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On the P-interiors of submodules of Artinian
modules

H. Ansari-Toroghy™!, F. Farshadifart, and S. S. Pourmortazavi®

Abstract

Let R be a commutative ring and M an Artinian R-module. In this
paper, we study the dual notion of saturations (that is, P-interiors) of
submodules of M and obtain some related results.
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity and "C" will
denote the strict inclusion. We write N < M to indicate that N is a submodule of an
R-module M. Also Spec(R) and Z will denote the set of all prime ideals of R and the
ring of integers respectively.

Let M be an R-module. A proper submodule P of M is said to be prime if for any
r € Rand m € M with rm € P, we have m € P or r € (P :g M). A non-zero
submodule S of M is said to be second if for each a € R, the endomorphism S =% S
is either surjective or zero (see [13]). A submodule N of M is said to be completely
irreducible if N = (,; N;, where {N;}ier is a family of submodules of M, implies that
N = N, for some i € I. It is easy to see that every submodule of M is an intersection
of completely irreducible submodules of M. Thus, the intersection of all completely
irreducible submodule of M is zero (see [6]).
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The saturation of N < M with respect to P € Spec(R) is the contraction of Np in
M and designated by Sp(N). It is well known that

Sp(N)={e€ M :es € N for some s € R— P}.

In [1], H. Ansari-Toroghy and F. Farshadifar, introduced the dual notions of satura-
tions of submodules, that is, P-interiors of submodules and investigated some related
results (see [1] and [3]). Let N be a submodule of M. The P-interior of N relative to M
is defined [1, 2.7] as the set

IY(N) =n{L | L is a completely irreducible submodule of M and
rN C L for somer € R— P}.

There are considerable results about saturation of a module with respect to a prime
ideal in literature (see, for example, [7], [8], and [9]). It is natural to ask that to what
extent the dual of these results hold. The purpose of this paper is to answer this question
and provide more information about the P-interiors of submodules in case that our
module is an Artinian module.

2. P-interiors of submodules and related properties

Recall that an R-module L is said to be cocyclic if L is a submodule of E(R/m) for
some maximal ideal m of R, where E(R/m) is the injective envelope of R/m (see [14]).

2.1. Lemma. Let L be a completely irreducible submodule of an R-module M and
a € R. Then (L :ps a) is a completely irreducible submodule of M.

Proof. This follows from the fact that a submodule L of M is a completely irreducible
submodule of M if and only if M/L is a cocyclic R-module by [6] and that M/(L :a
a) 2 (aM +L)/L.

d

We use the following basic fact without further comment.

2.2. Remark. Let N and K be two submodules of an R-module M. To prove N C K, it
is enough to show that if L is a completely irreducible submodule of M such that K C L,
then N C L.

2.3. Lemma. Let P € Spec(R) and N be a submodule of an R-module M. If M/} (N)
is a finitely cogenerated R-module, then there exists r € R — P such that *N C I (N).

Proof. Since M /I (N) is finitely cogenerated, there exists a finite number of completely
irreducible submodules L1, Lo, ..., L, of M such that Iﬁf (N)=nj-yL; and ;N C L; for
some r; € R— P. Set r =r1...r,. Then TNQI,]X[(N). O

2.4. Theorem. Let P € Spec(R) and N be a submodule of an R-module M. Then we
have the following.

) If M is an Artinian R-module, then I} (I (N)) = I (N).
) If M is an Artinian R-module, then Homg(Rp, I¥ (N)) = Homr(Rp, N).
) Anng(N) C Sp(Anng(N)) C AnnR(I}y(N)).

) If M is an Artinian R-module, then Anng(I¥ (N)) = Sp(Annr(IF(N))).

(a
(b
(c
(d

Proof. (a) Clearly, IM (I¥(N)) C I¥(N). To prove the opposite inclusion, let L be a
completely irreducible submodule of M such that IX (I3 (N)) C L. By Lemma 2.3, there
exists 7 € R — P such that rI} (N) C I (IM(N)). Therefore, rI¥ (N) C L. Again by
Lemma 2.3, there exists s € R — P such that sN C I}/ (N). Hence rsN C L. Tt follows
that I} (N) C L, as required.



677

(b) By Lemma 2.3, there exists 7 € R — P such that rN C I} (N). Now rN C
I¥(N) C N implies that

Homgr(Rp,7N) C Homgr(Rp, I' (N)) C Homr(Rp, N).

As r € R — P, one can see that Homgr(Rp,rN) = Homgr(Rp,N). Therefore**
Hompg(Rp,N) = Homg(Rp, I} (N)).

