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Distribution of zeros of sublinear dynamic
equations with a damping term on time scales
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Abstract
In this paper, for a second order sublinear dynamic equation with a
damping term we will study the lower bounds of the distance between
zeros of a solution and/or its derivatives and then establish some new
criteria for disconjugacy and disfocality. Our results present a slight
improvement to some results proved in the litrature. As a special case
when T = R, for a second order linear differential equation, we get some
results proved by Brown and Harris as a consequence of our results. The
results will be proved by employing the time scales Hölder inequality,
the time scales chain rule and some new dynamic Opial-type inequalities
designed and proved for this purpose.
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1. Introduction
In this paper, we will study the distribution of zeros of solutions of the second-order

sublinear dynamic equation with a damping term

(1.1)
(
r (t)

(
y∆ (t)

)β)∆

+ p(t)
(
y∆ (t)

)β
+ q(t) (yσ (t))β = 0, on [a, b]T ,

on an arbitrary time scale T, where 0 < β ≤ 1 is a quotient of odd positive integers, r, p
and q are real rd−continuous functions defined on T with r(t) > 0. In particular, we will
find the lower bounds of the distance between zeros of a solution and/or its derivatives
and prove several results related to the problems:
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(i) obtain lower bounds for the spacing b − a where y is a solution of (1.1) and
satisfies
y(a) = y∆ (b) = 0, or y∆ (a) = y (b) = 0,

(ii) obtain lower bounds for the spacing between consecutive zeros of solutions of
(1.1).

By a solution of (1.1) on an interval I, we mean a nontrivial real-valued function
y ∈ Crd(I), which has the property that r (t) y∆ (t) ∈ C1

rd(I) and satisfies (1.1) on I. We
say that a solution y of (1.1) has a generalized zero at t if y (t) = 0 and has a generalized
zero in (t, σ(t)) in case y (t) yσ (t) < 0 and µ(t) > 0. Equation (1.1) is disconjugate on the
interval [a, b]T, if there is no nontrivial solution of (1.1) with two (or more) generalized
zeros in [a, b]T. The solution y (t) of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is oscillatory. We say that (1.1) is right
disfocal (left disfocal) on [a, b]T if the solutions of (1.1) such that y∆ (a) = 0 (y∆ (b) = 0)
have no generalized zeros in [a, b]T. We refer the reader to the book [28] for more details
about oscillation and nonoscillation theory of dynamic equations on time scales.

We note that, equation (1.1) in its general form covers several different types of differ-
ential and difference equations depending on the choice of the time scale T. For example,
when T = R, we have σ(t) = t, µ(t) = 0, x∆(t) = x

′
(t) and (1.1) becomes the second-

order sublinear differential equation

(1.2) (r(t)(x
′
(t))β)

′
+ p(t)(x

′
(t))β + q(t)xβ(t) = 0.

When T = Z, we have σ(t) = t+ 1, µ(t) = 1, x∆(t) = ∆x(t) = x(t+ 1)− x(t) and (1.1)
becomes the second-order difference equation

(1.3) ∆(r(t) (∆x(t))β) + p(t) (∆x(t))β + q(t)xβ(t+ 1)) = 0.

We present in the sequel some of the results that serve and motivate the contents on this
paper. The well known existence results in the literature for disconjugacy is due to C.
de la Vallée Poussin [22]. He considered the general nth order linear differential equation

(1.4) x(n) + p0(t)x(n−1) + · · ·+ pn−1(t)x = 0,

where the coefficients pi are real continuous functions on an interval I = [a, b] , and proved
that if |pi(t)| ≤ qi on I and the inequality

(1.5)
n∑
i=1

qi (b− a)i

i!
≤ 1,

holds, then (1.4) is disconjugate (that is every nontrivial solution of (1.4) has less than
n zeros on I, multiple zeros being counted according to their multiplicity).

Lyapunov [17] investigated the best known existence result in the literature for the
second order differential equation

(1.6) x
′′

(t) + q(t)x(t) = 0, t ∈ (a, b) ,

and proved that if x(t) is a solution of (1.6) with x(a) = x(b) = 0 and q(t) is a continuous
and nonnegative function on the closed interval [a, b], then

(1.7)
b∫
a

q(t)dt >
4

b− a .

The constant 4 is the best possible and cannot be replaced by a larger number. The
inverse of (1.7) gives a sufficient condition for disconjugacy of (1.6). The Lyapunov in-
equality is very important and has been extended extensively in the study of various
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properties of ordinary differential equations, for example bounds for eigenvalues, oscilla-
tion theory, stability criteria for periodic differential equations, and estimates for intervals
of disconjugacy.

