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Analysis of ruin measures for two classes of risk
processes with stochastic income

Wuyuan Jiang∗ †‡ and Chaoqun Ma§

Abstract
In this paper, we consider the ruin measures for two classes of risk pro-
cesses. We assume that the claim number processes are independent
Poisson and generalized Erlang(n) processes, respectively. Historically,
it has been assumed that the premium size is a constant. In this con-
tribution, the premium income arrival process is a Poisson process. In
this framework, both the integro-differential equation and the Laplace
transform for the expected discounted penalty function are established.
Explicit expressions for the expected discounted penalty function are
derived when the claim amount distributions belong to the rational
family. Finally, Numerical examples are considered.
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1. Introduction
In the actuarial literature, many researchers studied the ruin measures for a risk model

involving two independent classes of risks. Among them, [9] considered the expected dis-
counted penalty functions for two classes of risk processes by assuming that the two claim
number processes are independent Poisson and generalized Erlang(2) processes, respec-
tively. A system of integro-differential equations for the expected discounted penalty
functions were derived and explicit results when the claim sizes are exponentially dis-
tributed were obtained. [13] extended the model of [9], by considering the claim number
process of the second class to be a renewal process with generalized Erlang(n) inter-arrival
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times. The authors derived an integro-differential equation system for the expected dis-
counted penalty functions, and obtained their Laplace transforms when the corresponding
Lundberg equation has distinct roots. [5] investigated the risk model with two classes
of renewal risk processes by assuming that both of the two claim number processes have
phase-type inter-claim times. A system of integro-differential equations for the expected
discounted penalty function was derived and solved. For more related references on two
classes of risk processes problem, the reader may consult the following publications and
references therein, [12], [8], [3], etc.

Under the above risk models, premiums are assumed to be received by insurance
companies at a constant rate over time. In fact, the insurance company may have lump
sums of income. For example, insurances of traveling art collections or ship and plane
insurances might be expected to have a significant impact on the premium income. [2]
first considered the risk model with stochastic premium income by adding a compound
Poisson process with positive jumps to the classical risk model. Subsequently, [1] and [10]
studied the ruin probabilities for the risk models with stochastic premiums. Recently,
[6] considered a risk model with stochastic premium income, where both premiums and
claims follow compound Poisson processes. Both a defective renewal equation and an
integral equation satisfied by the expected discounted penalty function are established.
[14] extended the model in [6] by assuming that there exists a dependence structure
among the claim sizes, inter-claim times and premium sizes. [11] studied a risk model
with a dependence setting where there exists a specific structure among the time between
two claim occurrences, premium sizes and claim sizes. Given that the premium size is
exponentially distributed, both the Laplace transforms and defective renewal equations
for the expected discounted penalty functions are obtained.

To the best of our knowledge, there is less work in the literature on two classes of risk
models with stochastic premiums. Henceforth, the purpose of this paper is to investigate
the expected discounted penalty functions in a risk model involving two independent
classes of risks and the premium income arrival process is a Poisson process, in which the
claim number processes are independent Poisson and generalized Erlang(n) processes,
respectively. The structure of the paper is as follows. Section 2 describes two classes
of risk processes with stochastic income. In Section 3, we derive the system of integro-
differential equations for the expected discounted penalty functions. Then Section 4
presents the Laplace solutions of the expected discounted penalty functions and pro-
vides closed forms for rational family claim-size distribution. Numerical examples are
considered in Section 5. Last, Section 6 concludes.

