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Abstract

Let Π1 and Π2 denote two gamma populations with common known
shape parameter α > 0 and unknown scale parameters θ1 and θ2, re-
spectively. Let X1 and X2 be two independent random variables from
Π1 and Π2, and X(1) ≤ X(2) denote the ordered statistics of X1 and
X2. Suppose the population corresponding to the largest X(2) or the
smallest X(1) observation is selected. This paper concerns on the ad-
missible estimation of the scale parameters θM and θJ of the selected
population under reflected gamma loss function. We provide sufficient
conditions for the inadmissibility of invariant estimators of θM and θJ .
The admissibility and inadmissibility of estimators in the class of lin-
ear estimators of the form cX(2) and dX(1) are discussed. We apply
our results on k-Records, censored data and extend to a subclass of
exponential family.
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1. Introduction
Estimation of the parameter(s) of the selected population is an important estimation

problem and arises in various practical problems. For example, we wish to select the
treatment with the highest cure rate and then estimate the actual probability of success
with this treatment, see Tappin [30]. A car manufacturer, who has selected the most
reliable model of engine for his cars, would like to know the reliability of the selected
engine during actual use, see Kumar and Kar [12]. A textile designer chooses the best
quality cloth from k available varieties for his usage. Naturally, he would be interested in
estimating the durability of the best cloth that he has selected, see Gangopadhyay and
Kumar [10].

The problem of estimation after selection is related to ranking and selection method-
ology. Readers may refer to Sarkadi [28], Dahiya [9], Sackrowitz and Cahn [26,27], Misra
and Singh [17], Kumar and Kar [12], Balakrishnan et al. [5] and Kumar et al. [14].

During the past three decades, a lot of work has been done on estimation after se-
lection from Gamma populations. Some of the main results are as follows: For positive
integer value shape parameter, Vellaisamy and Sharma [35] derived the UMVUE of the
scale parameter of the larger selected population and obtained estimators which are ad-
missible (or inadmissible) within a subclass of equivariant estimators under the Squared
Error Loss (SEL) function. Some of their results were extended to real valued shape
parameter by Vellaisamy and Sharma [36]. Later, Vellaisamy [33] obtained estimators
which dominates natural estimators under the SEL function. Vellaisamy [34] showed that
the UMVUE of the selected scale parameters are inadmissible under the SEL function.
Misra et al. [18,19] extended the admissibility and inadmissibility results of Vellaisamy
and Sharma [35] to the case of known and arbitrary shape parameter. Motamed-Shariati
and Nematollahi [20] derived the minimax estimator of the scale parameter of the larger
selected population under the Scale Invariant Squared Error Loss (SISEL) function. Ne-
matollahi and Motamed-Shariati [22] dealt with estimating the scale parameter of the
selected gamma population under the entropy loss function and extended their results to
a subclass of exponential family.

Let X1 and X2 be two independent random variables from populations Π1 and Π2,
respectively, where Πi has probability density function (pdf)

f(x|θi, α) =
1

θαi Γ(α)
xα−1 e

− x
θi , x > 0, α > 0, θi > 0, i = 1, 2,(1.1)

where α is the common known shape parameter and θ1, θ2 are unknown scale parameters.
Let X(1) = min(X1, X2) and X(2) = max(X1, X2). For selecting the population corre-
sponding to the larger (or smaller) θi’s, we use the natural selection rule and select the
population corresponding to the X(2) (or X(1)). Therefore the scale parameter associated
with the larger and smaller selected population are given by

θM =

{
θ1 X1 ≥ X2

θ2 X1 < X2
and θJ =

{
θ2 X1 ≥ X2

θ1 X1 < X2.

In literature the estimation of the selected gamma scale parameters θM and θJ con-
sidered under SEL, SISEL and entropy loss functions, which are either symmetric or
asymmetric and unbounded. In some estimation problems, the use of unbounded loss
function may be inappropriate. For example in estimating the mean life θ of a component,
the amount of loss for estimating θ by an estimator is essentially bounded.

For estimation of the parameter of the selected population under a bounded loss
function, see Naghizadeh Qomi et al. [21]. They estimate the mean of the selected
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Figure 1. Plot of the RNL function for k = 1 and certain values of γ

normal population under Reflected Normal Loss (RNL) function given by

L(∆) = k

{
1− e−

∆2

2γ2

}
,

where ∆ = δ − θ, k > 0 is the maximum loss and γ > 0 is a shape parameter. The RNL
function is a symmetric and bounded function of ∆ (see Figure 1).