Since the appearance of Lyapunov’s fundamental paper, there are many improvements
and generalizations of (1.7) in several papers and different conditions for the disconjugacy,
for the second order differential equation (1.2) and its special cases, have been investigated
by many authors. We refer the reader to the papers [12, 16, 19, 21, 30, 32]. A literature
review of continuous and discrete Lyapunov-type inequalities and their applications can
be found in the survey articles by Brown and Hinton [6], Cheng [8] and Tiryaki [31]
and the references cited therein. Hartman in [11, Chap. XI] generalized the classical
Lyapunov inequality for the second order linear differential equation

(1.8)
(
r(t)x

′
(t)
)′

+ q(t)x(t) = 0, r(t) > 0,

and proved that if x(a) = x(b) = 0, then

(1.9)
∫ b

a

q+(s)ds ≥ 4∫ b
a
r−1(s)ds

,

where q+(t) = max{0, q(t)} is the nonnegative part of q(t).
Cohn [9] and Kwong [14] proved that if x(t) is a solution of (1.6) with x(a) = x

′
(c) = 0,

then
c∫
a

(t− a) q(t)dt > 1,

and similarly if x(t) is a solution of (1.6) with x
′
(c) = x(b) = 0, then

b∫
c

(b− t) q(t)dt > 1.

Harris and Kong [10] proved that if x(t) is a solution of (1.6) with x(a) = x
′
(b) = 0, then

(1.10) (b− a) sup
a≤t≤b

∣∣∣∣∣∣
b∫
t

q(s)∆s

∣∣∣∣∣∣ > 1,

and if instead x
′
(a) = x (b) = 0, then

(1.11) (b− a) sup
a≤t≤b

∣∣∣∣∣∣
t∫
a

q(s)∆s

∣∣∣∣∣∣ > 1.

Brown and Hinton [7] proved that if x(t) is a solution of (1.6) with x(a) = x
′
(b) = 0,

then

(1.12) 2

b∫
a

Q2
1(t)(t− a)dt > 1,

where Q1(t) =
∫ b
t
q(s)ds. If instead x

′
(a) = x (b) = 0, then

(1.13) 2

b∫
a

Q2
2(t)(b− t)dt > 1,
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where Q2(t) =
t∫
a

q(s)ds.

In [29] the author considered the equation (1.2) when β = 1 and established some
criteria for disconjugacy and disfocality of solutions in an interval I = [a, b] ⊂ R. He also
applied Hardy and Wirtinger type inequalities and established an explicit formula for the
lower bound of the first eigenvalue of the eigenvalue problem

(1.14) −
(
x
′
(t)
)′
− p(t)x

′
(t) + q(t)x(t) = λx(t), x(a) = x(b) = 0.

For the study of dynamic equations on time scales, Bohner et al. [5] considered the
dynamic equation

(1.15) x∆∆ (t) + q(t)xσ (t) = 0,

and proved a new Lyapunov dynamic inequality on a time scale T, where q(t) is a positive
rd-continuous function defined on T. Saker [24], employed some new dynamic Opial type
inequalities and established new Lyapunov type inequalities for the equation

(1.16)
(
r (t)x∆ (t)

)∆

+ q(t)xσ (t) = 0, on [a, b]T ,

where r; q are rd-continuous functions satisfy the conditions∫ b

a

1

r(t)
∆t <∞, and

∫ b

a

q(t)∆t <∞.

For more results related to these results, we refer the reader to the papers by Karpuz
[13] and Saker [23, 27] and the references cited therein.

Following this trend and to develop the study of oscillation of second-order sublinear
dynamic equations on time scales, we will prove several results related to the problems
(i) − (ii). The rest of the paper is divided into three sections: In Section 2, we present
some basic concepts of the time scales calculus and present some dynamic Opial-type
inequalities, which are also interesting results in their own right, that will be used in
the proof of our main results. In Section 3, we first prove some new generalizations of
Opial’s inequality on an arbitrary time scale T, then we will employ these inequalities to
prove several results related to the problems (i)− (ii) above. In Section 4, we will discuss
some special cases of the results. The results yield some conditions for disfocality and
disconjugacy for equation (1.1).

2. Preliminaries and Some Opial’s Inequalities
In this section, we briefly give some essentials of time scales calculus which are neces-

sary for our results, then we present some dynamic Opial-type inequalities on an arbitrary
time scale T.

A time scale T is an arbitrary nonempty closed subset of the real numbers R. We
assume throughout that T has the topology that it inherits from the standard topology
on the real numbers R. The forward jump operator and the backward jump operator are
defined by: σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, where sup ∅ = inf T. A
point t ∈ T, is said to be left–dense if ρ(t) = t and t > inf T, is right–dense if σ(t) = t,
is left–scattered if ρ(t) < t and right–scattered if σ(t) > t. A function g : T → R is said
to be right–dense continuous (rd–continuous) provided g is continuous at right–dense
points and at left–dense points in T, left hand limits exist and are finite. The set of all
such rd–continuous functions is denoted by Crd(T). We denote by C(n)

rd (T) the space of
all functions f ∈ Crd(T) such that f∆i ∈ Crd(T) for i = 0, 1, 2, ..., n for n ∈ N.

