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The frobenius problem for some numerical
semigroups with embedding dimension equal to

three

Aureliano M. Robles-Pérez∗ † and José Carlos Rosales∗‡

Abstract
If S is a numerical semigroup with embedding dimension equal to three
whose minimal generators are pairwise relatively prime numbers, then
S = 〈a, b, cb − da〉 with a, b, c, d positive integers such that gcd(a, b) =
gcd(a, c) = gcd(b, d) = 1, c ∈ {2, . . . , a−1}, and a < b < cb−da. In this
paper we give formulas, in terms of a, b, c, d, for the genus, the Frobenius
number, and the set of pseudo-Frobenius numbers of 〈a, b, cb − da〉 in
the case in which the interval

[
a
c
, b
d

]
contains some integer.
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1. Introduction
Let Z and N be the set of integers and the set of nonnegative integers, respectively. A

numerical semigroup is a subset S of N such that it is closed under addition, 0 ∈ S, and
N \ S is finite. The elements of N \ S are the gaps of S, and the cardinality of such set is
called the genus of S, denoted by g(S). The Frobenius number of S is the largest integer
that does not belong to S and it is denoted by F(S).

If A ⊆ N is a nonempty set, we denote by 〈A〉 the submonoid of (N,+) generated by
A, that is,

〈A〉 = {λ1a1 + . . .+ λnan | n ∈ N \ {0}, a1, . . . , an ∈ A, and λ1, . . . , λn ∈ N}.
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In [16] it is proved that 〈A〉 is a numerical semigroup if and only if gcd(A) = 1, where
gcd means greatest common divisor.

It is well known (see [16]) that every numerical semigroup S is finitely generated, that
is, there exists a finite subset G ⊆ S such that S = 〈G〉. In addition, if no proper subset
of G generates S, then we say that G is a minimal system of generators of S. In [16] it is
proved that every numerical semigroup admits a unique minimal system of generators.
The cardinality of such a set is known as the embedding dimension of S, denoted by e(S).

The Frobenius problem (see [8]) consists of finding formulas that allow us to compute,
in terms of the minimal system of generators of a numerical semigroup, the Frobenius
number and the genus of such a numerical semigroup. This problem was solved by
Sylvester and Curran Sharp (see [18, 19, 20]) when the embedding dimension is equal to
two. In fact, if S is a numerical semigroup with minimal system of generators {n1, n2},
then F(S) = n1n2 − n1 − n2 and g(S) = (n1−1)(n2−1)

2
.

At present, the Frobenius problem is open for the case of embedding dimension equal
to three. To be precise, Curtis proved in [2] that it is impossible to find a polynomial
formula that solves the problem of Frobenius number. On the other hand, algorithms
that compute Frobenius number, quasi-formulas, and upper bounds for such number are
the topic of several contributions (see [4, 8, 9, 11, 12]). In addition, the authors showed
in [10] that, if the multiplicity of S is fixed, then it is possible to give explicit formulas
for the Frobenius number. In this paper, our purpose is to give simple formulas in a
particular but extensive case (in the line of [7] and some results collected in [8]).

If {n1, n2, n3} is the minimal system of generators of a numerical semigroup S and
d = gcd(n1, n2), then we have (see [6, 11]) that F(S) = dF

(
〈n1
d
, n2
d
, n3〉

)
+ (d − 1)n3

and g(S) = d g
(
〈n1
d
, n2
d
, n3〉

)
+ (d−1)(n3−1)

2
. Therefore, in order to solve the Frobenius

problem for numerical semigroups with embedding dimension equal to three, we focus our
attention on numerical semigroups whose three minimal generators are pairwise relatively
prime numbers.

If S is a numerical semigroup and m ∈ S \{0}, then the Apéry set of m in S (see [1]) is
Ap(S,m) = {s ∈ S | s−m 6∈ S}. Obviously, Ap(S,m) = {w(0) = 0, w(1), . . . , w(m−1)},
where w(i) is the least element of S congruent with i modulom, for all i ∈ {0, . . . ,m−1}.
It is clear that F(S) = max{Ap(S,m)}−m, and a formula for g(S) in terms of Ap(S,m)
is given in [17] (see Lemma 3.1).

