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On the P -interiors of submodules of Artinian
modules
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Abstract
Let R be a commutative ring and M an Artinian R-module. In this
paper, we study the dual notion of saturations (that is, P -interiors) of
submodules of M and obtain some related results.
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1. Introduction
Throughout this paper, R will denote a commutative ring with identity and "⊂" will

denote the strict inclusion. We write N ≤ M to indicate that N is a submodule of an
R-module M . Also Spec(R) and Z will denote the set of all prime ideals of R and the
ring of integers respectively.

Let M be an R-module. A proper submodule P of M is said to be prime if for any
r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or r ∈ (P :R M). A non-zero
submodule S of M is said to be second if for each a ∈ R, the endomorphism S

a→ S
is either surjective or zero (see [13]). A submodule N of M is said to be completely
irreducible if N =

⋂
i∈I Ni, where {Ni}i∈I is a family of submodules of M , implies that

N = Ni for some i ∈ I. It is easy to see that every submodule of M is an intersection
of completely irreducible submodules of M . Thus, the intersection of all completely
irreducible submodule of M is zero (see [6]).
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The saturation of N ≤ M with respect to P ∈ Spec(R) is the contraction of NP in
M and designated by SP (N). It is well known that

SP (N) = {e ∈M : es ∈ N for some s ∈ R− P}.
In [1], H. Ansari-Toroghy and F. Farshadifar, introduced the dual notions of satura-

tions of submodules, that is, P -interiors of submodules and investigated some related
results (see [1] and [3]). Let N be a submodule of M . The P -interior of N relative to M
is defined [1, 2.7] as the set

IMP (N) = ∩{L | L is a completely irreducible submodule of M and

rN ⊆ L for some r ∈ R− P}.
There are considerable results about saturation of a module with respect to a prime

ideal in literature (see, for example, [7], [8], and [9]). It is natural to ask that to what
extent the dual of these results hold. The purpose of this paper is to answer this question
and provide more information about the P -interiors of submodules in case that our
module is an Artinian module.

2. P -interiors of submodules and related properties
Recall that an R-module L is said to be cocyclic if L is a submodule of E(R/m) for

some maximal ideal m of R, where E(R/m) is the injective envelope of R/m (see [14]).

2.1. Lemma. Let L be a completely irreducible submodule of an R-module M and
a ∈ R. Then (L :M a) is a completely irreducible submodule of M .

Proof. This follows from the fact that a submodule L of M is a completely irreducible
submodule of M if and only if M/L is a cocyclic R-module by [6] and that M/(L :M
a) ∼= (aM + L)/L.

�

We use the following basic fact without further comment.

2.2. Remark. Let N and K be two submodules of an R-moduleM . To prove N ⊆ K, it
is enough to show that if L is a completely irreducible submodule ofM such that K ⊆ L,
then N ⊆ L.

2.3. Lemma. Let P ∈ Spec(R) and N be a submodule of an R-moduleM . IfM/IMP (N)
is a finitely cogenerated R-module, then there exists r ∈ R− P such that rN ⊆ IMP (N).

Proof. SinceM/IMP (N) is finitely cogenerated, there exists a finite number of completely
irreducible submodules L1, L2, ..., Ln of M such that IMP (N) = ∩n

i=1Li and riN ⊆ Li for
some ri ∈ R− P . Set r = r1...rn. Then rN ⊆ IMP (N). �

2.4. Theorem. Let P ∈ Spec(R) and N be a submodule of an R-module M . Then we
have the following.

(a) If M is an Artinian R-module, then IMP (IMP (N)) = IMP (N).
(b) If M is an Artinian R-module, then HomR(RP , I

M
P (N)) = HomR(RP , N).

(c) AnnR(N) ⊆ SP (AnnR(N)) ⊆ AnnR(I
M
P (N)).

(d) If M is an Artinian R-module, then AnnR(I
M
P (N)) = SP (AnnR(I

M
P (N))).

