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Approximations in a hyperlattice by using
set-valued homomorphisms
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Abstract

In this paper, the concepts of set-valued homomorphism and strong set-
valued homomorphism of a hyperlattice are introduced. The notions
of generalized lower and upper approximation operators constructed
by means of a set-valued mapping are provided. We also propose the
notions of generalized lower and upper approximations with respect to
a hyperideal of a hyperlattice which is an extended notion of rough
hyperideal in a hyperlattice and discuss some signi�ciant properties of
them.
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1. Introduction

The theory of algebraic hyperstructures is a well-established branch of classical al-
gebraic theory which were initiated by Marty [15]. In a classical algebraic structure,
the composition of two elements is an element while in an algebraic hyperstructure the
composition of two elements is a set. Hundreds of papers and several books have been
written on hyperstructure theory, see for instance [5,6]. Hyperlattices were �rst studied
by Konstantinidou and Mittas [18]. Since the concept of hyperlattice is a generaliza-
tion of the concept of lattice, hyperlattice theory was studied by Konstantinidou [19-21],
Ashra� [3], Rahnamai-Barghi [29-30] Guo and Xin [14], Han and Zhao [12], Zhao and
Han [37].

Rough set theory was proposed by Pawlak [26]; see also [27-28]. The theory of rough
sets is an extension of set theory, in which a subset of a universe is described by a pair of
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ordinary sets called the lower and upper approximations. A key concept in Pawlak rough
set model is the equivalence relation. The equivalence classes are the building blocks for
the construction of the lower and upper approximations. However, the requirement of an
equivalence relation in Pawlak rough set model seems to be a very restrictive condition
that may limit the applications of rough set models. Thus, one of the main directions
of research in rough set theory is naturally the generalization of Pawlak rough set ap-
proximations. For instance, the notion of approximations are extended to general binary
relations, coverings, completely distributive lattices, fuzzy lattices and Boolean algebras.
This research soon led to a natural question concerning the possible connection between
rough sets and algebraic systems.

In [22], Kuroki introduced a rough ideal in a semigroup. Kuroki and Wang [23] pre-
sented some properties of the lower and upper approximations with respect to normal
subgroups. Davvaz [8] investigated the relationship between rough sets and ring theory
by considering a ring as a universal set and introducing the concepts of rough subrings
and rough ideals with respect to an ideal of a ring. Kazanc� and Davvaz [16] introduced
the notions of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in
a ring and presented some properties of such ideals. Rough semigroups, rough modules,
rough lattices, rough MV-algebras, rough hemirings and rough γ semihyperrings have
been investigated by many authors( see also [1,2,4,7,8,11,17,19,24,25,31,34]). Davvaz
and Mahdavipour [10] presented a framework for generalizing the standard notion of
rough set approximation space. They proposed new de�nitions of the lower and upper
approximations which are basic concepts of rough set theory. In [9], Davvaz introduced
the concept of set-valued homomorphism for groups which is a generalization of an ordi-
nary homomorphism. The concepts of set-valued homomorphism and strong set-valued
homomorphism of a ring were introduced by Yamak et al.[35] and Hooshmandasl et al.
[13] .

The initiation and majority of studies on rough sets for algebraic structures have been
concentrated on a congruence relation. The congruence relation, however, seems to re-
strict the application of the generalized rough set model for algebraic sets. This may be
by reason of incomplete information about the objects under consideration. Sometimes
due to imprecise human knowledge about the elements of the universe set, an equiva-
lence relation among these elements is di�cult to �nd. To overcome this problem, we
require set-valued maps instead of equivalence relations in generalized rough sets. This
technique is useful where it is not easy to �nd a equivalence relation among the objects
of the universe set. This paper is structured as follows. After an introduction, in Sec-
tion 2, we present some basic de�nitions and results about approximation operators. In
Section 3, we restrict the universe of the approximation space to a hyperlattice and we
introduce the axiomatic form of this concept. In Section 4, the concepts of generalized
lower and upper approximation operators constructed by means of a set-valued homo-
morphism with respect to a hyperideal of a hyperlattice is presented and we examine
some properties of these operators in a hyperlattice.