Following the notation introduced in [14], we say that x ∈ Z \S is a pseudo-Frobenius
number of S if x+ s ∈ S for all s ∈ S \ {0}. We will denote by PF(S) the set of pseudo-
Frobenius numbers of S, and its cardinality is the type of S, denoted by t(S). From the
definition it follows that F(S) = max{PF(S)}.

In [15] it is shown that, if S is a numerical semigroup with embedding dimension
equal to three whose three minimal generators are pairwise relatively prime numbers, it
is possible to describe S in function of six positive integers r12, r13, r21, r23, r31, r32. Then,
it is possible to give formulas for F(S), g(S), and PF(S) in terms of such parameters. In
this paper we will show that we can reduce the number of parameters to four (a, b, c, d) and
we will give the formulas for F(S), g(S), and PF(S) in the case in which

[
a
c
, b
d

]
∩N 6= ∅.

We left as an open problem the case
[
a
c
, b
d

]
∩ N = ∅.

We summarize the content of this paper. Let us denote

F = {〈a, b, cb− da〉 | a, b, c, d ∈ N \ {0}, gcd(a, b) = gcd(a, c) = gcd(b, d) = 1,

2 ≤ c ≤ a− 1, and a < b < cb− da} .

First of all, we observe that F is the set of all numerical semigroups with embedding
dimension equal to three whose minimal generators are pairwise relatively prime numbers.
Let us consider S = 〈a, b, cb − da〉 ∈ F. The main result in Section 2 is Theorem 2.8,
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where we give Ap(S, a) in an explicit way when
[
a
c
, b
d

]
∩ N 6= ∅. As a consequence of

this result, in Section 3, we give the formulas for F(S), g(S), and PF(S) in the above
mentioned case.

2. The Apéry set
Our purpose in this section is to prove Theorem 2.8, where we will show explicitly

an Apéry set for a particular family of numerical semigroups with embedding dimension
three. It is well known that the Apéry set allows us to solve easily the Frobenius problem,
as well as simplify many questions about numerical semigroups, such as the membership
problem (that is, determine if a positive integer belongs to a numerical semigroup).

First we need to introduce some results. The following lemma has an immediate proof
(see [16, Lemma 2.6]).

2.1. Lemma. Let S be a numerical semigroup and m ∈ S \ {0}. Then, for every x ∈ Z,
there exist a unique (λ,w) ∈ Z × Ap(S,m) such that x = λm + w. Moreover, x ∈ S if
and only if λ ∈ N.

Let p, q be two integers such that q 6= 0. We denote by
⌊
p
q

⌋
and p mod q the quotient

and the remainder of the integer division of p by q, respectively. The next result follows
from [13, Lemma 3.3].

2.2. Lemma. Let m be a positive integer. Let {X(0) = 0, X(1), . . . , X(m − 1)} be
a subset of N such that X(i) mod m = i, for all i ∈ {0, 1, . . . ,m − 1}. Let S =
〈m,X(1), . . . , X(m − 1)〉. Then Ap(S,m) = {X(0), X(1), . . . , X(m − 1)} if and only
if X(i) +X(j) ≥ X((i+ j) mod m), for all i, j ∈ {1, . . . ,m− 1}.

The following lemma is well known (see, for instance, [17]).

2.3. Lemma. Let n1, n2 be two positive integers such that gcd(n1, n2) = 1. Let S =
〈n1, n2〉. Then Ap(S, n1) = {0, n2, 2n2, . . . , (n1 − 1)n2}.
2.4. Lemma. Let S be a numerical semigroup with minimal system of generators given by
{n1, n2, n3}. If gcd(n1, n2) = 1, then there exist two unique numbers k ∈ {2, . . . , n1 − 1}
and t ∈ {1, . . . , n2 − 1} such that n3 = kn2 − tn1.