Proof. (a) Clearly, IMP (IMP (N)) ⊆ IMP (N). To prove the opposite inclusion, let L be a
completely irreducible submodule ofM such that IMP (IMP (N)) ⊆ L. By Lemma 2.3, there
exists r ∈ R − P such that rIMP (N) ⊆ IMP (IMP (N)). Therefore, rIMP (N) ⊆ L. Again by
Lemma 2.3, there exists s ∈ R − P such that sN ⊆ IMP (N). Hence rsN ⊆ L. It follows
that IMP (N) ⊆ L, as required.
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(b) By Lemma 2.3, there exists r ∈ R − P such that rN ⊆ IMP (N). Now rN ⊆
IMP (N) ⊆ N implies that

HomR(RP , rN) ⊆ HomR(RP , I
M
P (N)) ⊆ HomR(RP , N).

As r ∈ R − P , one can see that HomR(RP , rN) = HomR(RP , N). Therefore,**
HomR(RP , N) = HomR(RP , I

M
P (N)).

(c) Clearly, AnnR(N) ⊆ SP (AnnR(N)). Now let r ∈ SP (AnnR(N)). Then there
exists s ∈ R − P such that rs ∈ AnnR(N) and so rsN = (0). Thus for each i ∈ I,
rsN ⊆ Li, where {Li}i∈I is the collection of all completely irreducible submodules of M .
Hence sN ⊆ (Li :M r) for each i ∈ I. This implies that IMP (N) ⊆ (Li :M r) for each i ∈ I
because (Li :M r) is a completely irreducible submodule of M by Lemma 2.1. Therefore,
rIMP (N) ⊆ ∩i∈ILi = (0). Thus r ∈ AnnR(I

M
P (N)).

(d) Clearly, AnnR(I
M
P (N)) ⊆ SP (AnnR(I

M
P (N)). Now let r ∈ SP (AnnR(I

M
P (N)).

Then there exists s ∈ R − P such that rs ∈ AnnR(I
M
P (N)) and so rsIMP (N) = (0).

As M is an Artinian R-module, there exists t ∈ R − P such that tN ⊆ IMP (N) by
Lemma 2.3. Therefore, strN = (0). This implies that for each i ∈ I, stN ⊆ (Li :M r),
where {Li}i∈I is the collection of all completely irreducible submodules of M . Hence
IMP (N) ⊆ (Li :M r). Therefore, rIMP (N) ⊆ ∩i∈ILi = (0). Hence r ∈ AnnR(I

M
P (N)), as

required. �

2.5. Definition. We say that a submodule N of an R-module M is cotorsion-free with
respect to (w.r.t.) P if IMP (N) = N , where P ∈ Spec(R).

2.6. Lemma. Let N ba a submodule of an R-module M and P ∈ Spec(R). If N is
cotorsion-free w.r.t. P , then N is cotorsion-free w.r.t. Q for each Q ∈ V (P ).

Proof. Since P ⊆ Q, IMP (N) ⊆ IMQ (N). Therefore, N = IMP (N) ⊆ IMQ (N) ⊆ N. Hence
N = IMP (N) = IMQ (N) for each Q ∈ V (P ). �

A non-zero R-module M is said to be secondary if for each a ∈ R, the endomorphism
M

a→ M is either surjective or nilpotent (see [10]). Clearly, every second module is a
secondary module.

2.7. Example. (1) If P ∈ Spec(R), then every P -secondary submodule of an R-
module M is cotorsion-free w.r.t. P by [4, 2.8].

(2) The Z-module Zp∞ is cotorsion-free w.r.t. (0).

2.8. Corollary. Let P ∈ Spec(R) and N be a submodule of an R-module M . If N is
cotorsion-free w.r.t. P , then AnnR(I

M
P (N)) = SP (AnnR(I

M
P (N))).

Proof. The results follows from part (c) of Theorem 2.4 because N = IMP (N). �

The cosupport of an R-module M [12] is denoted by Cosupp(M) and it is defined by

Cosupp(M) = {P ∈ Spec(R)|P ⊇ AnnR(L) for some cocyclic

homomorphic image L of M}.

2.9. Theorem. Let P ∈ Spec(R) and N be a submodule of an Artinian R-module M .
Then we have the following.

(1) AnnRP (HomR(RP , N)) = (AnnR(I
M
P (N)))P .

(2) The following statements are equivalent.
(a) HomR(RP , N) 6= (0).
(b) AnnR(I

M
P (N)) ⊆ P .