2. Preliminaries

In this section, we recall some notions and results (see [5,6,14,15,20]) which will be
used throughout this article. Let L be a non-empty set and P ∗(L) be the set of all
nonempty subsets of L. A hyperoperation on L is a map ◦ : L×L→ P ∗(L) which asso-
ciates a nonempty subset a◦b with any pair (a, b) of elements of L×L. The couple (L, ◦)
is called a hypergroupoid. If A and B are nonempty subsets of L, then for a, b, x ∈ L,
we denote
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(1) x ◦A = {x} ◦A =
⋃
a∈A

x ◦ a, A ◦ x = A ◦ {x} =
⋃
a∈A

a ◦ x. (2) A ◦B =
⋃

a∈A,b∈B

a ◦ b.

2.1. De�nition. [14] Let L be a non-empty set endowed with two hyperoperations ⊗
and ⊕. The triple (L,⊗,⊕) is called a hyperlattice if the following conditions hold for
all a, b, c ∈ L:

(1) (idempotent laws) a ∈ a⊗ a, a ∈ a⊕ a,
(2) (commutative laws) a⊗ b = b⊗ a, a⊕ b = b⊕ a,
(3) (associative laws)(a⊗ b)⊗ c = a⊗ (b⊗ c), (a⊕ b)⊕ c = a⊕ (b⊕ c),
(4) (absorption laws) a ∈ a⊗ (a⊕ b), a ∈ a⊕ (a⊗ b).

2.2. De�nition. [14] Let L = (L,⊗,⊕) be a hyperlattice and S ∈ P ∗(L). Then S is
called a subhyperlattice of L if a⊗b and a⊕b ∈ P ∗(S) for all a, b ∈ S. That is to say, S is
subhyperlattice of L if and only if S is closed under the two hyperoperation ⊗ and ⊕ on L.

2.3. Example. Let L = {a, b, c, d} be a set. De�ne the hyperoperations ′′⊗′′ and ′′⊕′′
on L with the following Cayley table :

⊗ a b c d

a a a a a
b a b a {a,b}
c a a c c
d a {a,b} c d

⊕ a b c d

a a b {c,d} d
b b b d d
c {c,d} d {c,d} d
d d d d d

It is easy to check that (L,⊗,⊕) is a hyperlattice. Consider the subsets S1 = {a, d},
S2 = {c, d}. Then S1 and S2 are subhyperlattices of L. If we get S3 = {a, c}, then S3 is
not a subhyperlattice of L. Because it isn't closed under the hyperoperation ⊕ on L.

2.4. De�nition. [14] Let L1 = (L1,⊗1,⊕1) and L2 = (L2,⊗2,⊕2) be two hyperlattices.
A map ϕ : L1 → L2 is called a

(i) weak hyperlattice homomorphism if ϕ(a ⊗1 b) ⊆ ϕ(a) ⊗2 ϕ(b) and ϕ(a ⊕1 b) ⊆
ϕ(a)⊕2 ϕ(b) for all a, b ∈ L1,

(ii) strong hyperlattice homomorphism if ϕ(a⊗1 b) = ϕ(a)⊗2 ϕ(b) and ϕ(a⊕1 b) =
ϕ(a)⊕2 ϕ(b) for all a, b ∈ L1.

If such a homomorphism ϕ is surjective, injective or bijective, then ϕ is called an
epimorphism, a monomorphism or an isomorphism from the hyperlattice (L1,⊗1,⊕1) to
the hyperlattice (L2,⊗2,⊕2), respectively.

2.5. De�nition. Let L = (L,⊗,⊕) be a hyperlatice and A ∈ P ∗(L). Then A is called
a hyperideal of L if and only if a⊗ x ∈ P ∗(A), a⊕ x ∈ P ∗(A) for all a ∈ A, x ∈ L.

Let (L,⊗,⊕) be a hyperlattice. An equivalence relation θ is a re�exive, symmetric,
and transitive binary relation on L. If θ is an equivalence relation on L, then the equiv-
alence class of a ∈ L is the set {y ∈ L | (a, y) ∈ θ}. We write it as [a]θ.

Let θ be an equivalence relation on L. For any A,B ∈ P ∗(L), we write that AθB if the
following two conditions are hold:

(1)∀a ∈ A,∃b ∈ B such that aθb; (2) ∀x ∈ B,∃y ∈ A such that xθy.
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We denote AθB if for all a ∈ A, b ∈ B we have aθb.