Proof. Since n3 /∈ 〈n1, n2〉, by Lemmas 2.1 and 2.3, we deduce that there exist unique
numbers k ∈ {0, 1, . . . , n1 − 1} and t ∈ N \ {0} such that n3 = kn2 − tn1. Since n3 > 0,
it is obvious that t ∈ {1, . . . , n2 − 1}. In order to finish the proof we have to see that
k /∈ {0, 1}. If k = 0, then n3 = −tn1, which is a contradiction to the positiveness of n3.
If k = 1, then n2 = n3 + tn1 ∈ 〈n1, n3〉, which is a contradiction because {n1, n2, n3} is
a minimal system of generators. �

2.5. Remark. By using Euclidean algorithm, we have that, if gcd{n1, n2} = 1, then
there exist two positive integers u, v such that un2 − vn1 = 1. Thus, n3 = (un3)n2 −
(vn3)n1 =

(⌊
un3
n1

⌋
n1 + (un3) modn1

)
n2− (vn3)n1. Therefore n3 = ((un3) modn1)n2−(

vn3 −
⌊
un3
n1

⌋
n2

)
n1. We conclude that, in Lemma 2.4, k = (un3) modn1 and t =

vn3 −
⌊
un3
n1

⌋
n2.

2.6. Remark. Let S be a numerical semigroup with minimal system of generators
{n1, n2, n3}. If n1, n2, n3 are pairwise relatively prime numbers and n1 < n2 < n3,
taking a = n1, b = n2, c = k, d = t, and cb − da = kn2 − tn1 = n3, we deduce from
Lemma 2.4 that S ∈ F. On the other hand, it is easy to see that any element of F is a
numerical semigroup with embedding dimension equal to three whose minimal generators
are pairwise relatively prime numbers.
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2.7. Lemma. Let a, b, c, d be four positive integers such that gcd(a, b) = 1 and cb−da ≥
d((−a) mod c). Let S =

〈{
αb−

⌊
α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
∪ {a}

〉
. Then

Ap(S, a) =
{
αb−

⌊α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
.

Proof. Since cb − da ≥ 0, it follows that αb −
⌊
α
c

⌋
da ∈ N, for all α ∈ {0, . . . , a − 1}.

Moreover,
{
αb−

⌊
α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
is a subset of N such that it has the form

{X(0) = 0, X(1), . . . , X(a− 1)} with X(i) mod a = i, for all i ∈ {0, 1, . . . , a− 1}. Then,
by using Lemma 2.2, we conclude the proof if we show both of the next two statements.

(1) If α, β ∈ {1, . . . , a− 1} and α+ β ≤ a− 1, then

αb−
⌊α
c

⌋
da+ βb−

⌊
β

c

⌋
da ≥ (α+ β)b−

⌊
α+ β

c

⌋
da.

(2) If α, β ∈ {1, . . . , a− 1} and α+ β ≥ a, then

αb−
⌊α
c

⌋
da+ βb−

⌊
β

c

⌋
da ≥ (α+ β − a)b−

⌊
α+ β − a

c

⌋
da.

The first one follows from the inequality
⌊
α+β
c

⌋
≥
⌊
α
c

⌋
+
⌊
β
c

⌋
. The second one is equivalent

to b
d
≥
⌊
α
c

⌋
+
⌊
β
c

⌋
−
⌊
α+β−a

c

⌋
. Since

⌊
x
c

⌋
c = x − x mod c, for all x ∈ N, if we multiply

both sides of the inequality by c, then it suffices to prove that
cb

d
≥ α− α mod c+ β − β mod c− (α+ β − a) + (α+ β − a) mod c,

or equivalently, that
cb

d
≥ a+ (α+ β − a) mod c− α mod c− β mod c.

Now, let us observe that (α + β − a) mod c ≤ α mod c + β mod c + (−a) mod c. Since
cb− da ≥ d((−a) mod c), we conclude that

cb

d
≥ a+ (−a) mod c

= a+ (−a) mod c+ α mod c+ β mod c− α mod c− β mod c

≥ a+ (α+ β − a) mod c− α mod c− β mod c. �

Let q be a rational number. As usual, we denote by dqe the minimum of the set
{z ∈ Z | q ≤ z}. At this point, we are in a position to prove the main result of this
section.

2.8. Theorem. Let S = 〈a, b, cb− da〉 ∈ F. If
[
a
c
, b
d

]
∩ N 6= ∅, then

Ap(S, a) =
{
αb−

⌊α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
.