Although the RNL function is bounded, but it is symmetric and give the same penalty
for underestimation and overestimation. Also, it is appropriate for location parameter θ.
In some estimation problem, underestimation may be more serious than overestimation
or vise versa. For example, in estimating the average life of the components of an aircraft,
overestimation is usually more serious than underestimation. In such cases, for estimation
the average life, which is a multiple of a scale parameter, an asymmetric bounded scale
invariant loss function is appropriate to use.

In this paper, we discuss the estimation of the scale parameter of the selected gamma
population under Reflected Gamma Loss (RGL) function. The RGL function is a sim-
ple transformation of the gamma density and introduced by Spiring and Yeung [29] in
response to the criticisms of the SISEL function and is defined by

L(θ, δ) = k

{
1−

(
δ

θ

)γ
e−γ(

δ
θ
−1)

}
= k

{
1− e−γ

(
δ
θ
−ln δ

θ
−1
)}

(1.2)

where k > 0 is the maximum loss and γ > 0 is a shape parameter. The RGL function
is a bounded and asymmetric function of δ but not convex in δ and is essentially a
gamma density flipped upside down, whence its name (see Figure 2). This loss is scale
invariant, which is appropriate for estimating scale parameter θ, and it penalizes heavily
underestimation. Towhidi and Behboodian [31,32] used this loss in some problem of scale
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Figure 2. Plot of the RGL function for ∆ = δ
θ
, k = 1 and certain values of γ

parameter estimation. Clearly the value of k > 0 does not have any influence on our
results, therefore without loss of generality, we shall take k = 1 in the rest of the paper.

Since the RGL function is bounded, so by a result of Basu [6], Uniformly Minimum
Risk Unbiased estimator of any unknown parameter does not exist under the RGL func-
tion. We are interested in estimation of the random parameters θM and θJ of the selected
gamma population under the RGL function and we concentrate our attention on admis-
sible and inadmissible estimators of θM and θJ . To this end, in section 2, we employ the
technique of Brewster and Zidek [7] for finding dominating estimators for some intended
scale and permutation invariant estimators. In section 3, we discuss the admissibility of
invariant estimators of the form cX(2) and dX(1) for estimating θM and θJ , respectively.
In section 4, applications on k-records, censored data and extension of the problem to a
subclass of exponential family are considered.

2. Sufficient Conditions for Inadmissibility
Let X1 and X2 be two independent random variables, where Xi, i = 1, 2 has pdf

(1.1). In estimation of unknown random parameters θM and θJ under the RGL func-
tion, the problem is invariant under the scale and permutation groups of transforma-
tions. Therefore, it is natural to consider only those estimators which are permutation
and scale invariant, i.e, estimators satisfying δ(X1, X2) = δ(X2, X1) and δ(cX1, cX2) =
cδ(X1, X2), ∀c > 0. For this purpose, consider the following classes of invariant estima-
tors

DU = {δψ : δψ(X1, X2) = X(2)ψ(Y )},(2.1)
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and

DL = {δϕ : δϕ(X1, X2) = X(1)ϕ(T )},(2.2)

for θM and θJ respectively, where Y =
X(1)

X(2)
, T = 1

Y
and ψ and ϕ are some real valued

functions defined on (0, 1] and [1,∞), respectively. In this section, we will employ the
technique of Brewster and Zidek [7] to derive dominating estimators to show the inad-
missibility of some scale and permutation invariant estimators of θM and θJ , under the
RGL function. As a consequence, we show that several of the proposed estimators are
inadmissible and present improved estimators for those.

The following lemma will be useful in deriving the improved estimators on estimating
θM and θJ .

2.1. Lemma Let Y =
X(1)

X(2)
, T = 1

Y
, µ = max(θ1,θ2)

min(θ1,θ2)
and ψ and ϕ are real valued

functions defined on (0, 1] and [1,∞), respectively. Define the functions ηy,ψ(µ) and
ξt,ϕ(µ) as

ηy,ψ(µ) = (2α+ γ)

[
µ

(1+γψ(y))µ+y

]2α+γ+1

+ 1
µγ+1

[
µ

1+γψ(y)+µy

]2α+γ+1

[
µ

(1+γψ(y))µ+y

]2α+γ
+ 1

µγ

[
µ

1+γψ(y)+µy

]2α+γ , 0 < y ≤ 1, µ ≥ 1,

and

ξt,ϕ(µ) = (2α+ γ)

[
µ

(1+γϕ(t))µ+t

]2α+γ+1

+ 1
µγ+1

[
µ

1+γϕ(t)+µt

]2α+γ+1

[
µ

(1+γϕ(t))µ+t

]2α+γ
+ 1

µγ

[
µ

1+γϕ(t)+µt

]2α+γ , t ≥ 1, µ ≥ 1.