2.6. De�nition. [32] An equivalence relation θ on a hyperlattice L = (L,⊗,⊕) is called
a regular (strongly regular) hypercongruence relation if for every x ∈ L, (a, b) ∈ θ implies

(a⊗ x)θ(b⊗ x) and (a⊕ x)θ(b⊕ x) ((a⊗ x)θ(b⊗ y) and (a⊕ x)θ(b⊕ y)).

Clearly, any strongly regular hypercongruence relation is a regular hypercongruence re-
lation.

2.7. Example. Let L = {a, b, c, d} and let the hyperoperations ′′⊗′′ and ′′⊕′′ on L be
de�ned as follows:

⊗ a b c d

a a a a a
b a {a,b} a {a,b}
c a a c c
d a {a,b} c {c,d}

⊕ a b c d

a {a,b} b {c,d} d
b b b d d
c {c,d} d {c,d} d
d d d d d

Then (L,⊗,⊕) is a hyperlattice [14]. Let θ be a hypercongruence relation on the hyper-
lattice L with the following equivalence classes: [a]θ = [b]θ = {a, b}, [c]θ = [d]θ = {c, d}.
Then θ is a strongly regular hypercongruence relation on L.

2.8. De�nition. Let L = (L,⊗,⊕) be a hyperlattice and θ be a regular hypercongru-
ence relation on L. Then θ is called a complete hypercongruence relation if
[a⊗b]θ = {x⊗y | x ∈ [a]θ, y ∈ [b]θ}, and [a⊕b]θ = {x⊕y | x ∈ [a]θ, y ∈ [b]θ} for all a, b ∈ L.

2.9. Example. Let L = {0, a, b, c, 1} be a lattice (L,∧,∨), where the partial order
relation on L is de�ned as shown in Figure 1. For all x, y ∈ L, x ⊗ y = {x ∧ y},
x⊕ y = {x ∨ y}, then L = (L,⊗,⊕) is a hyperlattice.

       1

       a

b             c

       0

Figure 1. The lattice in Example 2.9.

(i) Let θ be a regular hypercongruence relation on the hyperlattice L with the
following equivalence classes: [1]θ = 1, [a]θ = [c]θ = {a, c}, [b]θ = [0]θ = {b, 0}.
Then θ is a complete hypercongruence relation.

(ii) Let θ be a regular hypercongruence relation on the hyperlattice L with the
following equivalence classes: [1]θ = [a]θ = {1, a}, [c]θ = {c}, [b]θ = {b}, [0]θ =
{0}. θ is not complete because [c⊕ b]θ = {1, a}, [c]θ ⊕ [b]θ = {a} and [c⊕ b]θ 6=
[c]θ ⊕ [b]θ.
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2.10. Lemma. Let L = (L,⊗,⊕) be a hyperlattice and θ be a regular hypercongruence
relation on L. Then for all a, b, c, d ∈ L,

(i) If (a, b) ∈ θ and (c, d) ∈ θ , then (a⊗ c)θ(b⊗ d) and (a⊕ c)θ(b⊕ d),
(ii) {x⊗ y | x ∈ [a]θ, y ∈ [b]θ} ⊆ [a⊗ b]θ,
(iii) {x⊕ y | x ∈ [a]θ, y ∈ [b]θ} ⊆ [a⊕ b]θ.

3. Rough subsets of a hyperlattice in the generalized approxima-

tion space

In this section, according to the notion of generalized approximation space presented
in [9,35,36], we present some basic concepts about the generalized approximation space
(U,W, T ) and the associated lower and upper approximation operators. Let U and W
be two non-empty universes. Let T be a set-valued mapping given by T : U → P (W ).
Then the triple (U,W, T ) is referred to as a generalized approximation space. Any set-
valued function from U to P (W ) de�nes a binary relation from U to W by setting
ρT = {(x, y) | y ∈ T (x)}. Obviously, if ρ is an arbitrary relation from U to W , then it
can be de�ned as a set-valued mapping Tρ : U → P (W ) by Tρ(x) = {y ∈W | (x, y) ∈ ρ},
where x ∈ U . For any set X ⊆ W , a pair of lower and upper approximations T (X) and

T (X), are de�ned by

T (X) = {x ∈ U | T (x) ⊆ X} and T (X) = {x ∈ U | T (x) ∩ X 6= ∅}. The pair

(T (X), T (X)) is referred to as a generalized rough set and T and T are referred to as
lower and upper generalized approximation operators, respectively.

