩ\K (x, y) dy

for all u ∈ L2 (Ω\K).

Proof. Let x ∈ Ω\K and u ∈ L2 (Ω\K). Then

PΩ\K [u] (x) = 〈PΩ\K [u] ,KΩ\K (x, ·)〉
= 〈u,KΩ\K (x, ·)〉

=

∫
Ω\K

u (y)KΩ\K (x, y) dy,

where the first equality follows from the reproducing property of KΩ\K (x, ·), the sec-
ond equality holds because PΩ\K is a self-adjoint projection onto a subspace containing
KΩ\K (x, ·), and the third equality follows from the definition of the inner product and
the part 1. of the following theorem. �

3.6. Theorem. The reproducing kernel KΩ\K has the following properties:
1. KΩ\K is real valued.
2. If (um) is an orthonormal basis of A2 (Ω\K) with respect to ‖ · ‖b2(Ω\K), then

KΩ\K (x, y) =

∞∑
m=1

um (x)um (y)

for all x, y ∈ Ω\K, where the convergence is pointwise.
3. KΩ\K (x, y) = KΩ\K (y, x) for all x, y ∈ Ω\K.
4.

‖KΩ\K (x, ·) ‖2b2(Ω\K) = KΩ\K (x, x)
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Proof. 1. Let u be a real valued function from A2 (Ω\K). Then we have

0 = Im (u (x)) = Im

(∫
Ω\K

u (y)KΩ\K (x, y)dy

)

= −
∫

Ω\K
u (y) Im

(
KΩ\K (x, y)

)
dy

If we take u = Im
(
KΩ\K (x, ·)

)
then we obtain

∫
Ω\K

(
Im
(
KΩ\K (x, y)

))2
dy = 0, which

implies Im
(
KΩ\K

)
≡ 0, so KΩ\K is real valued.

2. Let (um (x)) be any orthonormal basis of A2 (Ω\K). It exists because of the sepa-
rability of this space with respect to ‖ · ‖b2(Ω\K) (norms are equivalent). By standard
Hilbert space theory

KΩ\K (x, ·) =

∞∑
m=1

〈KΩ\K (x, ·) , um〉 =

∞∑
m=1

um (x)um,

where the infinite sum converges in the norm from b2 (Ω\K) restricted to A2 (Ω\K).
Since point evaluation is a continuous linear functional on A2 (Ω\K), the equation above
implies that 2. holds.
3. This part follows immidiately from 1. and 2.
4. Let x ∈ Ω\K. Then ‖KΩ\K (x, ·) ‖2b2(Ω\K) = 〈KΩ\K (x, ·) ,KΩ\K (x, ·)〉 = KΩ\K (x, x),
where the second equality follows from the reproducing property of KΩ\K (x, ·).

�

3.7. Remark. In [5], for x ∈ Ω\K we introduced a reproducing kernel SΩ\K (x, ·) for a
Hilbert space A2 (Ω\K) with respect to ‖ · ‖A2(Ω\K) as a consequence of a boundedness
of a linear functional u 7→ u (x) on A2 (Ω\K). It is shown in [5] that for x ∈ Ω\K,
SΩ\K (x, ·) = RΩ (x, ·) + RRn\K (x, ·) , where RΩ (x, ·) and RRn\K (x, ·) are reproducing
kernels for b2 (Ω) and b2 (Rn\K), respectively, obtained as a consequence of boundedness
of a linear functional u 7→ u (x) on these spaces. It would be interesting to see connection
between KΩ\K and SΩ\K .

3.8. Remark. Notations KΩ\K and SΩ\K are not good in the sense that in reality these
kernels depend on Ω and K, not just on Ω\K. We will use these notations because they
are easier to write and we can see what are Ω and K from the context.

4. Integral operators
4.1. Definition. For u ∈ L2 (Ω\K) we define MΩ\K [u] by

MΩ\K [u] (x) =

∫
Ω\K

u (y)SΩ\K (x, y) dy

for all x ∈ Ω\K.

4.2. Lemma. If ∫
Ω\K

∫
Ω\K
|SΩ\K (x, y) |2dxdy <∞,

then MΩ\K is a bounded linear operator on L2 (Ω\K).

Proof. Linearity is obvious. A boundedness is an immidiate consequence of a Schwartz
inequality. �



1084

4.3. Remark. Condition on SΩ\K in the previous lemma is trivially satisfied in the case
Ω = Rn and K = {a} for any a ∈ Rn. It would be interesting to characterize all Ω and
K such that this condition is satisfied. We can consider also the question on conditions
on Ω and K that imply boundedness of MΩ\K on L2 (Ω\K).