Proof. First of all, let us observe that, since
⌈
x
c

⌉
c = x+ (−x)mod c, for all x ∈ N, then

cb− da ≥ d((−a) mod c)⇔ cb− da ≥ d
(⌈a
c

⌉
c− a

)
⇔ b

d
≥
⌈a
c

⌉
.

Obviously, the last inequality is precisely the condition
[
a
c
, b
d

]
∩ N 6= ∅.

Now, from Lemma 2.7, if S̄ =
〈{
αb−

⌊
α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
∪ {a}

〉
, then we

have that Ap(S̄, a) =
{
αb−

⌊
α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
. Therefore, to finish the proof,

it is enough to show that S = S̄.
Since c ≥ 2, then

⌊
1
c

⌋
= 0 and b = b −

⌊
1
c

⌋
da ∈ S̄. Moreover, it is obvious that

a ∈ S̄ and cb − da = cb −
⌊
c
c

⌋
da ∈ S̄. Therefore, S = 〈a, b, cb − da〉 ⊆ S̄. For the other

inclusion, let us take x ∈ S̄. From Lemma 2.1, we deduce that there exist λ ∈ N and
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α ∈ {0, . . . , a−1} such that x = λa+
(
αb−

⌊
α
c

⌋
da
)
. Since x = λa+

(⌊
α
c

⌋
c+ αmod c

)
b−⌊

α
c

⌋
da = λa+ (αmod c)b+

⌊
α
c

⌋
(cb− da), then x ∈ 〈a, b, cb− da〉 = S. �

2.9. Remark. Let us observe that F contains infinitely many numerical semigroups (in
fact, as it is pointed out in Remark 2.6, all numerical semigroups with embedding di-
mension equal to three whose minimal generators are pairwise relatively prime numbers)
but not all of them satisfy the condition of Theorem 2.8, that is,

[
a
c
, b
d

]
contains some

integer. For example, the numerical semigroup S = 〈16, 19, 7×19−7×16〉 = 〈16, 19, 21〉
does not satisfy that condition. Even more (see Remark 3.8 and Example 3.13), no
possible combination of a, b, c, d for this numerical semigroup satisfies the condition of
Theorem 2.8.

2.10. Example. Let S = 〈5, 7, 3×7−2×5〉 = 〈5, 7, 11〉. Since 7
2
≥
⌈
5
3

⌉
, by Theorem 2.8,

we have that

Ap(S, 5) =
{
α× 7−

⌊α
3

⌋
× 2× 5 | α ∈ {0, 1, 2, 3, 4}

}
= {0, 7, 14, 11, 18}.

3. The genus and the pseudo-Frobenius numbers
Along this section S is a numerical semigroup which belongs to F. Therefore, S =

〈a, b, cb−da〉 with a, b, c, d positive integers such that gcd(a, b) = gcd(a, c) = gcd(b, d) = 1,
2 ≤ c ≤ a − 1, and a < b < cb − da. Moreover, we suppose that b

d
≥
⌈
a
c

⌉
. Our purpose

is to give formulas for g(S), PF(S), and F(S).
The following result appears in [17].

3.1. Lemma. If T is a numerical semigroup and m ∈ T \ {0}, then

g(T ) =

 1

m

∑
w∈Ap(T,m)

w

− m− 1

2
.

Let us show a formula to compute g(S).

3.2. Proposition. Let S be a numerical semigroup which satisfies the conditions stated
at the beginning of this section. Then

g(S) =
(b− 1)(a− 1)

2
− d

⌊
a− 1

c

⌋(
a− c

2

(⌊
a− 1

c

⌋
+ 1

))
.

Proof. From Theorem 2.8 and Lemma 3.1, we have that

g(S) =
1

a

a−1∑
α=1

(
αb−

⌊α
c

⌋
da
)
− a− 1

2
=

1

a

(
b

a−1∑
α=1

α− da
a−1∑
α=1

⌊α
c

⌋)
− a− 1

2

=
1

a

(
b
a(a− 1)

2
− da

a−1∑
α=1

⌊α
c

⌋)
− a− 1

2
=

(b− 1)(a− 1)

2
− d

a−1∑
α=1

⌊α
c

⌋
.