3.1. De�nition. Let L1 = (L1,⊗1,⊕1) and L2 = (L2,⊗2,⊕2) be two hyperlattices. A
mapping T : L1 → P (L2) is called a set-valued homomorphism if for all a, b ∈ L1,

(i) T (a)⊗2 T (b) ⊆ T (a⊗1 b),
(ii) T (a)⊕2 T (b) ⊆ T (a⊕1 b).

3.2. De�nition. Let L1 = (L1,⊗1,⊕1) and L2 = (L2,⊗2,⊕2) be two hyperlattices. A
mapping T : L1 → P (L2) is called a strong set-valued homomorphism if for all a, b ∈ L1,

(i) T (a)⊗2 T (b) = T (a⊗1 b),
(ii) T (a)⊕2 T (b) = T (a⊕1 b).

3.3. Example. Let L1 = (L1,⊗1,⊕1) and L2 = (L2,⊗2,⊕2) be two hyperlattices.

(i) The set-valued map T : L1 → P (L2) de�ned by T (a) = L2 is a set-valued
homomorphism.

(ii) If θ is a regular hypercongruence relation on a hyperlattice L1 then Tθ : L1 →
P (L1) de�ned by Tθ(a) = [a]θ is a set-valued homomorphism. If θ is a complete
regular hypercongruence then Tθ is a strong set-valued homomorphism.

(iii) If ϕ : L1 → L2 is a strong hyperlattice homomorphism, then the set-valued map
T : L1 → P (L2) de�ned by T (a) = {ϕ(a)} is a strong set-valued homomorphism.

Note that Example 3.3. (ii) indicates that every regular hyper congruence relations
may be considered as a set-valued homomorphism. On the other hand, hypercongruence
relations are important in hyperalgebraic systems. So set-valued homomorphisms are
interesting for pure algebraic systems.

3.4. Proposition. Let L1 = (L1,⊗1,⊕1) and L2 = (L2,⊗2,⊕2) be two hyperlattices
and T : L1 → P (L2) be a set valued homomorphism. If X,Y ∈ P ∗(L2), then
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(i) T (X)⊗1 T (Y ) ⊆ T (X ⊗2 Y ),

(ii) T (X)⊕1 T (Y ) ⊆ T (X ⊕2 Y ).

Proof. (i) Assume that x ∈ T (X)⊗1T (Y ). Then x ∈ x1⊗1x2 with x1 ∈ T (X), x2 ∈ T (Y ).
Hence T (x1)∩X 6= ∅ and T (x2)∩Y 6= ∅. Then there exist a ∈ T (x1)∩X and b ∈ T (x2)∩Y
such that a ∈ T (x1), b ∈ T (x2) and a ∈ X, b ∈ Y . Therefore a ⊗2 b ⊆ X ⊗2 Y . Since T
is a set-valued homomorphism, we have a⊗2 b ⊆ T (x1)⊗2 T (x2) ⊆ T (x1 ⊗1 x2). Hence

T (x1 ⊗1 x2) ∩ (X ⊗2 Y ) 6= ∅ which implies that x ∈ T (X ⊗2 Y ). So T (X) ⊗1 T (Y ) ⊆
T (X ⊗2 Y ).

(ii) The proof is similar to (i).
�

3.5. Corollary. Let θ be a regular hypercongruence relation on a hyperlattice L and
X,Y ∈ P ∗(L). Then

(i) Tθ(X)⊗ Tθ(Y ) ⊆ Tθ(X ⊗ Y ),

(ii) Tθ(X)⊕ Tθ(Y ) ⊆ Tθ(X ⊕ Y ).

The following example shows that the inclusion symbol �⊆� in Propositions 3.4. may
not be replaced by the equal sign.

3.6. Example. Consider the hyperlattice de�ned in Example 2.3. Let T : L → P (L)
be a set-valued map de�ned as T (x) = {a}. Then it is easy to see that T is a set-valued

homomorphism. If X = {b} and Y = {d}, then T (X) ⊗ T (Y ) = ∅, T (X ⊗ Y ) = L.