(c) IMP (N) 6= (0).
(d) P ∈ CosuppR(N).
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Proof. (1) By Theorem 2.4 (b), HomR(RP , I
M
P (N)) = HomR(RP , N). It is easy to see

that
(AnnR(I

M
P (N)))P ⊆ AnnRP (HomR(RP , I

M
P (N)).

To see the reverse inclusion, we note that IMP (IMP (N)) = φ(HomR(RP , I
M
P (N))) by [2,

2.15], where φ : HomR(RP , I
M
P (N))→ IMP (N) is the natural homomorphism defined by

φ(f) = f(1RP ) for any f ∈ HomR(RP , I
M
P (N)). Now by Theorem 2.4 (a), IMP (N) =

φ(HomR(RP , I
M
P (N))). But always we have

AnnR(HomR(RP , I
M
P (N))) ⊆ AnnR(φ(HomR(RP , I

M
P (N))).

Hence AnnR(HomR(RP , I
M
P (N))) ⊆ AnnR(I

M
P (N)). Therefore,

AnnRP (HomR(RP , I
M
P (N))) ⊆ (AnnR(I

M
P (N)))P ,

as required.
(2) (a) ⇔ (d). By [12, 2.3], CosuppR(N) = V (AnnR(N)) and by [11, p. 130],

CosR(N) = V (AnnR(N)), where CosR(N) = {P ∈ Spec(R) : HomR(RP , N) 6= (0)}.
Hence we get the equivalence (a) and (d).

(b)⇒ (c). This is clear.
(a) ⇒ (b). HomR(RP , N) 6= (0) ⇔ AnnRP (HomR(RP , N)) 6= RP . Thus by using

part (1), we have

HomR(RP , N) 6= (0)⇔ (AnnR(I
M
P (N)))P 6= RP ⇔ AnnR(I

M
P (N)) ⊆ P.

(c)⇒ (a). If HomR(RP , N) = (0), then HomR(RP , I
M
P (N)) = (0). Thus by [2, 2.15],

IMP (N) = IMP (IMP (N)) = φ(HomR(RP , I
M
P (N)) = (0),

where φ : HomR(RP , I
M
P (N))→ IMP (N) is the natural homomorphism defined by φ(f) =

f(1RP ) for any f ∈ HomR(RP , I
M
P (N)). This contradiction completes the proof. �

We need the following lemma.

2.10. Lemma. [7, 2.2] Let I be an ideal of R and P ∈ Spec(R). Then the following
statements are equivalent.

(a) SP (I) is a P -primary ideal of R.
(b)

√
SP (I) = P .

(c) P is a minimal prime ideal of I.

2.11. Theorem. Let P ∈ Spec(R) and N be a submodule of an Artinian R-module M .
Then the following statements are equivalent.

(a) IMP (N) is a P -secondary submodule of M .
(b) AnnR(I

M
P (N)) is a P -primary ideal of R.

(c)
√
AnnR(IMP (N)) = P .

In particular, IMP (N) is P -second if and only if AnnR(I
M
P (N)) = P .

Proof. (a)⇒ (b). This is clear.
(b)⇒ (a). Since AnnR(I

M
P (N)) is a P -primary ideal of R and IMP (IMP (N)) = IMP (N)

by Theorem 2.4 (a), IMP (N) is a P -secondary submodule of M by [4, 2.2].
(b)⇒ (c). This is elementary.
(c) ⇒ (b). Put I = AnnR(I

M
P (N)). Then by Theorem 2.4 (d), SP (I) = I. Now, we

have
√
I = P =

√
SP (I) by the hypothesis. It follows from Lemma 2.10 that SP (I) is a

P -primary ideal of R. Hence I = SP (I) = AnnR(I
M
P (N)) is a P -primary ideal of R, as

required. �
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2.12. Definition. Let M be an R-module, (0) 6= N ≤M and P ∈ Spec(R). We say the
pair (N,P ) satisfies property (∗∗) if SP (AnnR(N)) = AnnR(I

M
P (N)) 6= R. We say the

module M satisfies property (∗∗) if for every (0) 6= N ≤ M and P ∈ V (AnnR(N)) the
pair (N,P ) satisfies property (∗∗).