(c¢) Clearly, Annr(N) C Sp(Anngr(N)). Now let r € Sp(Anngr(N)). Then there
exists s € R — P such that rs € Anng(N) and so rsN = (0). Thus for each i € I,
rsN C L;, where {L;}ic1 is the collection of all completely irreducible submodules of M.
Hence sN C (L; :ar 7) for each i € I. This implies that I3/ (N) C (L; :ar 7) for eachi € T
because (L; :a ) is a completely irreducible submodule of M by Lemma 2.1. Therefore,
rIM(N) C NierLi = (0). Thus r € Anng(I¥ (N)).

(d) Clearly, Anng(I¥ (N)) C Sp(Anng(IF(N)). Now let r € Sp(Anng(I(N)).
Then there exists s € R — P such that rs € Anng(I$'(N)) and so rsIN(N) = (0).
As M is an Artinian R-module, there exists t € R — P such that tN C I¥(N) by
Lemma 2.3. Therefore, strN = (0). This implies that for each i € I, stN C (L; :ap 1),
where {L;}icr is the collection of all completely irreducible submodules of M. Hence
I¥(N) C (L :a 7). Therefore, rI (N) C NierL; = (0). Hence r € Anng(I$(N)), as
required. O

2.5. Definition. We say that a submodule N of an R-module M is cotorsion-free with
respect to (w.r.t.) P if IN(N) = N, where P € Spec(R).

2.6. Lemma. Let N ba a submodule of an R-module M and P € Spec(R). If N is
cotorsion-free w.r.t. P, then N is cotorsion-free w.r.t. @ for each Q € V(P).

Proof. Since P C Q, Ip'(N) C I} (N). Therefore, N = I}/ (N) C I5(N) C N. Hence
N = I$'(N) = I} (N) for each Q € V(P). O

A non-zero R-module M is said to be secondary if for each a € R, the endomorphism
M % M is either surjective or nilpotent (see [10]). Clearly, every second module is a
secondary module.

2.7. Example. (1) If P € Spec(R), then every P-secondary submodule of an R-
module M is cotorsion-free w.r.t. P by [4, 2.8].
(2) The Z-module Zy is cotorsion-free w.r.t. (0).

2.8. Corollary. Let P € Spec(R) and N be a submodule of an R-module M. If N is
cotorsion-free w.r.t. P, then Anng(I& (N)) = Sp(Anng(IF(N))).

Proof. The results follows from part (c) of Theorem 2.4 because N = I¥ (N). O

The cosupport of an R-module M [12] is denoted by Cosupp(M) and it is defined by
Cosupp(M) = {P € Spec(R)|P O Anngr(L) for some cocyclic
homomorphic image L of M}.

2.9. Theorem. Let P € Spec(R) and N be a submodule of an Artinian R-module M.
Then we have the following.

(1) Anng,(Homg(Rp,N)) = (Anng(I(N)))p.

(2) The following statements are equivalent.

(a) Homgr(Rp,N) # (0).

(b) Anng(I¥(N)) C P.
(c) I¥(N) # (0).
(d) P € Cosuppr(N).
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Proof. (1) By Theorem 2.4 (b), Homg(Rp, I (N)) = Homgr(Rp, N). It is easy to see
that

(Anng (I8 (N)))p C Anng, (Homgr(Rp, I} (N)).
To see the reverse inclusion, we note that I} (IX(N)) = ¢(Homgr(Rp, I¥ (N))) by [2,
2.15], where ¢ : Homgr(Rp, IF (N)) — I} (N) is the natural homomorphism defined by
#(f) = f(1grp) for any f € Homgr(Rp, ¥ (N)). Now by Theorem 2.4 (a), I¥(N) =
d(Homp(Rp, I¥(N))). But always we have

Anng(Homgr(Rp,Ip' (N))) € Anng(¢(Homr(Rp, I¢' (N))).
Hence Anng(Homg(Rp, I (N))) C Anng(I3(N)). Therefore,
Anng, (Homg(Rp, Ip' (N))) C (Anng (I3 (N))p,
as required.

(2) (a) & (d). By [12, 2.3], Cosuppr(N) = V(Anngr(N)) and by [11, p. 130],
Cosr(N) = V(Anngr(N)), where Cosgr(N) = {P € Spec(R) : Homgr(Rp,N) # (0)}.
Hence we get the equivalence (a) and (d).

(b) = (c). This is clear.