2. Model and assumptions
The surplus process R(t) is given by

(2.1) R(t) = u+

M(t)∑
i=1

Xi − S(t), t ≥ 0,

where u ≥ 0 is the initial surplus, M(t) denotes the number of insurer’s premium income
up to time t and follows a Poisson process with intensity µ > 0. {X1, X2, · · · } are inde-
pendent and identically distributed (i.i.d.) positive random variables (r.v.’s) representing
the individual premium amounts with common distribution P , probability density func-
tion (p.d.f.) p and Laplace transform (LT) p̃(s) =

∫∞
0
e−sxp(x)dx. The aggregate-claim

process {S(t) : t ≥ 0} is defined by

S(t) =

N1(t)∑
i=1

Yi +

N2(t)∑
i=1

Zi, t ≥ 0,
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where {Y1, Y2, · · · } are i.i.d. positive r.v.’s representing the successive individual claim
amounts from the first class. These r.v.’s are assumed to have common cumulative
distribution function F (x), x ≥ 0, with p.d.f. f(x) = F ′(x), of which the LT is f̃(s) =∫∞
0
e−sxf(x)dx, while {Z1, Z2, · · · } are i.i.d. positive r.v.’s representing the claim amounts

from the second class with common cumulative distribution function G(x), x ≥ 0 and
p.d.f. g(x) = G′(x), of which the LT is g̃(s) =

∫∞
0
e−sxg(x)dx.

The counting process {N1(t); t ≥ 0} is assumed to be a Poisson process with parameter
λ, representing the number of claims from the first class up to time t. While the counting
process {N2(t); t ≥ 0}, representing the number of claims from the second class up to time
t, is defined as follows. N2(t) = sup{n : W1 +W2 + · · ·+Wn ≤ t}, where {W1,W2, · · · }
are the i.i.d. positive r.v.’s representing the second class inter-claim times. In this paper,
we suppose that W ′i s are generalized Erlang(n) distributed with n possibly different
parameters λ1, λ2, . . . , λn, then Wi can be expressed as Wi = Wi1 + Wi2 + · · · + Win,
where Wij is exponentially distributed with parameter 1

λi
.

In addition, we assume that {X1, X2, · · · }, {Y1, Y2, · · · }, {Z1, Z2, · · · }, {N1(t); t ≥ 0}
and {N2(t); t ≥ 0} are mutually independent, and µE(X1) > λE(Y1) + E(Z1)

n∑
i=1

1
λi

, providing

a positive safety loading factor.
The time of (ultimate) ruin is T = inf{t|R(t) < 0}, where T = ∞ if R(t) ≥ 0 for all

t ≥ 0. The probability of ruin is ψ(u) = Pr(T <∞).
For x1, x2 ≥ 0, k = 1, 2, let wk(x1, x2) be two possibly distinct non-negative value

functions. For δ ≥ 0, the expected discounted penalty function at ruin if the ruin is
caused by a claim from class k is defined by

mk(u) = E[e−δTwk(R(T−), |R(T )|)I(T <∞, J = k)|R(0) = u], u ≥ 0,

where J is defined to be the cause-of-ruin random variable, and J = k if the ruin is
caused by a claim of class k, k = 1, 2. R(T−) is the surplus immediately before ruin,
|R(T )| is the deficit at ruin, I(·) is an indicator function.

When δ = 0 and wk(R(T−), |R(T )|) = 1, let

ψk(u) = E[I(T <∞, J = k)|R(0) = u], u ≥ 0, k = 1, 2,

is the ruin probability due to a claim from class k. The probability of ruin ψ(u) can be
decomposed as ψ(u) = ψ1(u) + ψ2(u).

3. System of integro-differential equations
In this section, we derive the integro-differential equations for the expected discounted

penalty function. Since every inter-claim time with generalized Erlang(n) distribution
can be decomposed into the independent sum of n exponential r.v.’s with parameters
λ1, λ2, . . . , λn, each causing a sub-claim of size 0 and at the time of the nth sub-claim an
actual claim with distribution function G occurs. This can be realized by considering n
states of the risk process (2.1) for the second class claim. Starting at time 0 in state 1,
every sub-claim causes a transition to the next state and at the time of the occurrence
of the nth sub-claim, an actual claim with distribution function G occurs and the risk
process jumps into state 1 again. We define the corresponding expected discounted
penalty function by mkj , j = 1, 2, . . . , n, when ruin is caused by a claim from class
k, k = 1, 2 and the risk process is in state j. Obviously, mk1(u) = mk(u).