(i) For y ∈ (0, 1], the conditional pdf of S =
X(2)

θM
given Y = y is

fS|Y=y(s) =
yα−1s2α−1

Γ2(α)fY (y)

[
µ−αe

−( y
µ
+1)s

+ µαe−(1+µy)s

]
, s > 0,

where fY (y) denotes the pdf of Y .

(ii) For t ∈ [1,∞), the conditional pdf of U =
X(1)

θJ
given T = t is

fU|T=t(u) =
tα−1u2α−1

Γ2(α)fT (t)

[
µ−αe

−( t
µ
+1)u

+ µαe−(1+µt)u

]
, u > 0,

where fT (t) denotes the pdf of T .
(iii) For y ∈ (0, 1]

sup
µ≥1

ηy,ψ(µ) =
2α+ γ

1 + γψ(y)
=

1

ψ?(y)
.(2.3)

(iv) For t ∈ [1,∞]

sup
µ≥1

ξt,ϕ(µ) =
2α+ γ

1 + γϕ(t)
=

1

ϕ?(t)
.(2.4)

Proof. (i),(ii) For a proof, see Lemma 16(i) and 16(ii) of Misra et al. [18].
(iii) Note that

lim
µ↑∞

ηy,ψ(µ) =
2α+ γ

1 + γψ(y)
.
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So, we need to show that ηy,ψ(µ) ≤ 2α+γ
1+γψ(y)

. But this inequality is equivalent to:

[1 + γψ(y)]ηy,ψ(µ) ≤ (2α+ γ)

⇔ [1 + γψ(y)]µγ+1{[1 + γψ(y)]µ+ y
}−(2α+γ+1)

+[1 + γψ(y)]
{

1 + γψ(y) + yµ
}−(2α+γ+1)

≤ µγ
{

[1 + γψ(y)]µ+ y
}−(2α+γ)

+
{

1 + γψ(y) + yµ
}−(2α+γ)

⇔
{

[1 + γψ(y)]µ+ y
}−(2α+γ+1)

{
µγ+1[1 + γψ(y)]− µγ

{
[1 + γψ(y)]µ+ y

}}
+

{
1 + γψ(y) + yµ

}−(2α+γ+1)
{

1 + γψ(y)− [1 + γψ(y) + yµ]

}
≤ 0

⇔ −yµγ
{

[1 + γψ(y)]µ+ y
}−(2α+γ+1) − yµ

{
1 + γψ(y) + yµ

}−(2α+γ+1) ≤ 0

which is always true for µ ≥ 1 and y ∈ (0, 1]. So, the result follows.
(iv) Similar to the proof of (iii).

The following theorem provides a sufficient condition for invariant estimators δψ(X1,
X2) ∈ DU to be inadmissible under the RGL function.

2.2. Theorem Let δψ(X1, X2) ∈ DU be an invariant estimator of θM , ψ11(y) be any
function defined on (0, 1] such that Pθ

(
ψ(Y ) < ψ11(Y ) ≤ ψ?(Y )) > 0, ∀θ = (θ1, θ2) ∈

(0,∞) × (0,∞) = <2
+. Then under the RGL function, the invariant estimator δψ is

inadmissible for estimating θM , and is dominated by δψ1(X1, X2) = X(2)ψ1(Y ), where

ψ1(Y ) =


ψ11(Y ) ψ(Y ) < ψ11(Y ) ≤ ψ?(Y )

ψ(Y ) o.w.

Proof. For µ ≥ 1, the risk difference of δψ and δψ1 is

∆(µ) = R(θM , δψ)−R(θM , δψ1)

= Eθ

[
e
−γ
(X(2)ψ1(Y )

θM
− ln

X(2)ψ1(Y )

θM
−1
)]
− Eθ

[
e
−γ
(X(2)ψ(Y )

θM
− ln

X(2)ψ(Y )

θM
−1
)]

= eγEθ

[
e−γ
(
Sψ1(Y )−lnSψ1(Y )

)
− e−γ

(
Sψ(Y )−lnSψ(Y )

)]
= eγEθ[Dθ(Y )],

where

Dθ(y) = Eθ

[
e−γ
(
Sψ1(y)−lnSψ1(y)

)
− e−γ

(
Sψ(y)−lnSψ(y)

)
|Y = y

]
, y ∈ (0, 1].