The graininess function µ for a time scale T is defined by µ(t) := σ(t)− t ≥ 0, and for
any function f : T→ R the notation fσ(t) denotes f(σ(t)). We assume that supT =∞,



459

and define the time scale interval [a, b]T by [a, b]T := [a, b] ∩ T. The three most popular
examples of calculus on time scales are differential calculus, difference calculus, and
quantum calculus, i.e., when T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1. For
more details of time scale analysis we refer the reader to the two books by Bohner and
Peterson [2], [3] which summarize and organize much of the time scale calculus. In this
paper, we will refer to the (delta) integral which we can define as follows. If G∆(t) = g(t),
then the Cauchy (delta) integral of g is defined by

∫ t
a
g(s)∆s := G(t) − G(a). It can be

shown (see [2]) that if g ∈ Crd(T), then the Cauchy integral G(t) :=
∫ t
t0
g(s)∆s exists,

t0 ∈ T, and satisfies G∆(t) = g(t), t ∈ T. A simple consequence of Keller’s chain rule [2,
Theorem 1.90] is given by

(2.1) (xγ(t))∆ = γ

1∫
0

[hxσ(t) + (1− h)x(t)]γ−1 dh x∆(t),

and the integration by parts formula on time scales is given by

(2.2)
∫ b

a

u(t)v∆(t)∆t = [u(t)v(t)]ba −
∫ b

a

u∆(t)vσ(t)∆t.

The Hölder inequality, see [2, Theorem 6.13], on time scales is given by

(2.3)
∫ b

a

|f(t)g(t)|∆t ≤
[∫ b

a

|f(t)|γ∆t

] 1
γ
[∫ b

a

|g(t)|ν∆t

] 1
ν

,

where a, b ∈ T and f, g ∈ Crd(I,R), γ > 1 and 1
γ

+ 1
ν

= 1. Throughout the paper, we
will assume that the functions in the statements of the theorems are nonnegative and
rd-continuous functions and the integrals are assumed to exist.

For completeness, in the following, we recall some of the Opial-type inequalities that
serve and motivate the contents of the paper.

In 1960 Opial [20] published an inequality involving integrals of a function and its
derivative. Since the discovery of Opial’s inequality much work has been done, and
many papers which deal with new proofs, various generalizations, extensions and their
discrete analogues have been also proved in the literature. The discrete analogy of Opial’s
inequality has been proved in [15]. In [4] the authors extended the Opial inequality to
an arbitrary time scale T and proved that if y : [0, h]T → R is delta differentiable with
y(0) = 0, then

(2.4)
∫ h

0

|y(x) + yσ(x)|
∣∣∣y∆(x)

∣∣∣∆x ≤ h ∫ h

0

∣∣∣y∆(x)
∣∣∣2 ∆x.

They also proved that if r and q are positive rd-continuous functions on [0, h]T,
∫ h

0
∆x
r(x)

<

∞, q nonincreasing and y : [0, h]T → R is delta differentiable with y(0) = 0, then

(2.5)
∫ h

0

qσ(x)
∣∣∣(y(x) + yσ(x)) y∆(x)

∣∣∣∆x ≤ ∫ h

0

∆x

r(x)

∫ h

0

r(t)q(x)
∣∣∣y∆(x)

∣∣∣2 ∆x.

In [24] the author proved that if y : [a, τ ]T → R is delta differentiable with y(a) = 0, then

(2.6)
∫ τ

a

s(x) |y(x) + yσ(x)|
∣∣∣y∆(x)

∣∣∣∆x ≤ K1(a, τ)

∫ τ

a

r(x)
∣∣∣y∆(x)

∣∣∣2 ∆x,

where s ∈ Crd([a, τ ]T,R) and r be a positive rd-continuous function on (a, τ)T such that∫ τ
a
r−1(t)∆t <∞, and

K1(a, τ) =
√

2

(∫ τ

a

s2(x)

r(x)

(∫ x

a

∆t

r(t)

)
∆x

) 1
2

+ sup
a≤x≤τ

(
µ(x)

|s(x)|
r(x)

)
.
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In [26] the author generalized (2.6) and proved that if y : [a, τ ]T → R is delta differentiable
with y(a) = 0, then

(2.7)
∫ τ

a

s(x)|y(x) + yσ(x)|λ|y∆(x)|δ∆x ≤ H1(a, τ)

∫ τ

a

r(x)|y∆(x)|λ+δ∆x,

where r, s be nonnegative rd-continuous functions on [a, τ ]T such that
∫ τ
a
r
−1

λ+δ−1 (t)∆t <
∞, λ, δ be positive real numbers such that λ ≥ 1 and

H1(a, τ) : = 2λ−1 sup
a≤x≤τ

(
µλ(x)

s(x)

r(x)

)
+ 22λ−1

(
δ

λ+ δ

) δ
λ+δ

×

(∫ τ

a

(s(x))
λ+δ
λ

(r(x))
δ
λ

(∫ x

a

r
−1

λ+δ−1 (t)∆t

)λ+δ−1

∆x

) λ
λ+δ

.

In [25] the author proved that if y : [a, τ ]T → R+ is delta differentiable with y(a) = 0,
then

(2.8)
∫ τ

a

s(x)|y(x) + yσ(x)|p|y∆(x)|q∆x ≤ K2(a, τ)

∫ τ

a

r(x)|y∆(x)|p+q∆x,

where p, q > 0 such that p ≤ 1, p + q > 1, r, s be nonnegative rd-continuous functions
such that

∫ τ
a
r
−1

p+q−1 (t)∆t <∞ and

K2(a, τ) : = sup
a≤x≤τ

(
µp(x)

s(x)

r(x)

)
+ 2p

(
q

p+ q

) q
p+q

(2.9)

×

(∫ τ

a

(s(x))
p+q
p

(r(x))
q
p

(∫ x

a

r
−1

p+q−1 (t)∆t

)p+q−1

∆x

) p
p+q

.