Considering an infinitesimal time interval (0, dt), there are five possible events regard-
ing to the occurrence of the premium and claim and change of the state: (1) no premium
and claim arrival and no change of state; (2) a premium arrival but no claim arrival and
no change of state; (3) a claim arrival but no premium arrival and no change of state;
(4) a change of state but no claim and premium arrival; (5) two or more events occur.
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By conditioning on the above five events in (0, dt) when j = 1, 2, . . . , n− 1, we have

(3.1)

m1j(u) = (1− µdt)(1− λdt)(1− λjdt)e−δdtm1j(u)

+ µdt(1− λdt)(1− λjdt)e−δdt
∫∞
0
m1j(u+ x)p(x)dx

+ (1− µdt)λdt(1− λjdt)e−δdt×[∫ u
0
m1j(u− x)f(x)dx+

∫∞
u
w1(u, x− u)f(x)dx

]
+ (1− µdt)(1− λdt)λjdte−δdtm1,j+1(u) + o(dt).

From (3.1) it follows that

(3.2)

m1j(u) = µ
λ∗j+δ

∫∞
0
m1j(u+ x)p(x)dx

+ λ
λ∗j+δ

[∫ u
0
m1j(u− x)f(x)dx+ ζ1(u)

]
+

λj
λ∗j+δ

m1,j+1(u),

where λ∗j = µ+ λ+ λj , ζ1(u) =
∫∞
u
w1(u, x− u)f(x)dx.

When j = n, we obtain

(3.3)

m1n(u) = (1− µdt)(1− λdt)(1− λndt)e−δdtm1n(u)

+ µdt(1− λdt)(1− λndt)e−δdt
∫∞
0
m1n(u+ x)p(x)dx

+ (1− µdt)λdt(1− λndt)e−δdt×[∫ u
0
m1n(u− x)f(x)dx+

∫∞
u
w1(u, x− u)f(x)dx

]
+ (1− µdt)(1− λdt)λndte−δdt

∫ u
0
m1(u− x)g(x)dx+ o(dt).

Which results in

(3.4)
m1n(u) = µ

λ∗n+δ

∫∞
0
m1n(u+ x)p(x)dx

+ λ
λ∗n+δ

[∫ u
0
m1n(u− x)f(x)dx+ ζ1(u)

]
+ λn

λ∗n+δ

∫ u
0
m1(u− x)g(x)dx,

where λ∗n = µ+ λ+ λn.
By similar arguments, we get

(3.5)

m2j(u) = µ
λ∗j+δ

∫∞
0
m2j(u+ x)p(x)dx

+ λ
λ∗j+δ

∫ u
0
m2j(u− x)f(x)dx

+
λj
λ∗j+δ

m2,j+1(u), j = 1, 2, . . . , n− 1.

and

(3.6)
m2n(u) = µ

λ∗n+δ

∫∞
0
m2n(u+ x)p(x)dx

+ λ
λ∗n+δ

∫ u
0
m2n(u− x)f(x)dx

+ λn
λ∗n+δ

[∫ u
0
m2(u− x)g(x)dx+ ζ2(u)

]
,

where ζ2(u) =
∫∞
u
w2(u, x− u)g(x)dx.

4. Analysis of the integro-differential equations with exponential
premiums
In this section, we assume that the premium sizes are exponentially distributed with

p.d.f. p(x) = βe−βx, β > 0, x ≥ 0. Throughout this paper, we will use a hat ∼ to
designate the Laplace transform of a function f , namely, f̃(s) =

∫∞
0
e−sxf(x)dx. Now,

we introduce a complex operator Tr of an integrable real-valued function f which will be
necessary in order to obtain the main results. Tr is defined as

Trf(x) =

∫ ∞
x

e−r(u−x)f(u)du, r ∈ C, x ≥ 0,
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where r has a non-negative real part, <(r) ≥ 0. [7] provide a list of properties of the
operator Tr and we recall two of them that will be used in the following:

(1) Trf(0) =
∫∞
0
e−ruf(u)du = f̃(r), r ∈ C, is the Laplace transform of f .