Using the fact that ea − eb ≥ (a− b)eb, ∀a, b ∈ <, we have

Dθ(y) ≥ γEθ

{[
(Sψ(y)− lnSψ(y))− (Sψ1(y)− lnSψ1(y))

]
×e−γ(Sψ(y)−lnSψ(y))|Y = y

}
= γ(ψ(y)− ψ1(y)) Eθ

{
e−γ(Sψ(y)−lnSψ(y))|Y = y

}
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×
[

lnψ1(y)− lnψ(y)

ψ(y)− ψ1(y)
+
Eθ
{
Se−γ(Sψ(y)−lnSψ(y))|Y = y

}
Eθ
{
e−γ(Sψ(y)−lnSψ(y))|Y = y

} ]
.(2.5)

Let K(y, µ) = Eθ
{
e−γ(Sψ(y)−lnSψ(y))|Y = y

}
, then from Lemma 2.1(i), we have

K(y, µ) = [ψ(y)]γ
∫ ∞
0

sγe−γψ(y)sfS|Y=y(s)ds

=
[ψ(y)]γyα−1Γ(2α+ γ)µα

Γ2(α)fY (y)

×
[

µγ

[(1 + γψ(y))µ+ y]2α+γ
+

1

[1 + γψ(y) + yµ]2α+γ

]
(2.6)

and

Eθ
{
Se−γ(Sψ(y)−lnSψ(y))|Y = y

}
= [ψ(y)]γ

∫ ∞
0

sγ+1e−γψ(y)sfS|Y=y(s)ds

=
[ψ(y)]γyα−1Γ(2α+ γ + 1)µα

Γ2(α)fY (y)

×
[

µγ+1

[(1 + γψ(y))µ+ y]2α+γ+1
+

1

[1 + γψ(y) + yµ]2α+γ+1

]
.(2.7)

Now, substituting (2.6) and (2.7) in (2.5), we have

Dθ(y) ≥ γK(y, µ)(ψ(y)− ψ1(y))

[
ln ψ1(y)

ψ(y)

ψ(y)− ψ1(y)
+ ηy,ψ(µ)

]
,

where ηy,ψ(µ) is defined in Lemma 2.1. Clearly, if the condition ψ(y) < ψ11(y) ≤ ψ?(y)
does not hold, then Dθ(y) = 0, ∀θ ∈ <2

+ and ∀y ∈ (0, 1]. For ψ(y) < ψ11(y) ≤ ψ?(y),
using (2.3) and the inequality ln a > 1− 1

a
, ∀a > 0, we have

Dθ(y) ≥ γK(y, µ)(ψ(y)− ψ11(y))

[
ln ψ11(y)

ψ(y)

ψ(y)− ψ11(y)
+

1

ψ?(y)

]
> 0, ∀θ ∈ <2

+ and ∀y ∈ (0, 1].

Since Pθ(ψ(Y ) < ψ11(Y ) ≤ ψ?(Y )) > 0, ∀θ ∈ <2
+, it follows that ∆(µ) > 0, ∀θ ∈ <2

+.

2.3. Remark In Theorem 2.2 we have the condition ψ(Y ) < ψ11(Y ) ≤ ψ?(Y ) with pos-
itive probability. So, Pθ(ψ(Y ) < ψ?(Y )) = Pθ(ψ(Y ) < 1

2α
) > 0. Therefore, a necessary

condition on the function ψ(Y ) for Theorem 2.2 to actually offer an improved estimator
(i.e., ψ1(Y ) is different than ψ(Y ) with positive probability) is that Pθ(ψ(Y ) < 1

2α
) > 0.

The following Corollary is an immediate consequence of the Theorem 2.2.

2.4. Corollary Let δψ(X1, X2) ∈ DU be an invariant estimator of θM such that
Pθ(ψ(Y ) < 1

2α
) > 0. If for some function ψ??(Y ), Pθ

(
ψ??(Y ) ≤ ψ(Y ) < 1+γψ??(Y )

2α+γ

)
>

0, ∀θ ∈ <2
+, then under the RGL function, the invariant estimator δψ is inadmissible for

estimating θM , and is dominated by δψ?1 (X1, X2) = X(2)ψ
?
1(Y ), where

ψ?1(Y ) =


1+γψ??(Y )

2α+γ
ψ??(Y ) ≤ ψ(Y ) < 1+γψ??(Y )

2α+γ

ψ(Y ) o.w.