2.13. Remark. (a) For every N ≤ M and P ∈ Spec(R), if AnnR(N) 6⊆ P , then
IMP (N) = (0) because there exists r ∈ R−P such that rN = (0). Hence for each
i ∈ I, rN ⊆ Li, where {Li}i∈I is the set of all completely irreducible submodules
of M . Therefore, IMP (N) ⊆ ∩i∈ILi = (0). However, the converse is not true in
general. As a counter example, take the Z-module Z asM , N = Z, and P = (0).

(b) Let M be an R-module, (0) 6= N ≤ M and P ∈ Spec(R). If a pair (N,P )
satisfies property (∗∗), then by part (a), we have AnnR(N) ⊆ P .

2.14. Example. (a) The Z-module Z does not satisfy property (∗∗) because (Z,
(0)) does not satisfy this property.

(b) Let N be a non-zero submodule of an R-module M and let P be a prime ideal
of R. If N is cotorsion-free w.r.t. P , then (N,P ) satisfies property (∗∗). This
is because IMP (N) = N 6= (0) implies that AnnR(I

M
P (N)) = AnnR(N) 6= R and

hence by Corollary 2.8, we have

AnnR(N) = SP (AnnR(N)) = AnnR(I
M
P (N)) 6= R.

Moreover, not only (N,P ), but also (N,Q) for each Q ∈ V (P ) satisfies property
(∗∗) by Lemma 2.6. In particular, every P -secondary submodule S of M and
each Q ∈ V (P ) = V (AnnR(S)) satisfies property (∗∗) by Example 2.7.

2.15. Theorem. Every non-zero Artinian R-module M satisfies property (∗∗).

Proof. Let (0) 6= N ≤ M and P ∈ V (AnnR(N)). By Lemma 2.3, there exists t ∈
R − P such that tN ⊆ IMP (N). Now let r ∈ AnnR(I

M
P (N)). Then rtN = (0). Hence

r ∈ SP (AnnR(N)). Thus R 6= AnnR(I
M
P (N)) ⊆ SP (AnnR(N)). The reverse inclusion

follows from Theorem 2.4 (c). �

2.16. Remark. Those modules M which satisfy property (∗∗) are not necessarily Ar-
tinian. For example, every vector space W satisfies property (∗∗) even it is of infinite
dimensional. This is due to that every non-zero subspace U of W is (0)-second with
V (AnnR(U)) = {(0)}.

2.17. Corollary. Let M be an Artinian R-module, (0) 6= N ≤M and P ∈ Spec(R).
(1) The following statements are equivalent.

(a) IMP (N) is a P -secondary submodule of M .
(b)

√
SP (AnnR(N)) = P .

(c) P is a minimal prime ideal of AnnR(N).
(2) IMP (N) is a P -second submodule of M if and only if SP (AnnR(N)) = P .

In particular, if AnnR(N) = P , then IMP (N) is a P -second submodule of M .

Proof. The proof is straightforward from Theorem 2.11, Lemma 2.10, and Theorem 2.4.
�

3. Maximal second submodules
A submodule N of an R-module M is said to be a maximal second submodule of a

submodule K of M , if N ⊆ K and there does not exist a second submodule L of M such
that N ⊂ L ⊂ K (see [1]).

3.1. Lemma. Let R be an integral domain and letM be an Artinian non-zero R-module.
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(a) If IM(0)(M) 6= (0), then IM(0)(M) is a maximal (0)-second submodule of M and it
contains every (0)-second submodule of M .

(b) IM(0)(M) =M if and only if M is a (0)-second submodule of M .

Proof. (a) This follows from [1, 2.9] and [3, 2.10].
(b) This follows from part (a) and [3, 2.10]. �

3.2. Theorem. Let R be an integral domain of dimension 1, M be a non-zero Artinian
R-module and (0) 6= P ∈ V (AnnR(M)). Then IMP ((0 :M P )) is a maximal second
submodule of M if and only if IMP ((0 :M P )) 6⊆ IM(0)(M).