(a) = (b). Homg(Rp,N) # (0) & Anng,(Homgr(Rp,N)) # Rp. Thus by using
part (1), we have

Homgr(Rp,N) # (0) & (Anng(I (N)))p # Rp < Anng(Ip/ (N)) C P.
(c) = (a). If Homgr(Rp, N) = (0), then Homg(Rp, I} (N)) = (0). Thus by [2, 2.15],
IH/(N) = T (T¥ (N)) = (Homa(Re, TH (N)) = (0),

where ¢ : Homp(Rp, IM(N)) — I¥(N) is the natural homomorphism defined by ¢(f) =
f(1rp) for any f € Homr(Rp, I (N)). This contradiction completes the proof. d

We need the following lemma.

2.10. Lemma. [7, 2.2] Let I be an ideal of R and P € Spec(R). Then the following
statements are equivalent.
(a) Sp(I)is a P-primary ideal of R.

(b) /Sp(I) = P.

(¢) P is a minimal prime ideal of I.

2.11. Theorem. Let P € Spec(R) and N be a submodule of an Artinian R-module M.
Then the following statements are equivalent.

(a) I (N) is a P-secondary submodule of M.
(b) Anng(I¥(N)) is a P-primary ideal of R.
(¢) VAnng(I¥(N)) = P.

In particular, I3 (N) is P-second if and only if Anng(I¥ (N)) = P.

Proof. (a) = (b). This is clear.

(b) = (a). Since Anng(I¥(N)) is a P-primary ideal of R and I3 (I (N)) = I} (N)
by Theorem 2.4 (a), IM(N) is a P-secondary submodule of M by [4, 2.2].

(b) = (c). This is elementary.

(c) = (b). Put I = Anng(I&(N)). Then by Theorem 2.4 (d), Sp(I) = I. Now, we
have VT = P = \/Sp(I) by the hypothesis. It follows from Lemma 2.10 that Sp(I) is a
P-primary ideal of R. Hence I = Sp(I) = Anng(I¥(N)) is a P-primary ideal of R, as
required. O
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2.12. Definition. Let M be an R-module, (0) # N < M and P € Spec(R). We say the
pair (N, P) satisfies property (xx) if Sp(Anng(N)) = Anng(I¥(N)) # R. We say the
module M satisfies property (xx) if for every (0) # N < M and P € V(Anng(N)) the
pair (N, P) satisfies property (k).

2.13. Remark. (a) For every N < M and P € Spec(R), if Anng(N) € P, then

I¥(N) = (0) because there exists r € R— P such that rN = (0). Hence for each

1 € I,rN C L;, where {L; };cr is the set of all completely irreducible submodules

of M. Therefore, IM(N) C NierL; = (0). However, the converse is not true in

general. As a counter example, take the Z-module Z as M, N = Z, and P = (0).

(b) Let M be an R-module, (0) # N < M and P € Spec(R). If a pair (N, P)
satisfies property (xx), then by part (a), we have Anngr(N) C P.

2.14. Example. (a) The Z-module Z does not satisfy property (*x) because (Z,
(0)) does not satisfy this property.

(b) Let N be a non-zero submodule of an R-module M and let P be a prime ideal
of R. If N is cotorsion-free w.r.t. P, then (N, P) satisfies property (#x). This
is because I3/ (N) = N # (0) implies that Anngr(I¥ (N)) = Anng(N) # R and
hence by Corollary 2.8, we have

Anng(N) = Sp(Annr(N)) = Anng (I3 (N)) # R.

Moreover, not only (N, P), but also (N, Q) for each @ € V(P) satisfies property
(%) by Lemma 2.6. In particular, every P-secondary submodule S of M and
each Q € V(P) = V(Anng(S)) satisfies property (**) by Example 2.7.

2.15. Theorem. Every non-zero Artinian R-module M satisfies property ().

Proof. Let (0) # N < M and P € V(Anng(N)). By Lemma 2.3, there exists ¢t €
R — P such that tN C IM(N). Now let r € Anng(IM(N)). Then 7tN = (0). Hence
r € Sp(Anng(N)). Thus R # Anng(Ip/(N)) C Sp(Anng(N)). The reverse inclusion
follows from Theorem 2.4 (c). O

2.16. Remark. Those modules M which satisfy property (*x) are not necessarily Ar-
tinian. For example, every vector space W satisfies property (#*) even it is of infinite
dimensional. This is due to that every non-zero subspace U of W is (0)-second with
V(Anng(U)) = {(0)}-
2.17. Corollary. Let M be an Artinian R-module, (0) # N < M and P € Spec(R).
(1) The following statements are equivalent.
(a) IM(N) is a P-secondary submodule of M.