Proof. Use Theorem 2.2 with ψ11(Y ) = 1+γψ??(Y )
2α+γ

≤ ψ?(Y ).
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2.5. Corollary Let δψ(X1, X2) ∈ DU be an invariant estimator of θM such that
Pθ(ψ(Y ) < 1

2α
) > 0. Define

ψ1(Y ) =


1+γψ(Y )
2α+γ

ψ(Y ) < 1
2α

ψ(Y ) o.w.

Then the estimator δψ1(X1, X2) = X(2)ψ1(Y ) dominates δψ(X1, X2).

Proof. Apply Corollary 2.4 with ψ??(Y ) = ψ(Y ).
2.6. Remark Consider the following mixed estimators of θM

δp,ψ(X1, X2) = pX(2) + (1− p)X(1)

= X(2)[p+ (1− p)Y ]

where p ≥ 0. Following the Corollary 2.4 and taking ψ??(y) = y
2α

for α > 1
2
, this

estimator is inadmissible and is dominated by

δ?p,ψ(X1, X2) =


2αX(2)+γX(1)

2α(2α+γ)
Y
2α

< p+ (1− p)Y < 2α+γY
2α(2α+γ)

δp,ψ(X1, X2) o.w.

Also, using Corollary 2.5 one can get another improved estimator of δp,ψ(X1, X2), which
is given by

δp,ψ1(X1, X2) =


X(2)+γ[pX(2)+(1−p)X(1)]

2α+γ
p+ (1− p)Y < 1

2α

δp,ψ(X1, X2) o.w.

The following Theorem gives a sufficient condition for inadmissibility of invariant
estimators δϕ in DL under the RGL function.

2.7. Theorem Let δϕ(X1, X2) ∈ DL be an invariant estimator of θJ , ϕ11(t) be any
function defined on [1,∞) such that Pθ

(
ϕ(T ) < ϕ11(T ) ≤ ϕ?(T )

)
> 0, ∀θ ∈ <2

+. Then
under the RGL function, the invariant estimator δϕ is inadmissible for estimating θJ ,
and is dominated by δϕ1(X1, X2) = X(1)ϕ1(T ), where

ϕ1(T ) =


ϕ11(T ) ϕ(T ) < ϕ11(T ) ≤ ϕ?(T )

ϕ(T ) o.w.

Proof. The proof is similar to the proof of Theorem 2.2 by replacing Y, ψ, ψ?, ψ1 and ψ11

by T, ϕ, ϕ?, ϕ1 and ϕ11, respectively.

2.8. Remark In Theorem 2.7 we have the condition ϕ(T ) < ϕ11(T ) ≤ ϕ?(T ) with
positive probability. So, Pθ(ϕ(T ) < ϕ?(T )) = Pθ(ϕ(T ) < 1

2α
) > 0. Therefore, a necessary

condition on the function ϕ(T ) for Theorem 2.7 to actually offer an improved estimator
(i.e., ϕ1(T ) is different than ϕ(T ) with positive probability) is that Pθ(ϕ(T ) < 1

2α
) > 0.

The following Corollary is an immediate consequence of the Theorem 2.7.

2.9. Corollary Let δϕ(X1, X2) ∈ DL be an invariant estimator of θJ such that
Pθ(ϕ(T ) < 1

2α
) > 0. If for some function ϕ??(T ), Pθ

(
ϕ??(t) ≤ ϕ(T ) < 1+γϕ??(t)

2α+γ

)
>
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0, ∀θ ∈ <2
+, then under the RGL function, the invariant estimator δϕ is inadmissible for

estimating θJ , and is dominated by δϕ?1 (X1, X2) = X(1)ϕ
?
1(T ), where

ϕ?1(T ) =


1+γϕ??(T )

2α+γ
ϕ??(T ) ≤ ϕ(T ) < 1+γϕ??(T )

2α+γ

ϕ(T ) o.w.

Proof. Use Theorem 2.7 with ϕ11(T ) = 1+γϕ??(T )
2α+γ

≤ ϕ?(T ).

2.10. Corollary Let δϕ(X1, X2) ∈ DL be an invariant estimator of θJ such that
Pθ(ϕ(T ) < 1

2α
) > 0. Define

ϕ1(T ) =


1+γϕ(T )
2α+γ

ϕ(T ) < 1
2α

ϕ(T ) o.w.

Then the estimator δϕ1(X1, X2) = X(2)ϕ1(T ) dominates δϕ(X1, X2).

Proof. Apply Corollary 2.9 with ϕ??(T ) = ϕ(T ).