In order to finish the proof we need to show that

a−1∑
α=1

⌊α
c

⌋
=

⌊
a− 1

c

⌋(
a− c

2

(⌊
a− 1

c

⌋
+ 1

))
.
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Let us observe that α ∈ {ic, ic+ 1, . . . , ic+ (c− 1)} if and only if
⌊
α
c

⌋
= i. Therefore,

a−1∑
α=1

⌊α
c

⌋
=

b a−1
c c−1∑
j=1

(
c−1∑
α=0

j

)
+

a−1−b a−1
c cc∑

α=0

⌊
a− 1

c

⌋

= c

b a−1
c c−1∑
j=1

j +

⌊
a− 1

c

⌋(
a−

⌊
a− 1

c

⌋
c

)

=

⌊
a− 1

c

⌋(
c

2

(⌊
a− 1

c

⌋
− 1

)
+ a− c

⌊
a− 1

c

⌋)
. �

3.3. Example. Let S = 〈5, 7, 3 × 7 − 2 × 5〉 = 〈5, 7, 11〉. Since 7
2
≥
⌈
5
3

⌉
, applying

Proposition 3.2, we have that

g(S) =
6× 4

2
− 2

⌊
4

3

⌋(
5− 3

2

(⌊
4

3

⌋
+ 1

))
= 12− 4 = 8.

In [3] it is shown that, if T is a numerical semigroup with embedding dimension equal
to three, then t(T ) ∈ {1, 2}. Moreover, t(T ) = 1 if and only if T is a symmetric numerical
semigroup. In [5] it is proved that a numerical semigroup T with embedding dimension
equal to three is symmetric if and only if is a complete intersection numerical semigroup,
and then the minimal generators of T can not be pairwise relatively prime numbers.
Therefore, if S is a numerical semigroup such as at the beginning of this section, then
t(S) = 2. We can give explicitly the elements of PF(S). But first we need a lemma.

Let T be a numerical semigroup. We define in T the partial order

x ≤T y if y − x ∈ T.
If A ⊆ T , we denote by max≤T {A} the set of maximals elements of A with respect to
the previous partial order. From [3, Proposition 7] we deduce the following result.

3.4. Lemma. Let T be a numerical semigroup andm ∈ T\{0}. If we set {wi1, . . . , wit} =
max≤T {Ap(T,m)}, then PF(T ) = {wi1 −m, . . . , wit −m}.

3.5. Proposition. Let S be a numerical semigroup such as at the beginning of this
section. Then

PF(S) =

{⌊
a− 1

c

⌋
(cb− da) + da− b− a, (a− 1)b−

⌊
a− 1

c

⌋
da− a

}
.

Proof. From Theorem 2.8 we know that

Ap(S, a) =
{
αb−

⌊α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
.

Since αb −
⌊
α
c

⌋
da =

(⌊
α
c

⌋
c+ α mod c

)
b −

⌊
α
c

⌋
da =

⌊
α
c

⌋
(cb − da) + (α mod c) b and

(a− 1) mod c 6= c− 1 (in case of equality, we have a mod c = 0, and then c|a, which is a
contradiction with gcd(a, c) = 1), we have that max≤S{Ap(S, a)} ={(⌊

a− 1

c

⌋
− 1

)
(cb− da) + (c− 1)b,

⌊
a− 1

c

⌋
(cb− da) + ((a− 1) mod c) b

}
.

Having in mind that (a− 1) mod c = a− 1−
⌊
a−1
c

⌋
c, then⌊

a− 1

c

⌋
(cb− da) + ((a− 1) mod c) b = −

⌊
a− 1

c

⌋
da+ (a− 1)b.

Therefore,

max≤S{Ap(S, a)} =

{⌊
a− 1

c

⌋
(cb− da) + da− b, (a− 1)b−

⌊
a− 1

c

⌋
da

}
.
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From Lemma 3.4 we conclude the proof. �

3.6. Example. Let S = 〈5, 7, 3 × 7 − 2 × 5〉 = 〈5, 7, 11〉. Since 7
2
≥
⌈
5
3

⌉
, applying

Proposition 3.5, we have that PF(S) = {9, 13}.