Proof. Since (0) ⊂ P ⊆ AnnR((0 :M P )), dimR = 1, and R is a domain, it follows that
if AnnR((0 :M P )) 6= R, then AnnR((0 :M P )) = P . Hence IMP ((0 :M P )) is a second
submodule of M by [1, 2.8].
Suppose that IMP ((0 :M P )) is a maximal second submodule of M . Then there are two
cases:

(i) IMP ((0 :M P )) =M and
(ii) IMP ((0 :M P )) 6=M .

In case (i), M is a P -second submodule for P 6= (0). Consequently, IM(0)(M) 6= M by
Lemma 3.1 (b). Hence IMP ((0 :M P )) 6⊆ IM(0)(M).
In case (ii), IMP ((0 :M P )) is a proper maximal second submodule of M . Hence M is not
a second submodule, in particular, it is not a (0)-second submodule so that IM(0)(M) 6=M

by Lemma 3.1 (b) again. Thus if IM(0)(M) 6= (0), then IM(0)(M) is a proper maximal
(0)-second submodule of M by Lemma 3.1 (a). Consequently, IMP ((0 :M P )) 6⊆ IM(0)(M)

by the maximality of IMP ((0 :M P )) in M . On the other hand, if IM(0)(M) = (0), then
obviously, IMP ((0;M P )) 6⊆ IM(0)(M).

Conversely, suppose that IMP ((0;M P )) 6⊆ IM(0)(M). Then clearly IM(0)(M) 6= M . Thus
by Lemma 3.1 (b), M is not a (0)-second submodule. To see that IMP ((0 :M P )) is a
maximal second submodule ofM , let K be a second submodule ofM such that IMP ((0 :M
P )) ⊆ K ⊆M . Then

(0) ⊆ AnnR(M) ⊆ AnnR(K) ⊆ AnnR(I
M
P ((0 :M P ))) = P.

Since dimR = 1, the prime ideal AnnR(K) = (0) or P . If AnnR(K) = (0), then K is a
(0)-second submodule. However, K 6=M becauseM is not a (0)-second submodule as we
have seen above. Since every proper (0)-second submodule contained in IM(0)(M), we have
that IMP ((0 :M P )) ⊆ K ⊆ IM(0)(M) 6= (0) which contradicts to IMP ((0 :M P )) 6⊆ IM(0)(M).
Therefore, AnnR(K) = P , i.e., K is a P -second submodule. Thus K = IMP (K) ⊆
IMP ((0 :M P )). Therefore, K = IMP ((0 :M P )). This proves that IMP ((0 :M P )) is a
maximal second submodule of M . �

3.3. Proposition. Let Y be a set of prime ideals of R which contains all the maximal
ideals, M be an Artinian R-module, and N be a non-zero submodule of M . Then
N =

∑
P∈Y I

M
P (N).

Proof. Let L be a completely irreducible submodule of M such that
∑

P∈Y I
M
P (N)

⊆ L so that IMP (N) ⊆ L for every P ∈ Y . Hence by Lemma 2.3, we have (L :R N) 6⊆ P
for every P ∈ Y . This implies that (L :R N) 6⊆ m for every maximal ideal m ∈ Y . This
in turn implies that (L :R N) = R and hence N ⊆ L. Thus N ⊆

∑
P∈Y I

M
P (N). The

reverse inclusion is clear. �
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3.4. Corollary. Let (R,m) be a local ring,M an Artinian R-module, and (0) 6= N ≤M .
Then N is cotorsion-free w.r.t. m.

Proof. Take Y = {m} in Proposition 3.3. Then we have IMm (N) = N . �

Let N be a submodule of an R-module M . The (second) socle of N is defined as
the sum of all second submodules of M contained in N and it is denoted by soc(N) or
sec(N) (see [1] and [5]). In case N does not contain any second submodule, the socle of
N is defined to be (0).

3.5. Proposition. Let M be an Artinian R-module, P ∈ Spec(R), and (0) 6= N ≤ M .
If P is a minimal prime ideal of AnnR(N) and IMP ((0 :N P )) 6= (0), then IMP ((0 :N P ))
is a maximal second submodule of K ≤ M with IMP ((0 :N P )) ⊆ K ⊆ N . In particular
IMP ((0 :N P )) is a maximal P -second submodule of sec(N).