2.11. Remark Consider the following mixed estimators of θJ

δp,ϕ(X1, X2) = pX(1) + (1− p)X(2)

= X(1)[1 + (1− p)(T − 1)]

where p ≥ 0. Following the Corollary 2.9 and taking ϕ??(t) = 1 for α < 1
2
, this estimator

is inadmissible and is dominated by

δ?p,ϕ(X1, X2) =


1+γ
2α+γ

X(1) 1 ≤ p+ (1− p)T < 1+γ
2α+γ

δp,ϕ(X1, X2) o.w.

Also, using Corollary 2.10 we get another improved estimator of δp,ϕ(X1, X2), which is
given by

δp,ϕ1(X1, X2) =


X(1)+γ[pX(1)+(1−p)X(2)]

2α+γ
p+ (1− p)T < 1

2α

δp,ϕ(X1, X2) o.w.

3. Discussion on Admissible Estimators
An important problem in estimation of θM and θJ in the family of scale distributions,

is to determine admissible estimators of the form cX(2) and dX(1) in the class of scale
invariant estimators of the form

D1U = {δ1c : δ1c(X1, X2) = cX(2), c > 0}(3.1)

and

D1L = {δ2d : δ2d(X1, X2) = dX(1), d > 0},(3.2)

respectively. In this section, we discuss the admissibility of δ1c and δ2d within the subclass
D1U and D1L, respectively under the RGL function.

The following lemma will be useful in characterization of admissible estimators of θM
and θJ within the subclasses D1U and D1L, respectively, under the RGL function.
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Table 1. Values of c?(1, γ) for α = 1, 2, 4 and certain values of γ

γ
α 0.25 0.5 0.75 1 5 10
1 0.6693 0.6714 0.6732 0.6747 0.6843 0.6874
2 0.3643 0.3650 0.3655 0.3660 0.3702 0.3721
4 0.1965 0.1966 0.1968 0.1969 0.1983 0.1992

3.1. Lemma Let X1 and X2 be two independent random variables such that Xi, i = 1, 2
has pdf (1.1) and X(1) ≤ X(2) be the ordered statistics of X1 and X2.
(i) If S =

X(2)

θM
, then the pdf of S is

fS(s) =

[
Fα(µs) + Fα

(
s

µ

)]
fα(s), s > 0,(3.3)

where µ = max(θ1,θ2)
min(θ1,θ2)

≥ 1, Fα and fα denote the cumulative distribution function (cdf)
and the pdf of Gamma(α, 1)-distribution, respectively.
(ii) If U =

X(1)

θJ
, then the pdf of U is given by

fU (u) =

[
2− Fα(µu)− Fα

(
u

µ

)]
fα(u), u > 0.(3.4)

Proof. For a proof, see Lemma 7(i) and 7(ii) of Misra et al. [18].

3.1. Admissibility of δ1c. For deriving admissible estimators of θM in the class of
invariant estimators (3.1), we find values of c that minimizes the risk function δ1c = cX(2)

which is

R(θM , δ1c) = 1− E
[
e
−γ(

cX(2)
θM

−ln
cX(2)
θM

−1)
]

= 1− E
[
e−γ(cS−ln cS−1)

]
,(3.5)

where S =
X(2)

θM
. The risk function (3.5) is not necessarily convex, but has a unique

minimum w.r.t. c. Figure 3 shows the graph of the risk function as a function of c
for certain values of µ, γ = 1 and α = 1, 2, 4. It seems that the minimum point c,
which depends on the values of µ and γ, of the risk function is near to α−1 when µ
gets larger and larger. Therefore R(θM , cX(2)) will be minimized at the point c given by
∂R(θM ,δ1c)

∂c
= 0 which reduces to

E

[(
S − 1

c(µ, γ)

)
e−γ(c(µ,γ)S−ln(c(µ,γ)S)−1)

]
= 0(3.6)

The behavior of c(µ, γ) can not be determined analytically. The graph of c(µ, γ) as a
function of µ ≥ 1 for α = 1, 2, 4 and certain values of γ are shown in Figure 4. It is
seen from Figure 4 (and also from numerical solution of equation (3.6)) that for fixed γ,
c(µ, γ) increases as µ increases and c(µ, γ)→ α−1 as µ→∞. So

inf
µ≥1

c(µ, γ) = c(1, γ) = c? and sup
µ≥1

c(µ, γ) = lim
µ→∞

c(µ, γ) = α−1.

where c? = c?(1, γ) is the root of equation (3.6) with µ = 1. Table 1 shows the root
c? = c?(1, γ) for certain values of γ > 0. Therefore for each c ∈ [c?, α−1] there is a µ for
which R(θM , δ1c) is minimum, which implies that for c ∈ [c?, α−1], δ1c is admissible in
the class of estimators (3.1). So, we have the following conjecture.
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Figure 3. Plots of risk function for γ = 1, α = 1, 2, 4 and certain values of µ
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Figure 4. Graph of c(µ, γ) for α = 1, 2, 4 and certain values of γ

3.2. Conjecture Let c? be the root of equation (3.6) with µ = 1. Then, under the RGL
function, the estimators δ1c(X1, X2) = cX(2) are admissible within the subclass D1U of
invariant estimators of θM , if and only if c ∈ [c?, α−1].