Thus T (X) ⊗ T (Y ) 6= T (X ⊗ Y ). Further, if T : L → P (L) is a set-valued map de-
�ned as T (x) = {d}, then T is a set-valued homomorphism. If X = Y = {c}, then
T (X)⊕ T (Y ) = ∅, then T (X ⊕ Y ) = L. Thus T (X)⊕ T (Y ) 6= T (X ⊕ Y ).

3.7. Proposition. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices and
T : L1 → P (L2) be a strong set valued homomorphism. If X,Y ∈ P ∗(L2), then

(i) T (X)⊗1 T (Y ) ⊆ T (X ⊗2 Y ),
(ii) T (X)⊕1 T (Y ) ⊆ T (X ⊕2 Y ).

Proof. (i) Assume that z ∈ T (X)⊗1 T (Y ). Then z ∈ x⊗1 y with x ∈ T (X), y ∈ T (Y ).
Hence T (x) ⊆ X and T (y) ⊆ Y . Since T is a strong set-valued homomorphism, we
have T (x) ⊗2 T (y) = T (x ⊗1 x) ⊆ A ⊗2 B. Hence z ∈ x ⊗2 y ∈ T (X ⊗2 Y ), that is
T (X)⊗1 T (Y ) ⊆ T (X ⊗2 Y ).

(ii) The proof is similar to (i).
�

3.8. Corollary. Let θ be a regular hypercongruence relation on a hyperlattice L and
X,Y ∈ P ∗(L). Then

(i) Tθ(X)⊗ Tθ(Y ) ⊆ Tθ(X ⊗ Y ),
(ii) Tθ(X)⊕ Tθ(Y ) ⊆ Tθ(X ⊕ Y ).

The following example shows that the containment in the above proposition is proper.

3.9. Example. Consider the hyperlattice de�ned in Example 2.3. Let T : L → P (L)
be a set-valued map de�ned as T (x) = {a}. Then it is easy to see that T is a set-
valued homomorphism. If X = {d}, Y = {b}, then T (X) ⊗ T (Y ) = ∅, T (X ⊗ Y ) = L.
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Thus T (X) ⊗ T (Y ) 6= T (X ⊗ Y ). Further, if T : L → P (L) is a set-valued map de-
�ned as T (x) = {d}, then T is a set-valued homomorphism. If X = Y = {c}, then
T (X)⊕ T (Y ) = ∅, T (X ⊕ Y ) = L. Thus T (X)⊕ T (Y ) 6= T (X ⊕ Y ).

3.10. Proposition. Let T : L1 → P (L2) be a (strong) set-valued homomorphism and
f : L3 → L1 be a weak (strong) hyperlattice homomorphism. Then T ◦ f is a (strong)

set-valued homomorphism from L3 → P (L2) such that T ◦ f(X) = f−1(T (X)) and
T ◦ f(X) = f−1(T (X)), for all X ∈ P (L2).

Proof. The proof is straightforward.
�

3.11. Proposition. Let T : L1 → P (L2) be a (strong) set-valued homomorphism and
f : L2 → L3 be a weak (strong) hyperlattice homomorphism. Then Tf is a (strong)
set-valued homomorphism from L1 → P (L3) de�ned by Tf (r) = f(T (r)) such that

Tf (X) = T (f−1(X)) and Tf (X) = T (f−1(X)), for all X ∈ P (L3).

Proof. The proof is straightforward.
�

3.12. De�nition. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices and

let T : L1 → P (L2) be a set-valued mapping. If T (X) and T (X) are subhyperlattices

(resp. hyperideals) of L1, then (T (X), T (X)) is called a generalized rough subhyperlat-
tice (resp. hyperideal).

3.13. Example. Let L = (L,⊗,⊕) be a hyperlattice de�ned in Example 2.3. Let

T : L → P (L) be a set-valued map de�ned as T (x) = {b} and X = {a, b}. Then T (X)

and T (X) are subhyperlattices (resp. hyperideals) of L. Hence (T (X), T (X)) is a gener-
alized rough subhyperlattice (resp. hyperideal).