4.4. Lemma. MΩ\K [u] = u for all u ∈ A2 (Ω\K) if and only if KΩ\K (x, ·) = SΩ\K (x, ·)
for every x ∈ Ω\K.

Proof. ” =⇒ ”. If MΩ\K [u] = u for all u ∈ A2 (Ω\K) then∫
Ω\K

u (y)SΩ\K (x, y) dy =

∫
Ω\K

u (y)KΩ\K (x, y) dy,

for all x ∈ Ω\K. This implies that KΩ\K (x, ·) − SΩ\K (x, ·) belongs to an orthogonal
complement of A2 (Ω\K) and to the space A2 (Ω\K) itself. So, it belongs to their inter-
section and this is a zero set. From this we conclude that KΩ\K (x, ·) = SΩ\K (x, ·).
”⇐= ”. This direction follows immidiately from the reproducing property of KΩ\K . �

From the fact that SΩ\K (x, y) = RΩ (x, y) +RRn\K (x, y) for all x, y ∈ Ω\K (see [5]),
we obtain

MΩ\K [u] (x) =

∫
Ω\K

u (y)RΩ (x, y) dy +

∫
Ω\K

u (y)RRn\K (x, y) dy.

5. A new type of a boundary value problem
Let Ω be an open subset of Rn andK a compact subset of Ω. Suppose f is a continuous

function on ∂Ω and g a continuous function on ∂K. Let us consider the following problem.
Problem: Can we find a harmonic function u on Ω\K that is continuous on Ω\K and that
has a decomposition u = v+w on Ω\K, where v is a solution to a Dirichlet problem of Ω
with boundary data f , and w is a solution to a Dirichlet problem of Rn\K with boundary
data g? Here v and w are from the decomposition theorem for harmonic functions that
we consider in this paper. We will call this problem an (Ω,K) boundary value problem
with boudary data f and g.

5.1. Definition. For an (Ω,K) boundary value problem we say it is solvable if for every
continuous function f on ∂Ω and every continuous function g on ∂K there is a solution
to the (Ω,K) boundary value problem with boundary data f and g.

5.2. Theorem. Let n > 2, 0 < r0 < r1. Consider an annular region A = Ω\K, where
Ω = {x ∈ Rn, |x| < r1} and K = {x ∈ Rn, |x| ≤ r0}. Then an (Ω,K) boundary value
problem is solvable with a unique solution.

Proof. We will use the following lemma which is a Theorem 4.11 in [3].

5.3. Lemma. Suppose f ∈ C (S). Then there is a unique function u harmonic on B∗

and continuous on B
∗ such that u|S = f . Moreover, u = Pe [f ] on B∗\ {∞}.

If we modify the proof of this lemma we can prove an analogous theorem for arbitrary
ball (see exercise 8 in the same chapter). Let us consider now an (Ω,K) boundary value
problem for an annular region Ω\K. Let f and g be a continuous functions on ∂Ω = r1S
and ∂K = r0S, respectively, where S is a unit sphere. In this case we obtain a unique
solution v to a Dirichlet problem for Ω with boundary data f and a unique solution w
to a Dirichlet problem for Rn\K with boundary data g. By the previous lemma w is
harmonic at infinity and in the case n > 2 this is equivalent to the fact that a limit of
w (x) is zero when |x| −→ ∞. Let u = v + w. Then u is a harmonic function on Ω\K
and a condition at infinity of w is satisfied in the decomposition theorem for harmonic
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functions. Continuity of v on Ω and w on Rn\K imply continuity of u on Ω\K. We
conclude that in the case of an annular region in Rn, where n > 2, (Ω,K) boundary
value problem is solvable with a unique solution, so the proof is finished. �

In general we don’t have a solution to (Ω,K)-boundary value problem because the
Dirichlet problem is not solvable for an arbitrary open set. If Ω is a bounded open set
and if there is a solution to the Dirichlet problem (here we suppose that the boundary
data is a continuous function), then this solution is unique, which is a consequence of a
maximum principle for harmonic functions. There are unbounded open sets where we
still have a unique solution to a Dirichlet problem, as it is the case for a half space (see
chapter 7 in [3]), but in general if a Dirichlet problem is solvable for unbounded regions,
we cannot conclude that it is unique because maximum principle for harmonic functions
is not satisfied for unbounded regions (see [3]).

5.4. Remark. Let 1 ≤ p <∞. If u = v + w is a solution to the (Ω,K) boundary value
problem and if v ∈ Lp (Ω), w ∈ Lp (Rn\K), then u ∈ Ap (Ω\K). It would be interesting
to consider the space Ap (Ω\K) in the framework of this (Ω,K) boundary value problem
for harmonic functions.

5.5. Remark. We could apply these results also in the case of parabolic partial differ-
ential equations because there is an analogous decomposition theorem in that case also.
(see [6]).
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