3.3. Remark From Corollary 2.5 the estimator δ1c(X1, X2) = cX(2) for c < 1
2α

is inadmissible and is dominated by δ1(X1, X2) = 1+γc
2α+γ

X(2). Note that from Table 1,
c? > 1

2α
for certain values of γ, which satisfy the condition of Conjecture 3.2.

3.4. Remark Based on the Conjecture 3.2, the natural and generalized Bayes estima-
tor

X(2)

α
of θM , which is the analog of the maximum likelihood and best scale invariant

estimators of θ2, is admissible within the subclass D1U of invariant estimators of θM .

3.2. Admissibility of δ2c. Similarly, the risk function of δ2d = dX(1) as an estimator
of θJ has a unique minimum w.r.t. d, and can be yield from

∂R(θJ ,dX(1))

∂d
= 0 which is

E

[(
U − 1

d(µ, γ)

)
e−γ(d(µ,γ)U−ln(d(µ,γ)U)−1)

]
= 0.(3.7)

For µ = 1, the root d? = d?(1, γ) of this equation are summarized in Table 2 for the values
α = 1, 2, 4 and for certain values of γ. Note that we are able to prove analytically that
the root d?(1, γ) for α = 1 and arbitrary γ > 0 is always equal to 2 (see the Appendix).
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Table 2. Values of d?(1, γ) for α = 1, 2, 4 and certain values of γ

γ
α 0.25 0.5 0.75 1 5 10
1 2 2 2 2 2 2
2 0.7982 0.7967 0.7954 0.7944 0.7870 0.7845
4 0.3437 0.3433 0.3430 0.3427 0.3400 0.3386

The graph of d(µ, γ) as a function of µ ≥ 1 (and also numerical solution of equation
(3.7)) shows that for fixed γ > 0, d(µ, γ) decreases as µ increases and d(µ, γ) → α−1 as
µ→∞. So

inf
µ≥1

d(µ, γ) = lim
µ→∞

d(µ, γ) = α−1 and sup
µ≥1

d(µ, γ) = d(1, γ) = d?

Therefore, we conjecture that the estimators δ2d(X1, X2) = dX(1) are admissible within
the subclass D1L of invariant estimators of θJ , under the RGL function, if and only if
d ∈ [α−1, d?].

3.5. Remark Let Xi1, Xi2, . . . , Xin, i = 1, 2, be a pair of independent random samples
from Πi, i = 1, 2, and Πi has p.d.f. (1.1). Then Ti(Xi) =

∑n
i=1Xij , i = 1, 2, is

complete sufficient statistic for θi and has gamma distribution with parameters (nα, θi),
respectively, where Xi = (Xi1, . . . , Xin). Therefore, the results of Sections 2-3 hold true
upon replacing α by nα and Xi by Ti(Xi), i = 1, 2, in this case.

4. Applications and Extensions
In this section, we apply the results of Sections 2 and 3 to k-records and Type-II

censored data and extend these results to a subclass of exponential family.

4.1. Estimation After Selection Based on k-Record Data. In statistical inference,
a rich literature has developed on record data since Chandler [8] formulated the theory of
records. Let Xi1, Xi2, . . . , Xin, i = 1, 2, be a pair of independent random samples from
negative exponential populations Π1,Π2 with Πi having the associated pdf

f(x|θi) =
1

θi
e
− x
θi , θi > 0, i = 1, 2,(4.1)

where θ1, θ2 are unknown scale parameters. Let Rim(k) be upper k-records of i-th sam-
ple, i = 1, 2. It is easy to verify that the mth k-Records, Rim(k), has a Gamma

(
m, θi

k

)
-

distribution and kRim(k) has a Gamma
(
m, θi

)
-distribution, see Arnold et al. [4], Nevzorov

[23], Ahmadi et al. [1] and Ahmadi et al. [2,3] and references therein. Let R(1)

m(k) ≤ R
(2)

m(k)

represent the ordered statistics of R1
m(k) and R

2
m(k). Suppose the population correspond-

ing to largest R(2)

m(k) (or the smallest R(1)

m(k)) observation is selected. The problems that
we are interested here are the estimation of the following random parameters:

θmM =

{
θ1 R1

m(k) ≥ R2
m(k)

θ2 R1
m(k) < R2

m(k)

and θmJ =

{
θ2 R1

m(k) ≥ R2
m(k)

θ1 R1
m(k) < R2

m(k).