3.14. Theorem. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices and
X ∈ P ∗(L2).

(i) If T : L1 → P (L2) is a set-valued homomorphism and X is a subhyperlattice of

L2, then T (X) is a subhyperlattice of L1.
(ii) If T : L1 → P (L2) is a strong set-valued homomorphism and X is a subhyper-

lattice of L2, then T (X) is, if it is non-empty, a subhyperlattice of L1.
(iii) If T : L1 → P ∗(L2) is a set-valued homomorphism and X is a hyperideal of L2,

then T (X) is a hyperideal of L1.
(iv) If T : L1 → P ∗(L2) is a strong set-valued homomorphism and X is a hyperideal

of L2, then T (X) is, if it is non-empty, a hyperideal of L1.

Proof. (i) Suppose that x, y ∈ T (X). Then T (x) ∩ X 6= ∅ and T (y) ∩ X 6= ∅. Hence
there exist a ∈ T (x) ∩ X and b ∈ T (y) ∩ X. Thus a ⊗2 b ⊆ T (x) ⊗2 T (y) ⊆ T (x ⊗1 y)
and a ⊕2 b ⊆ T (x) ⊕2 T (y) ⊆ T (x ⊕1 y). Since X is a subhyperlattice of L2, we have
a ⊗2 b ⊆ X and a ⊕2 b ⊆ X. So T (x ⊗1 y) ∩X 6= ∅ and T (x ⊕1 y) ∩X 6= ∅. Therefore
x⊗1 y, x⊕1 y ∈ T (X). Consequently, T (X) is a subhyperlattice of L1.

(ii) Suppose that x, y ∈ T (X). Then T (x) ⊆ X and T (y) ⊆ X. Since X is a
subhyperlattice of L2 and T is a strong set-valued homomorphism, we have T (x⊗1 y) =
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T (x) ⊗2 T (y) ⊆ X ⊗2 X ⊆ X and T (x ⊕1 y) = T (x) ⊕2 T (y) ⊆ X ⊕2 X ⊆ X. Thus
x⊗1 y, x⊕1 y ∈ T (X). Therefore T (X) is a subhyperlattice of L1.

(iii) By (i) T (X) is a subhyperlattice of L1. Let b ∈ L1. Since T (b) 6= ∅, there exist

some z ∈ L2 such that z ∈ T (b). Let x ∈ T (X). Then T (x) ∩ X 6= ∅ which implies
that there exists a ∈ T (x) ∩ X, that is a ∈ T (x), a ∈ X. Since X is a hyperideal
of L2 and T is a strong set-valued homomorphism, we have a ⊗2 z, a ⊕2 z ⊆ X and
a ⊗2 z ⊆ T (x) ⊗2 T (b) = T (x ⊗1 b), a ⊕2 z ⊆ T (x) ⊕2 T (b) = T (x ⊕1 b) which implies

that T (x⊗1 b) ∩X 6= ∅ and T (x⊕1 b) ∩X 6= ∅. Thus x⊗1 b, x⊕1 b ∈ T (X). Therefore

T (X) is a hyperideal of L1.
(iv) Similarly, T (X) is a hyperideal of L1.

�

The following example shows that the converse of the above theorem does not hold in
general.

3.15. Example. Consider the hyperlattice de�ned Example 2.3. Let T : L → P (L) be
a set-valued map de�ned as T (x) = {d}. Then it is easy to see that T is a set-valued
homomorphism. If X = {b, d}, then X is not a subhyperlattice (hyperideal) of L. But

T (X) = L is a subhyperlattice (hyperideal) of L.

3.16. Corollary. Let θ be a regular hypercongruence relation on a hyperlattice L =
(L,⊗,⊕).

(i) If X is a hyperlattice of L, then Tθ(X) is a subhyperlattice of L.
(ii) If θ is a complete regular hypercongruence relation and X is a subhyperlattice of

L, then Tθ(X) is, if it is non-empty, a subhyperlattice of L.

(iii) If X is a hyperideal of L, then Tθ(X) is a hyperideal of L.
(iv) If θ is a complete regular hypercongruence relation and X is a hyperideal of L,

then Tθ(X) is, if it is non-empty, a hyperideal of L.

Now we give a counterexample which shows that the condition that θ is a complete
regular hypercongruence relation in Corollary 3.16. is necessary.

3.17. Example. Consider the hyperlattice L and the congruence relation on L de-
�ned in Example 2.9.(ii). If X = {a, b, c, 0}, then X is a subhyperlattice of L. But
Tθ(X) = {b, c, 0} is not a subhyperlattice of L.