(b) /Sp(Anne(V)) = P.

(c) P is a minimal prime ideal of Anng(N).
(2) I¥(N) is a P-second submodule of M if and only if Sp(Anng(N)) = P.

In particular, if Anng(N) = P, then I} (N) is a P-second submodule of M.

Proof. The proof is straightforward from Theorem 2.11, Lemma 2.10, and Theorem 2.4.
O

3. Maximal second submodules

A submodule N of an R-module M is said to be a mazimal second submodule of a
submodule K of M, if N C K and there does not exist a second submodule L of M such
that N C L C K (see [1]).

3.1. Lemma. Let R be an integral domain and let M be an Artinian non-zero R-module.
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(a) If I(MO) (M) # (0), then I(O)(M) is a maximal (0)-second submodule of M and it
contains every (0)-second submodule of M.
(b) I(A(;[) (M) = M if and only if M is a (0)-second submodule of M.

Proof. (a) This follows from [1, 2.9] and |3, 2.10].
(b) This follows from part (a) and [3, 2.10]. O

3.2. Theorem. Let R be an integral domain of dimension 1, M be a non-zero Artinian
R-module and (0) # P € V(Annr(M)). Then I} ((0 :a P)) is a maximal second
submodule of M if and only if I3'((0 :m P))  Ify)(M).

Proof. Since (0) C P C Anng((0 :ar P)), dimR =1, and R is a domain, it follows that
if Anngr((0 :ar P)) # R, then Anng((0 :ar P)) = P. Hence I ((0 :ar P)) is a second
submodule of M by [1, 2.8|.
Suppose that I3 ((0 :ar P)) is a maximal second submodule of M. Then there are two
cases:

(i) I ((0:ar P)) = M and

(ii) I8 ((0:ar P)) # M.
In case (i), M is a P-second submodule for P # (0). Consequently, I(]g)(M) # M by
Lemma 3.1 (b). Hence I3 ((0:a P)) € I(]\(f)(M)
In case (i), I8 ((0 :ar P)) is a proper maximal second submodule of M. Hence M is not
a second submodule, in particular, it is not a (0)-second submodule so that I(% (M)#M
by Lemma 3.1 (b) again. Thus if I<0)( ) # (0), then ](]g)(M) is a proper maximal
(0)-second submodule of M by Lemma 3.1 (a). Consequently, I#((0 :ar P)) I(o)( )
by the maximality of I5'((0 :ar P)) in M. On the other hand, if I(MO)(M) = (0), then
obviously, I3 ((0;3 P)) € I(O)( ).

Conversely, suppose that I ((0;x P)) € I(O)( ). Then clearly I(]‘g)(M) # M. Thus

by Lemma 3.1 (b), M is not a (0)-second submodule. To see that I} ((0 :ar P)) is a

maximal second submodule of M, let K be a second submodule of M such that T2 ((0 :as
P)) C K C M. Then

(0) € Annr(M) C Anng(K) C Anng(I3'((0 :a P))) = P.

Since dimR = 1, the prime ideal Anng(K) = (0) or P. If Anng(K) = (0), then K is a
(0)-second submodule. However, K # M because M is not a (0)-second submodule as we
have seen above. Since every proper (0)-second submodule contained in I (MO) (M), we have
that I3/ ((0 :a P)) € K C I{g) (M) # (0) which contradicts to I3 ((0 :ar P)) Z Ify)(M).
Therefore, Anng(K) = P, ie., K is a P-second submodule. Thus K = I} (K) C
IX((0 :pr P)). Therefore, K = IM((0 :ps P)). This proves that IX((0 :pr P)) is a
maximal second submodule of M. O

3.3. Proposition. Let Y be a set of prime ideals of R which contains all the maximal
ideals, M be an Artinian R-module, and N be a non-zero submodule of M. Then

N =3 ey I (N).

Proof. Let L be a completely irreducible submodule of M such that 3, I¥(N)

C L so that I} (N) C L for every P € Y. Hence by Lemma 2.3, we have (L :r N) Z P
for every P € Y. This implies that (L :r N) € m for every maximal ideal m € Y. This
in turn implies that (L :r N) = R and hence N C L. Thus N C > ., Ip'(N). The
reverse inclusion is clear. O
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3.4. Corollary. Let (R, m) be alocal ring, M an Artinian R-module, and (0) # N < M.
Then N is cotorsion-free w.r.t. m.