If [a, τ ]T is replaced by [τ, b]T, then we get the following result

(2.10)
∫ b

τ

s(x)|y(x) + yσ(x)|p|y∆(x)|q∆x ≤ K3(τ, b)

∫ b

τ

r(x)|y∆(x)|p+q∆x,

where

K3(τ, b) : = sup
τ≤x≤b

(
µp(x)

s(x)

r(x)

)
+ 2p

(
q

p+ q

) q
p+q

(2.11)

×

(∫ b

τ

(s(x))
p+q
p

(r(x))
q
p

(∫ b

x

r
−1

p+q−1 (t)∆t

)p+q−1

∆x

) p
p+q

.

We assume that there exists τ ∈ (a, b) which is the unique solution of the equation

(2.12) K(p, q) = K2(a, τ) = K3(τ, b) <∞,

where K2(a, τ) and K3(τ, b) are defined as in (2.9) and (2.11). Combining (2.8) and
(2.10), we get

(2.13)
∫ b

a

s(x)|y(x) + yσ(x)|p|y∆(x)|q∆x ≤ K(p, q)

∫ b

a

r(x)|y∆(x)|p+q∆x,

where y : [a, b]T → R is delta differentiable with y(a) = 0 = y(b),
∫ b
a
r
−1

p+q−1 (t)∆t < ∞
and K(p, q) is defined as in (2.12).
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3. Main results
In this section, we prove some new Opial-type inequalities on a time scale T and apply

these new inequalities on the second-order sublinear dynamic equation (1.1) to obtain
some new Lyapunov-type inequalities related to problems (i) − (ii). Throughout the
rest of the paper, we will assume that the functions in the statements of the theorems
are nonnegative and rd-continuous functions and the integrals considered are assumed to
exist.

3.1. New Opial-type inequalities. Now, we will prove some new Opial type inequal-
ities that will be needed in the proofs of our main results.

3.1. Theorem. Let T be a time scale with a, τ ∈ T and λ, δ be positive real numbers
such that λ ≤ 1, λ+ δ > 1, and let r, s be nonnegative rd-continuous functions on (a, τ)T

such that
∫ τ
a
r
−1

λ+δ−1 (t)∆t < ∞. If y : [a, τ ]T → R is delta differentiable with y(a) = 0,
then

(3.1)
∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x ≤ H1(a, τ, λ, δ)

∫ τ

a

r(x)|y∆(x)|λ+δ∆x,

where

H1(a, τ, λ, δ) : =

(
δ

λ+ δ

) δ
λ+δ

(∫ τ

a

(s(x))
λ+δ
λ

(r(x))
δ
λ

(∫ x

a

r
−1

λ+δ−1 (t)∆t

)λ+δ−1

∆x

) λ
λ+δ

+ sup
a≤x≤τ

(
µλ(x)

s(x)

r(x)

)
,(3.2)

Proof. Since r is nonnegative on (a, τ)T, it follows from the Hölder inequality with f(t) =
1

(r(t))
1

λ+δ
, g(t) = (r(t))

1
λ+δ |y∆(t)|, γ = λ+δ

λ+δ−1
and β = λ+ δ, that

|y(x)| ≤
∫ x

a

|y∆(t)|∆t =

∫ x

a

1

(r(t))
1

λ+δ

(r(t))
1

λ+δ |y∆(t)|∆t

≤

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)λ+δ−1
λ+δ (∫ x

a

r(t)|y∆(t)|λ+δ∆t

) 1
λ+δ

.

Then, for a ≤ x ≤ τ, we can write

(3.3) |y(x)|λ ≤

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)λ(λ+δ−1
λ+δ

)(∫ x

a

r(t)|y∆(t)|λ+δ∆t

) λ
λ+δ

.

Now, since yσ = y + µy∆, by applying inequality (see [18], page 500)

(3.4) 2r−1 |ar + br| ≤ |a+ b|r ≤ |ar + br| , for 0 ≤ r ≤ 1,

we have that

(3.5) |yσ|λ = |y + µy∆|λ ≤ |y|λ + µλ|y∆|λ.

Setting

(3.6) z(x) :=

∫ x

a

r(t)|y∆(t)|λ+δ∆t,

we see that z(a) = 0, and

(3.7) z∆(x) = r(x)|y∆(x)|λ+δ > 0.
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This gives that

(3.8) |y∆(x)|λ+δ =
z∆(x)

r(x)
and |y∆(x)|δ =

(
z∆(x)

r(x)

) δ
λ+δ

.

Thus since s is nonnegative on (a, τ)T, we get from (3.3), (3.5) and (3.8) that

s(x)|yσ(x)|λ|y∆(x)|δ ≤ s(x)|y|λ|y∆(x)|δ + s(x)µλ|y∆|λ+δ

≤ s(x)

(
1

r(x)

) δ
λ+δ

×

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)λ(λ+δ−1
λ+δ

)

×(z(x))
λ
λ+δ (z∆(x))

δ
λ+δ + s(x)µλ(x)

(
z∆(x)

r(x)

)
.