Proof. Since IMP ((0 :N P )) 6= (0), IMP ((0 :N P )) is a maximal P -second submodule of
(0 :N P ) by [1, 2.9]. Now suppose that K is a submodule ofM such that IMP ((0 :N P )) ⊆
K ⊆ N and S is a Q-second submodule of M such that IMP ((0 :N P )) ⊆ S ⊆ K ⊆ N .
Then as P is a minimal prime ideal of AnnR(N), we have Q = P . Thus S ⊆ (0 :N P ). It
follows that S = IMP ((0 :N P )) as desired. The last assertion follows from the fact that
IMP ((0 :N P )) ⊆ sec(N) ⊆ N . So the proof is completed.

�

The following example shows that the condition IMP ((0 :N P )) 6= (0) in the statement
of Proposition 3.5 can not be dropped.

3.6. Example. Consider M = N = Zp∞ as Z-module, where p is a prime number.
Let q 6= p be an another prime number. Then clearly, qZ is a minimal prime ideal of
AnnZ(M) and IM(q)((0 :N qZ)) = (0).

The next theorem gives an important information on the maximal second submodules
of an Artinian R-modules.

3.7. Theorem. Let N be a non-zero submodule of an Artinian R-module M . Then
every maximal second submodule of N must be of the form IMP ((0 :N P )) for some
P ∈ V (AnnR(N)).

Proof. Let S be a maximal P -second submodule of N . Then S ⊆ N and AnnR(S) = P
so that S ⊆ (0 :N P ). Therefore, S = IMP (S) ⊆ IMP ((0 :N P )) ⊆ N by [3, 2.10]. Since
P ∈ V (AnnR(N)), IMP ((0 :N P )) is a P -second submodule , as we have seen in the proof
of Proposition 3.5. Thus S = IMP ((0 :N P )). �

3.8. Corollary. Let M be an Artinian R-module and (0) 6= N ≤ M . Then sec(N) =∑
P∈Y I

M
P ((0 :N P )), where Y is a finite subset of V (AnnR(N)).

Proof. By [1, 2.6, 2.2], there exists n ∈ Z such that sec(N) =
∑n

i=1 Si, where for
1 ≤ i ≤ n, Si is a maximal second submodule of N . Now the proof follows from Theorem
3.7. We remark that this corollary is also a direct consequence of [3, Proposition 2.7
(a)]. �

3.9. Corollary. LetN be a non-zero submodule of an ArtinianR-moduleM . If IMP ((0 :N
P )) 6= (0) and N is a P -secondary submodule of an R-module M for some P ∈ Spec(R),
then we have the following.

(a) IMP ((0 :N P )) is a maximal P -second submodule of sec(N).
(b) If P is a maximal ideal of R, then sec(N) = IMP ((0 :N P )) so that sec(N) is a

P -second submodule of M .



682

Proof. (a) This follows from Proposition 3.5 because P is a minimal prime ideal of
AnnR(N).

(b) By Corollary 3.8, sec(N) =
∑

Q∈V (AnnR(N)) I
M
Q ((0 :N Q)). Since P is maximal

and
√
AnnR(N) = P , V (AnnR(N)) = {P}. Thus sec(N) = IMP ((0 :N P )) as required.

�

3.10. Corollary. Let I be an ideal of R and M be an Artinian R-module such that
(0 :M I) 6= (0). Then sec((0 :M I)) =

∑
P∈V (AnnR((0:M I))) I

M
P ((0 :M P )).

Proof. Set N = (0 :M I). Then this follows from Corollary 3.8 since, (0 :(0:M I) P ) =
(0 :M P ) for every P ∈ V (AnnR((0 :M I))). �

3.11. Example. For any prime integer p, let M = (Z/pZ) × Zp∞ . Then M is an
Artinian faithful Z-module and V (AnnZ(M)) = V ((0)) = Spec(Z). Hence sec(M) =∑

(q)∈V ((0)) I
M
(q)((0 :M qZ)) by Corollary 3.10. Since IM(q)((0 :M qZ)) = IM(q)(0) = (0) for

each prime number p 6= q,

sec(M) = IM(0)(M) + IM(p)((0 :M pZ))
= ((0)× Zp∞) + ((Z/pZ)× < 1/p+ Z >)

=M.
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