3.7. Corollary. Let S be a numerical semigroup such as at the beginning of this section.
Then

F(S) =

{
(a− 1)b−

⌊
a−1
c

⌋
da− a, if 1 >

⌊
a−1
c

⌋
c
a

+ d
b
,⌊

a−1
c

⌋
(cb− da) + da− b− a, in other case.

Proof. Since F(S) = max{PF(S)}, then it is enough to apply Proposition 3.5 and note
that (a−1)b−

⌊
a−1
c

⌋
da−a >

⌊
a−1
c

⌋
(cb−da)+da−b−a if and only if 1 >

⌊
a−1
c

⌋
c
a

+ d
b
. �

3.8. Remark. It is possible to improve the results of this paper. Indeed, we only need to
impose the conditions 0 < cb− da and e(S) = 3 instead of the condition a < b < cb− da.
This way, if we consider the set

F
∗ = {〈a, b, cb− da〉 | a, b, c, d ∈ N \ {0}, gcd(a, b) = gcd(a, c) = gcd(b, d) = 1,

2 ≤ c ≤ a− 1, cb− da > 0, and e(〈a, b, cb− da〉) = 3} ,

it is easy to see that S = 〈a, b, cb − da〉 ∈ F∗ is a numerical semigroup with minimal
system of generators whose elements are pairwise relatively prime numbers. Reciprocally,
following the ideas of Remarks 2.5 and 2.6, if S is a numerical semigroup with minimal
system of generators {n1, n2, n3} and n1, n2, n3 are pairwise relatively prime numbers,
then S ∈ F∗. Moreover, if we make some minor changes at the exposed reasonings in
this section and the previous one, we get that Theorem 2.8, Propositions 3.2 and 3.5,
and Corollary 3.7 remain true.

3.9. Remark. In fact, as sets, F = F∗. The difference between both of them is that, if S
is a numerical semigroup with embedding dimension three and minimal system of gener-
ators formed by pairwise relatively prime numbers, then S has a unique representation in
F and six representations in F∗. On the other hand, we have that all the numerical semi-
groups in F has dimension three automatically, but in F∗ we have to impose explicitly
such a condition.

3.10. Example. Let S = 〈6, 7, 11〉. We have that (6, 7, 5, 4) is the unique combina-
tion associated to S in F. The six combinations for S in F∗ are (6, 7, 5, 4), (6, 11, 5, 8),
(7, 6, 3, 1), (7, 11, 5, 7), (11, 6, 3, 1), and (11, 7, 4, 2).

3.11. Example. If we take the combination (a, b, c, d) = (3, 7, 2, 4), we have the numer-
ical semigroup S = 〈3, 7, 2× 7− 4× 3〉 = 〈3, 7, 2〉 = 〈2, 3〉. If we try to apply our results,
we will have wrong answers.

3.12. Example. Let S = 〈6, 7, 11〉. If we take a = 6, b = 7, c = 5, and d = 4, then
7
4
<
⌈
6
5

⌉
. Therefore, we can not apply the results. However, if we take a = 7, b = 6,

c = 3, and d = 1, then 6
1
≥
⌈
7
3

⌉
. In this case we have that,

• by Theorem 2.8,

Ap(S, 7) =
{
α× 6−

⌊α
3

⌋
× 1× 7 | α ∈ {0, 1, . . . , 6}

}
=

{0, 6, 12, 11, 17, 23, 22};
• by Proposition 3.2,

g(S) =
5× 6

2
− 1

⌊
6

3

⌋(
7− 3

2

(⌊
6

3

⌋
+ 1

))
= 15− 5 = 10;

• by Proposition 3.5, PF(S) = {16, 15}.
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3.13. Example. Let S be the numerical semigroup generated by {16, 19, 21}. It is easy
to check that there not exists a combination of a, b, c, d (associated to S) such that the
condition

[
a
c
, b
d

]
∩ N 6= ∅ is satisfied.

Let S be a numerical semigroup. We denote by m(S) = min(S \ {0}), which it is
called the multiplicity of S. We finish this paper with the following conjecture.

3.14. Conjecture. Let S be a numerical semigroup such that m(S) ≤ 15. Then it is
possible to find a combination of a, b, c, d (associated to S) in such a way the condition[
a
c
, b
d

]
∩ N 6= ∅ is satisfied.
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