This implies that

∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x

≤
∫ τ

a

s(x)

(
1

r(x)

) δ
λ+δ

×

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)λ(λ+δ−1
λ+δ

)

×(z(x))
λ
λ+δ (z∆(x))

δ
λ+δ ∆x+

∫ τ

a

(
µλ
s(x)

r(x)

)
z∆(x)∆(x).

≤
∫ τ

a

s(x)

(
1

r(x)

) δ
λ+δ

×

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)λ(λ+δ−1
λ+δ

)

×(z(x))
λ
λ+δ (z∆(x))

δ
λ+δ ∆x+ sup

a≤x≤τ

(
µλ
s(x)

r(x)

)∫ τ

a

z∆(x)∆(x).(3.9)

Applying the Hölder inequality (2.3) with indices (λ+ δ) /λ and (λ+ δ) /δ, we have

∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x

≤

∫ τ

a

s(x)
λ+δ
λ

(
1

r(x)

) δ
λ

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)(λ+δ−1)

∆x

 λ
λ+δ

×
(∫ τ

a

z
λ
δ (x)z∆(x)∆x

) δ
λ+δ

+ sup
a≤x≤τ

(
µλ
s(x)

r(x)

)∫ τ

a

z∆(x)∆(x).(3.10)

From (3.7), and the chain rule (2.1), we get that

(3.11) z
λ
δ (x)z∆(x) ≤ δ

λ+ δ

(
z
λ+δ
δ (x)

)∆

.
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Substituting (3.11) into (3.10) and using the fact that z(a) = 0, we obtain∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x

≤

∫ τ

a

s(x)
λ+δ
λ

(
1

r(x)

) δ
λ

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)(λ+δ−1)

∆x

 λ
λ+δ

×
(

δ

λ+ δ

) δ
λ+δ

(∫ τ

a

(
z
λ+δ
δ (x)

)∆

∆t

) δ
λ+δ

+ sup
a≤x≤τ

(
µλ
s(x)

r(x)

)∫ τ

a

z∆(x)∆(x)

=

∫ τ

a

s(x)
λ+δ
λ

(
1

r(x)

) δ
λ

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)(λ+δ−1)

∆x

 λ
λ+δ

×
(

δ

λ+ δ

) δ
λ+δ

z(τ) + sup
a≤x≤τ

(
µλ
s(x)

r(x)

)
z(τ).

Using (3.6), we have from the last inequality that∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x ≤ H1(a, τ, λ, δ)

∫ τ

a

r(x)|y∆(x)|λ+δ∆x,

which is the required inequality (3.1) with (3.2). This completes the proof. �

Next, we will just state the following theorem, since its proof is the same as that of
Theorem 3.1, with [a, τ ]T replaced by [τ, b]T.

3.2. Theorem. Let T be a time scale with τ, b ∈ T and λ, δ be positive real numbers such
that λ ≤ 1, λ+ δ > 1, and let r, s be nonnegative rd-continuous functions on (τ, b)T such
that

∫ b
τ
r
−1

λ+δ−1 (t)∆t <∞. If y : [τ, b]T → R is delta differentiable with y(b) = 0, then

(3.12)
∫ b

τ

s(x)|yσ(x)|λ|y∆(x)|δ∆x ≤ H2(τ, b, λ, δ)

∫ b

τ

r(x)|y∆(x)|λ+δ∆x,

where

H2(τ, b, λ, δ) =

(
δ

λ+ δ

) δ
λ+δ

(∫ b

τ

(s(x))
λ+δ
λ

(r(x))
δ
λ

(∫ b

x

r
−1

λ+δ−1 (t)∆t

)λ+δ−1

∆x

) λ
λ+δ

+ sup
τ≤x≤b

(
µλ(x)

s(x)

r(x)

)
.(3.13)

In the following, we assume that there exists τ ∈ (a, b)T which is the unique solution
of the equation

(3.14) H(a, b) = H1(a, τ, λ, δ) = H2(τ, b, λ, δ) <∞,

where H1(a, τ, λ, δ) and H2(τ, b, λ, δ) are defined as in Theorems 3.1 and 3.2. Note that
since ∫ b

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x =

∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x

+

∫ b

τ

s(x)|yσ(x)|λ|y∆(x)|δ∆x,

then the proof of the following theorem is just a combination of Theorems 3.1 and 3.2
and so, we remove it.
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3.3. Theorem. Let T be a time scale with a, b ∈ T and λ, δ be positive real numbers such
that λ ≤ 1, λ+ δ > 1, and let r, s be nonnegative rd-continuous functions on (a, b)T such
that

∫ b
a
r
−1

λ+δ−1 (t)∆t < ∞. If y : [a, b]T → R is delta differentiable with y(a) = 0 = y(b),
then

(3.15)
∫ b

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x ≤ H(a, b)

∫ b

a

r(x)|y∆(x)|λ+δ∆x,

where H(a, b) is defined as in (3.14).