4. Generalized lower and upper approximation operators with re-

spect to a hyperideal of a hyperlattice

4.1. De�nition. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices, A
be a hyperideal of L2 and T : L1 → P (L2) be a set-valued mapping. Then we de�ne
TA : L1 → P (L2) as TA(a) = T (a)⊗2 A for all a ∈ L1. Then TA is called the set-valued
mapping with respect to a hyperideal A.

4.2. De�nition. Let (L1, L2, TA) be a generalized approximation space with respect to
a hyperideal A and X be a non-empty subset of L2. Then the sets
TA(X) = {a ∈ L1 | TA(a) ⊆ X} and TA(X) = {a ∈ L1 | TA(a) ∩X 6= ∅}
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are called generalized lower and upper approximations of X with respect to the hyper-
ideal A, respectively.

4.3. Lemma. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices and A,B
be hyperideals of L2. Let X be a subset of L2 such that A ⊆ B. Then

(i) TA(X) ⊆ TB(X),
(ii) TB(X) ⊆ TA(X).

Proof. (i) Suppose that x ∈ TA(X). Then (T (x) ⊗2 A) ∩ X 6= ∅. So there exist a ∈
(T (x)⊗2A)∩X such that a ∈ (T (x)⊗2A) and a ∈ X. Hence there exist y ∈ T (x), z ∈ A
such that a = y ⊗2 z. Since A ⊆ B, we have z ∈ B. Thus a = y ⊗2 z ⊆ T (x) ⊗2 B and

a ∈ X. So (T (x)⊗2 B) ∩X 6= ∅. As a consequent, we obtain TA(X) ⊆ TB(X).
(ii) The proof is similar to (i).

�

The following corollary follows from Lemma 4.3.

4.4. Corollary. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices and A,B
be hyperideals of L2. Let X be a subset of L2 such that A ⊆ B. Then

(i) TA∩B(X) ⊆ TA(X) ∩ TB(X),
(ii) TA(X) ∩ TB(X) ⊆ TA∩B(X).

4.5. Proposition. Let (L1, L2, TA) be a generalized approximation with respect to a
hyperideal A and X,Y be a non-empty subsets of L2.

(i) If T : L1 → P (L2) is a set-valued homomorphism, then TA(X) ⊗1 TA(Y ) ⊆
TA(X ⊗2 Y ).

(ii) If T : L1 → P (L2) is a strong set-valued homomorphism, then TA(X)⊗1TA(Y ) ⊆
TA(X ⊗2 Y ).

Proof. (i) Suppose that z ∈ TA(X) ⊗1 TA(Y ). Then there exist x ∈ TA(X), y ∈ TA(Y )

such that z ∈ x⊗1y. Since x ∈ TA(X) y ∈ TA(Y ) there exist a ∈ T (x)⊗2A, b ∈ T (y)⊗2A
such that a ∈ T (x), b ∈ T (y), a ∈ X, b ∈ Y . Since T is a set-valued homomorphism, we
have a ⊗2 b ⊆ T (x) ⊗2 T (y) ⊗2 A ⊆ T (x ⊗1 y) ⊗2 A and a ⊗2 b ⊆ X ⊗2 Y . Hence

a⊗2 b ⊆ T (x⊗1 y)⊗2 A ∩ (X ⊗2 Y ). So z ∈ x⊗1 y ⊆ TA(X ⊗2 Y ).Therefore, we obtain

TA(X)⊗1 TA(Y ) ⊆ TA(X ⊗2 Y ).
(ii) The proof is similar to (i).

�

4.6. Proposition. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices, A,B
be hyperideals of L2 and X be a subhyperlatice of L2.

(i) If T : L1 → P (L2) is a set-valued homomorphism, then TA(X) ⊗1 TB(X) ⊆
TA⊗2B(X).

(ii) If T : L1 → P (L2) is a strong set-valued homomorphism, then TA(X) ⊗1

TB(X) = TA⊗2B(X).

Proof. The proof is straightforward.
�

4.7. Theorem. Let (L1, L2, TA) be a generalized approximation space with respect to a
hyperideal A and X be a non-empty subset of L2.