Since kRim(k) has Gamma
(
m, θi

)
-distribution, therefore the results of Sections 2-3, except

Remark 2.11, hold for this case upon replacing α by m and Xi by kRim(k), i = 1, 2.
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4.2. Estimation after Selection using Type-II Censored Data. The most com-
mon censoring scheme which is of importance in the field of reliability and life-testing, is
Type-II censoring. In this scheme, after starting the life-testing experiment with n items,
the experiment continues until a pre-specified number of failures , say r(≤ n) occur. For
more details about this scheme, see Lawless [16].

Let Xi1, Xi2, . . . , Xin, i = 1, 2, be a pair of independent random samples from neg-
ative exponential populations with pdf (4.1). It is easy to show that in this scheme
Ti =

∑r
j=1Xi(j) + (n− r)Xi(r), i = 1, 2, has a Gamma(r, θi)-distribution, see Lehmann

and Romano [15]. Now, Suppose T(1) = min(T1, T2) and T(2) = max(T1, T2) and the pop-
ulation corresponding to the largest T(2) (or smallest T(1)) is selected. We are interested
in estimation of the random parameters

θM =

{
θ1 T1 ≥ T2

θ2 T1 < T2
and θJ =

{
θ2 T1 ≥ T2

θ1 T1 < T2.

Since Ti, i = 1, 2, has Gamma
(
r, θi

)
-distribution, therefore the results of Sections 2-3,

except Remark 2.11, hold true upon replacing α by r and Xi by Ti, i = 1, 2, in this case.

4.3. Extension to a Subclass of Exponential Family. LetXi = (Xi1, Xi2, · · · , Xin),
i = 1, 2, be a random sample of size n from the ith population Πi, i = 1, 2, with the
joint scale probability density function

f(xi, τi) =
1

τni
f
(xi
τi

)
, i = 1, 2,

where xi = (xi1, · · · , xin). In some cases the above model reduces to

f(xi, θi) = C(xi, n)θ−γi e−Ti(xi)/θi , i = 1, 2,(4.2)

where C(xi, n) is a function of xi and n, θi = τri for some r > 0, γ is a function of
n and Ti(Xi) is a complete sufficient statistic for θi with Gamma(γ, θi)-distribution.
For example Exponential(βi), Gamma(ν, βi), Inverse Gaussian(∞, λi), Normal(0, σ2

i ),
Weibull(ηi, β), Rayleigh(βi), Generalized Gamma(α, λi, pi), Generalized laplace(λi, k)
belong to the family of distributions (4.2), see Parsian and Nematollahi [24] and references
therein.

Since Ti = Ti(Xi), i = 1, 2, has a Gamma(γ, θi)-distribution, therefore we can extend
the results of Sections 2-3 to the subclass of exponential family (4.2) by replacing α and
Xi by γ and Ti(Xi), respectively.

The results of Section 2-3 can also be extended to the family of transformed chi-square
distributions which is introduced by Rahman and Gupta [25] and includes Pareto and
beta distributions. For details see Jafari Jozani et al. [11].

5. Appendix
In this section, we show analytically that the root d?(1, γ) for α = 1 and arbitrary

γ > 0 is always equal to 2. To see this, note that the pdf of U given in (3.4), for
µ = α = 1, reduces to

fU (u) = 2e−2u, u > 0.

Therefore R(θJ , dX(1)) will be minimized at the point d given by ∂R(θJ ,δ2d)
∂d

= 0 which
reduces to (3.7) and for µ = 1 can be written as∫ ∞

0

(
u− 1

d(1, γ)

)
e−γ(d(1,γ)u−ln(d(1,γ)u)−1)fU (u)d(u) = 0
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and with simple computations is equivalent to

2(ed(1, γ))γ
(

1

γd(1, γ) + 2

)γ+1{
Γ(γ + 2)

γd(1, γ) + 2
− Γ(γ + 1)

d(1, γ)

}
= 0.

The root of the above equation is simply equal to d?(1, γ) = 2.
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