3.2. New Lyapunov Inequalities. Now, we are ready to prove the results related to
problems (i)− (ii). For simplicity, we set the following notations:

K1(a, b, β) := sup
a≤t≤b

(
µβ(t)

Q1(t)

r(t)

)
+2β

(
1

β + 1

) 1
β+1

 b∫
a

|Q1(t)|
β+1
β

r
1
β (t)

R1(t)∆t


β
β+1

,

H1(a, b, β) :=

(
β

β + 1

) β
β+1

(∫ b

a

(p(t))β+1

(r(t))β
R1(t)∆t

) 1
1+β

+ sup
a≤t≤b

(
µ(t)

p(t)

r(t)

)
,

where Q1(t) =
b∫
t

q(s)∆s and R1(t) =
(∫ t

a
r
− 1
β (θ)∆θ

)β
,

K2(a, b, β) := sup
a≤t≤b

(
µβ(t)

Q2(t)

r(t)

)
+2β

(
1

β + 1

) 1
β+1

 b∫
a

|Q2(t)|
β+1
β

r
1
β (t)

R2(t)∆t


β
β+1

,

and

H2(a, b, β) :=

(
β

β + 1

) β
β+1

(∫ b

a

(p(t))β+1

(r(t))β
R2(t)∆t

) 1
1+β

+ sup
a≤t≤b

(
µ(t)

p(t)

r(t)

)
,

where Q2(t) =
t∫
a

q(s)∆s and R2(t) =
(∫ b

t
r
− 1
β (θ)∆θ

)β
.

3.4. Theorem. Assume that y is a nontrivial solution of (1.1). If y(a) = y∆(b) = 0,
then

(3.16) 21−βK1(a, b, β) +H1(a, b, β) ≥ 1.

Proof. Without loss of generality, we may assume that y(t) > 0 in [a, b]T. Multiplying
(1.1) by yσ and integrating by parts (see 2.2), we get

b∫
a

(
r (t)

(
y∆ (t)

)β)∆

yσ (t) ∆t+

b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t

= r (t)
(
y∆ (t)

)β
y (t)

∣∣∣∣b
a

−
b∫
a

r (t)
(
y∆ (t)

)β+1

∆t+

b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t

= −
b∫
a

q(t) (yσ (t))β+1 ∆t.
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Using the assumptions that y(a) = y∆(b) = 0 and Q(t) =
b∫
t

q(s)∆s, we have

(3.17)
b∫
a

r (t)
(
y∆ (t)

)β+1

∆t =

b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t−

b∫
a

Q∆(t) (yσ (t))β+1 ∆t.

Integrating by parts the term
b∫
a

Q∆(t) (yσ (t))β+1 ∆t, and using the facts that y(a) = 0 =

Q(b), we obtain

(3.18)
b∫
a

r (t)
(
y∆ (t)

)β+1

∆t =

b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t+

b∫
a

Q(t)
(
yβ+1 (t)

)∆

∆t.

Applying the chain rule formula (2.1) and the inequality (3.4), we see that∣∣∣∣(yβ+1 (t)
)∆
∣∣∣∣ ≤ (β + 1)

1∫
0

|hyσ (t) + (1− h) y (t)|β dh
∣∣∣y∆ (t)

∣∣∣
≤ 21−β |yσ (t) + y (t)|β

∣∣∣y∆ (t)
∣∣∣ .(3.19)

This and (3.18) imply that
b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t ≤
b∫
a

|p(t)| |yσ (t)|
∣∣∣y∆ (t)

∣∣∣β ∆t

+21−β
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣∣y∆ (t)

∣∣∣∆t.(3.20)

Applying the inequality (2.7) on the integral
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣y∆ (t)

∣∣∆t, with
s = Q, p = β, and q = 1, we have

(3.21)
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣∣y∆ (t)

∣∣∣∆t ≤ K1(a, b, β)

b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t.

Applying the inequality (3.1) on the integral
b∫
a

|p(t)| |yσ (t)|
∣∣y∆ (t)

∣∣β ∆t with s = p, λ =

1, and δ = β, we obtain

(3.22)
∫ b

a

p(t)|yσ(t)||y∆(t)|β∆t ≤ H1(a, b, β)

∫ b

a

r(t)|y∆(t)|β+1∆t.

Substituting (3.21) and (3.22) into (3.20), we get
b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t ≤ 21−βK1(a, b, β)

b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t

+H1(a, b, β)

∫ b

a

r(t)|y∆(t)|β+1∆t.(3.23)

Then, we have from (3.23) after cancelling the term
b∫
a

r (t)
∣∣y∆ (t)

∣∣β+1
∆t, the desired

inequality (3.16). The proof is complete. �
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3.5. Remark. Theorem 3.4 gives us a condition for right disfocality of (1.1). In partic-
ular, if

21−βK1(a, b, β) +H1(a, b, β) < 1,

then (1.1) is right disfocal in [a, b]T. This means that there is no nontrivial solution of
(1.1) in [a, b]T satisfies y(a) = y∆(b) = 0.

3.6. Theorem. Assume that y is a nontrivial solution of (1.1). If y∆(a) = y(b) = 0,
then

(3.24) 21−βK2(a, b, β) +H2(a, b, β) ≥ 1.