Proof. Take Y = {m} in Proposition 3.3. Then we have I}/ (N) = N. O

Let N be a submodule of an R-module M. The (second) socle of N is defined as
the sum of all second submodules of M contained in N and it is denoted by soc(N) or
sec(N) (see [1] and [5]). In case N does not contain any second submodule, the socle of
N is defined to be (0).

3.5. Proposition. Let M be an Artinian R-module, P € Spec(R), and (0) # N < M.
If P is a minimal prime ideal of Anng(N) and I¥ ((0 :x P)) # (0), then I ((0 :5 P))
is a maximal second submodule of K < M with I} ((0 :xy P)) C K C N. In particular
I¥((0:x P)) is a maximal P-second submodule of sec(N).

Proof. Since IN((0 :x P)) # (0), I ((0 :x P)) is a maximal P-second submodule of
(0 :x P) by [1, 2.9]. Now suppose that K is a submodule of M such that I¥ ((0:y P)) C
K C N and S is a Q-second submodule of M such that I} ((0:5 P)) CS C K C N.
Then as P is a minimal prime ideal of Anngr(N), we have @ = P. Thus S C (0 :y P). It
follows that S = IM((0 :x P)) as desired. The last assertion follows from the fact that
I¥((0:x P)) C sec(N) C N. So the proof is completed.

]

The following example shows that the condition I ((0 :x P)) # (0) in the statement
of Proposition 3.5 can not be dropped.

3.6. Example. Consider M = N = Zp~ as Z-module, where p is a prime number.
Let ¢ # p be an another prime number. Then clearly, ¢Z is a minimal prime ideal of
Annz(M) and [(]gl)((() N qZ)) = (0).

The next theorem gives an important information on the maximal second submodules
of an Artinian R-modules.

3.7. Theorem. Let N be a non-zero submodule of an Artinian R-module M. Then
every maximal second submodule of N must be of the form I3 ((0 :x P)) for some
P € V(Anngr(N)).

Proof. Let S be a maximal P-second submodule of N. Then S C N and Anng(S) =P
so that S C (0 :x P). Therefore, S = I} (S) C I} ((0 :x P)) C N by [3, 2.10]. Since
P € V(Anngr(N)), I¥((0 :x P)) is a P-second submodule , as we have seen in the proof
of Proposition 3.5. Thus S = I3 ((0:x P)). O

3.8. Corollary. Let M be an Artinian R-module and (0) # N < M. Then sec(N) =
> pey I8 ((0 :x P)), where Y is a finite subset of V (Anng(N)).

Proof. By [1, 2.6, 2.2|, there exists n € Z such that sec(N) = >7 | S;, where for
1 <i<n,S;is amaximal second submodule of N. Now the proof follows from Theorem

3.7. We remark that this corollary is also a direct consequence of [3, Proposition 2.7
(a)]. 0

3.9. Corollary. Let N be a non-zero submodule of an Artinian R-module M. If I3 ((0 :n
P)) # (0) and N is a P-secondary submodule of an R-module M for some P € Spec(R),
then we have the following.
(a) I¥((0:n5 P)) is a maximal P-second submodule of sec(IV).
(b) If P is a maximal ideal of R, then sec(N) = I ((0 :x P)) so that sec(N) is a
P-second submodule of M.
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Proof. (a) This follows from Proposition 3.5 because P is a minimal prime ideal of
Anngr(N).
(b) By Corollary 3.8, sec(N) = > ocv(anng () I3((0 :x @)). Since P is maximal

and \/Anng(N) = P, V(Anng(N)) = {P}. Thus sec(N) = I} ((0 :x P)) as required.
(]

3.10. Corollary. Let I be an ideal of R and M be an Artinian R-module such that
(0 M I) 7& (0) Then Sec((o "M I)) = ZPGV(AnnR((O:MI))) II]X[((O ‘M P))

Proof. Set N = (0 :as I). Then this follows from Corollary 3.8 since, (0 :(o.,,1) P) =
(0 :p P) for every P € V(Anng((0 :m I))). O

3.11. Example. For any prime integer p, let M = (Z/pZ) X Zp~. Then M is an
Artinian faithful Z-module and V(Annz(M)) = V((0)) = Spec(Z). Hence sec(M) =
2 (0)ev((0) I%((O :m qZ)) by Corollary 3.10. Since I&I)((O M 7)) = [%(0) = (0) for
each prime number p # g,

sec(M) = Ifp) (M) + I\ ((0 a1 pZ))
= ((0) X Zp=) + ((Z/pZ)x < 1/p+Z >)
= M.
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