(i) If T : L1 → P (L2) is a set-valued homomorphism and X is a subhyperlattice of

L2, then TA(X) is a subhyperlattice of L1.
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(ii) If T : L1 → P (L2) is a strong set-valued homomorphism and X is a subhyper-
lattice of L2, then TA(X) is, if it is non-empty, a subhyperlattice of L1.

(iii) If T : L1 → P ∗(L2) is a set-valued homomorphism and X is a hyperideal of L2,

then TA(X) is a hyperideal of L1.
(iv) If T : L1 → P ∗(L2) be a strong set-valued homomorphism and X is a hyperideal

of L2, then TA(X) is, if it is non-empty, a hyperideal of L1.

Proof. (i) Suppose that x, y ∈ TA(X). Then, (T (x)⊗2A)∩X 6= ∅ and (T (y)⊗2A)∩X 6=
∅. Hence there exist a ∈ (T (x) ⊗2 A) ∩ X and b ∈ (T (y) ⊗2 A) ∩ X. Since X is a
subhyperlattice of L2 , we have a ⊗2 b ⊆ X and a ⊕2 b ⊆ X. On the other hand,
a ⊗2 b ⊆ (T (x) ⊗2 A) ⊗2 (T (y) ⊗2 A) ⊆ T (x) ⊗2 T (y) ⊗2 A ⊆ T (x ⊗1 y) ⊗2 A and
a ⊕2 b ⊆ (T (x) ⊗2 A) ⊕2 (T (y) ⊗2 A) ⊆ T (x) ⊕2 T (y) ⊗2 A ⊆ T (x ⊕1 y) ⊗2 A. So

T (x ⊗1 y) ⊗2 A ∩ X 6= ∅ and T (x ⊕1 y) ⊗2 A ∩ X 6= ∅. Thus x ⊗1 y, x ⊕1 y ∈ TA(X).

Therefore, TA(X) is a subhyperlattice of L1.
(ii) Similarly, TA(X) is a subhyperlattice of L1.

(iii) Using (i), TA(X) is a subhyperlattice of L1. Let x ∈ TA(X) and c ∈ L1. Then

(T (x)⊗2A)∩X 6= ∅. So there exist a ∈ (T (x)⊗2A)∩X. Since TA(X) is non-empty set,
we can choose z ∈ T (c). Since X is a hyperideal of L2, we have a⊗2z, a⊕2z ⊆ X. On the
other hand, a⊗2z ⊆ (T (x)⊗2A)⊗2T (c) ⊆ T (x⊗1 c)⊗2A, a⊕2 z ⊆ (T (x)⊗2A)⊕2T (c) ⊆
T (x ⊕1 c) ⊗2 A. So (T (x ⊗1 c) ⊗2 A) ∩X 6= ∅, (T (x ⊕1 c) ⊗2 A) ∩X 6= ∅ which implies

x⊗1 c, x⊕1 c ∈ TA(X). Therefore TA(X) is a hyperideal of L1.
(iv)The proof is straightforward.

�

The following example shows that the converse of the above theorem does not hold in
general.

4.8. Example. Consider the hyperlattice de�ned in Example 2.9. Let T : L → P (L)
be a set-valued map de�ned as T (x) = {d}. Then it is easy to see that T is a set-
valued homomorphism. If A = L, X = {a, b, c}, then A is a hyperideal and X is not a

subhyperlattice (hyperideal) of L. But TA(X) = L is a subhyperlattice (hyperideal) of L.

5. Conclusion

The Pawlak rough sets on algebraic sets such as semigroups, groups, rings, modules
and lattices were mainly studied by congruence relations. In this paper, a de�nition
of set-valued homomorphism which was introduced for groups by Davvaz [9], for rings
and modules by Yamak et al. [35-36], respectively, is considered as a regular hyper-
congruence relation for hyperlattices. We obtain some new properties of a set-valued
homomorphism to provide opportunity for putting reasonable interpretations on the the-
ory and applications of rough sets and adhering to the set-valued homomorphism and
exploring the features of generalized rough approximations on hyperlattices. So, in this
paper we propose a de�nition of set-valued homomorphism and explore the properties of
generalized rough approximations on hyperlattices. Some new properties of set-valued
homomorphisms which shall be very practical in the theory and applications of rough
sets are obtained. Moreover, a new algebraic structure called generalized lower and upper
approximations of a set with respect to a hyperideal is presented.
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