Proof. The proof of (3.24) is similar to (3.16) by employing Opial-type inequalities (2.8)
and (3.12) instead of (2.7) and (3.1). The proof is complete. �

3.7. Remark. Theorem 3.6 gives us a condition for left disfocality of (1.1). In particular,
if

21−βK2(a, b, β) +H2(a, b, β) < 1.

then (1.1) is left disfocal in [a, b]T. This means that there is no nontrivial solution of
(1.1) in [a, b]T satisfies y∆(a) = y(b) = 0.

In the following, we employ inequalities (2.13) and (3.15) to determine the lower bound
for the distance between consecutive zeros of a solution of (1.1).

3.8. Theorem. Assume that Q∆(t) = q(t) and y is a nontrivial solution of (1.1). If
y(a) = y(b) = 0, then

(3.25) 21−βK(a, b) +H(a, b) ≥ 1,

where K(a, b) and H(a, b) are defined as in (2.12) and (3.14), respectively.

Proof. Multiplying (1.1) by yσ and integrating by parts, we get that

(3.26)
b∫
a

r (t)
(
y∆ (t)

)β+1

∆t =

b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t−

b∫
a

Q∆(t) (yσ (t))β+1 ∆t.

Using the facts that y(a) = 0 = y(b), we obtain

b∫
a

r (t)
(
y∆ (t)

)β+1

∆t ≤
b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t

+21−β
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣∣y∆ (t)

∣∣∣∆t.(3.27)

Applying the inequality (2.13) on the integral
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣y∆ (t)

∣∣∆t, with
s = |Q| , λ = β, δ = 1, we have that

(3.28)
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣∣y∆ (t)

∣∣∣∆t ≤ K(a, b)

b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t,
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where K(a, b) is defined as in (2.12). Applying the inequality (3.15) on the integral
b∫
a

|p(t)| |yσ (t)|
∣∣y∆ (t)

∣∣β ∆t with s = p, λ = 1, δ = β, we have that

(3.29)
∫ b

a

p(t)|yσ(t)||y∆(t)|β∆t ≤ H(a, b)

∫ b

a

r(t)|y∆(t)|β+1∆t,

where H(a, b) is defined as in (3.14). Substituting (3.28) and (3.29) into (3.27), we get
that

(3.30)
b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t ≤ 21−βK(a, b)

b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t+H(a, b)

∫ b

a

r(t)|y∆(t)|β+1∆t.

Then, we have from (3.30) after cancelling the term
b∫
a

r (t)
∣∣y∆ (t)

∣∣β+1
∆t, that

21−βK(a, b) +H(a, b) ≥ 1,

which is the desired inequality (3.25). The proof is complete. �

3.9. Remark. Theorem 3.8 gives us a condition for disconjugacy of (1.1). In particular,
if

K(a, b) +H(a, b) < 1,

then (1.1) is disconjugate in [a, b]T. This means that there is no nontrivial solution of
(1.1) in [a, b]T satisfies y(a) = y(b) = 0.

4. Applications
In Theorem 3.4 if β = 1, then we have the following result, which improves the ob-

tained result in [23, Corollary 2.2] by removing the additional constant c in the conditions.

4.1. Corollary. Assume that y is a nontrivial solution of (1.1). If y(a) = y∆(b) = 0,
then

(4.1) sup
a≤t≤b

1

r(t)
[p(t)µ(t) +Q1(t)µ(t)] +

√
2

 b∫
a

|Q1(t)|2

r(t)
R1(t)∆t


1
2

+
1√
2

(∫ b

a

p2(t)

r(t)
R1(t)∆t

) 1
2

≥ 1,

where Q1(t) =
b∫
t

q(s)∆s and R1(t) =
∫ t
a

∆τ
r(τ)

. If y∆(a) = y(b) = 0, then

(4.2) sup
a≤t≤b

1

r(t)
[p(t)µ(t) +Q2(t)µ(t)] +

√
2

 b∫
a

|Q2(t)|2

r(t)
R2(t)∆t


1
2

+
1√
2

(∫ b

a

p2(t)

r(t)
R2(t)∆t

) 1
2

≥ 1,

where Q2(t) =
t∫
a

q(s)∆s and R2(t) =
∫ b
t

∆τ
r(τ)

.
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As a special case of Theorem 3.4, when r(t) = 1, we obtain the following result, which
improves the result that is obtained in [23, Corollary 2.1] by removing the additional
constant c in the obtained results.

4.2. Corollary. Assume that y is a nontrivial solution of (1.1). If y(a) = y∆(b) = 0,
then

sup
a≤t≤b

[
µ(t)p(t) + 21−βµβ(t)Q(t)

]
+

2

(β + 1)
1

β+1

 b∫
a

|Q(t)|
β+1
β (τ − a)β ∆t


β
β+1

+

(
β

β + 1

) β
β+1

(∫ b

a

|p(t)|β+1 (τ − a)β ∆t

) 1
1+β

≥ 1,

where Q(t) =
b∫
t

q(s)∆s. If y∆(a) = y(b) = 0, then

sup
a≤t≤b

[
µ(t)p(t) + 21−βµβ(t)Q(t)

]
+

2

(β + 1)
1

β+1

 b∫
a

|Q(t)|
β+1
β (b− τ)β ∆t


β
β+1

+

(
β

β + 1

) β
β+1

(∫ b

a

|p(t)|β+1 (b− τ)β ∆t

) 1
1+β

≥ 1,

where Q(t) =
t∫
a

q(s)∆s.

As a special case of Corollary 4.1, when p(t) = 0, we have the following results.

4.3. Corollary. Assume that y is a nontrivial solution of (1.16). If y(a) = y∆(b) = 0,
then

(4.3) sup
a≤t≤b

1

r(t)
Q1(t)µ(t) +

√
2

 b∫
a

|Q1(t)|2

r(t)
R1(t)∆t


1
2

≥ 1,

where Q1(t) =
∫ b
t
q(s)∆s and R1(t) =

∫ t
a

∆τ
r(τ)

. If instead y∆(a) = y(b) = 0, then

(4.4) sup
a≤t≤b

1

r(t)
Q1(t)µ(t) +

√
2

 b∫
a

|Q1(t)|2

r(t)
R2(t)∆t


1
2

≥ 1,

where Q2(t) =
t∫
a

q(s)∆s and R2(t) =
∫ b
t

∆τ
r(τ)

.

Using the maximum of |Q1(t)| on [a, b]T in Corollary 4.3, we get the following results.

4.4. Corollary. Assume that y is a nontrivial solution of (1.16). If y(a) = y∆(b) = 0,
then

(4.5) sup
a≤t≤b

1

r(t)

∣∣∣∣∫ b

t

q(s)∆s

∣∣∣∣µ(t) +
√

2 max
a≤t≤b

∣∣∣∣∫ b

t

q(s)∆s

∣∣∣∣
 b∫
a

R1(t)

r(t)
∆t


1
2

≥ 1,

where R1(t) =
∫ t
a

∆τ
r(τ)

. If instead y∆(a) = y(b) = 0, then

(4.6) sup
a≤t≤b

1

r(t)

∣∣∣∣∣∣
t∫
a

q(s)∆s

∣∣∣∣∣∣µ(t) +
√

2 max
a≤t≤b

∣∣∣∣∣∣
t∫
a

q(s)∆s

∣∣∣∣∣∣
 b∫
a

R2(t)

r(t)
∆t


1
2

≥ 1,
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where R2(t) =
∫ b
t

∆τ
r(τ)

.

As a special case when T = R, β = 1, r(t) = 1 and p(t) = 0, then yσ(t) = y(t) and
equation (1.1) becomes

(4.7) y
′′

(t) + q(t)y(t) = 0.

Now, the results in Corollary 4.3 reduce to the following results obtained by Brown and
Hinton [7].

4.5. Corollary. Assume that y is a solution of the equation (4.7). If y (a) = y
′
(b) = 0,

then

(4.8) 2

b∫
a

Q2
1(t)(t− a)dt > 1,

where Q1(t) =
∫ b
t
q(s)ds. If instead y

′
(α) = y (β) = 0, then

(4.9) 2

b∫
a

Q2
2(t)(b− t)dt > 1,

where Q2(t) =
t∫
a

q(s)ds.

As a special case of Corollary 4.4 for the second order differential equation (4.7), we
get the following results due to Harris and Kong [10].

4.6. Corollary. Assume that y is a solution of the equation (4.7). If y (a) = y
′
(b) = 0,

then

(4.10) (b− a) sup
a≤t≤b

∣∣∣∣∣∣
b∫
t

q(s)∆s

∣∣∣∣∣∣ > 1.

If instead y
′
(α) = y (β) = 0, then

(4.11) (b− a) sup
a≤t≤b

∣∣∣∣∣∣
t∫
a

q(s)∆s

∣∣∣∣∣∣ > 1.

Using the maximum of |Q| and |p| on [a, b]T we have from Corollary 4.2 the following
results for the second order difference equation

(4.12) ∆((∆y(t))β + p(t) (∆y(t))β + q(t)yβ(t+ 1)) = 0,

where 0 < β ≤ 1 is a quotient of odd positive integers.

4.7. Corollary. Assume that y is a nontrivial solution of (4.12). If y(a) = ∆y(b) = 0,
then [

max
a≤τ≤b

|p(t)|+ 21−β max
a≤τ≤b

∣∣∣∣∣
b−1∑
s=t

q(s)∆s

∣∣∣∣∣
]

+
2(b− a)β

(β + 1)
max
a≤τ≤b

∣∣∣∣∣
b−1∑
s=t

q(s)∆s

∣∣∣∣∣
+
β

β
β+1

β + 1
(b− a) max

a≤τ≤b
|p(t)| ≥ 1.
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If ∆y(a) = y(b) = 0, then[
max
a≤τ≤b

|p(t)|+ 21−β max
a≤τ≤b

∣∣∣∣∣
t−1∑
s=a

q(s)∆s

∣∣∣∣∣
]

+
2(b− a)β

(β + 1)
max
a≤τ≤b

∣∣∣∣∣
t−1∑
s=a

q(s)∆s

∣∣∣∣∣
+
β

β
β+1

β + 1
(b− a) max

a≤τ≤b
|p(t)| ≥ 1.
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