(2) TrTsf(x) = TsTrf(x) = Tsf(x)−Trf(x)
r−s , s 6= r ∈ C, x ≥ 0.

4.1. Laplace transform. In the following, for notational convenience, Let Hkj(u) =∫∞
0
mkj(u + x)p(x)dx, k = 1, 2, j = 1, 2, . . . , n. Taking Laplace transforms on both sides

of (3.2) and (3.4) yields

(4.1) m̃1j(s) =
µ

λ∗j + δ
H̃1j(s) +

λ

λ∗j + δ
m̃1j(s)f̃(s) +

λ

λ∗j + δ
ζ̃1(s) +

λj
λ∗j + δ

m̃1,j+1(s),

and

(4.2) m̃1n(s) =
µ

λ∗n + δ
H̃1n(s) +

λ

λ∗n + δ
m̃1n(s)f̃(s) +

λ

λ∗n + δ
ζ̃1(s) +

λn
λ∗n + δ

m̃1(s)g̃(s).

Since, for j = 1, 2, . . . , n, s 6= β,

(4.3)

H̃1j(s) =
∫∞
0
e−su

∫∞
0
m1j(u+ x)βe−βxdxdu

=
∫∞
0
{
∫∞
0
e−sum1j(u+ x)du}βe−βxdx

=
∫∞
0
Tsm1j(x)βe−βxdx = βTβTsm1j(0)

= β
m̃1j(s)−m̃1j(β)

β−s .

Substituting (4.3) into (4.1) and (4.2), respectively, we have

(4.4)
[
µβ

β − s − λ
∗
j − δ + λf̃(s)

]
m̃1j(s) + λjm̃1,j+1(s) =

µβ

β − sm̃1j(β)− λζ̃1(s),

and

(4.5)
[
µβ

β − s − λ
∗
n − δ + λf̃(s)

]
m̃1n(s) + λng̃(s)m̃1(s) =

µβ

β − sm̃1n(β)− λζ̃1(s).

Let m̃k(s) = (m̃k1(s), m̃k2(s), . . . , m̃kn(s))>, m̃k(β) = (m̃k1(β), m̃k2(β), . . . , m̃kn(β))>,
k = 1, 2, m> denotes the transpose of m, and

Aδ(s) =



µβ
β−s − λ

∗
1 − δ + λf̃(s) λ1 0 · · · 0

0 µβ
β−s − λ

∗
2 − δ + λf̃(s) λ2 · · · 0

...
...

...
. . .

...
0 0 0 · · · λn−1

λng̃(s) 0 0 · · · µβ
β−s − λ

∗
n − δ + λf̃(s)

 .

Then (4.4) and (4.5) can be rewritten as the following matrix form

(4.6) Aδ(s)m̃1(s) =
µβ

β − sm̃1(β)− λζ̃1(s)e1,

where e1 denotes a column vector of length n with all elements being one.
Similarly, from (3.5) and (3.6) we can obtain the following matrix form for m̃2(s)

(4.7) Aδ(s)m̃2(s) =
µβ

β − sm̃2(β)− λnζ̃2(s)e2,

where e2 = (0, 0, . . . , 0, 1)> denotes a n× 1 column vector.
When det[Aδ(s)] 6= 0, solving the linear systems (4.6) and (4.7), we obtain

(4.8) m̃1(s) =
A?
δ(s)

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
det[Aδ(s)]

,
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and

(4.9) m̃2(s) =
A?
δ(s)

[
µβ
β−sm̃2(β)− λnζ̃2(s)e2

]
det[Aδ(s)]

,

where A?
δ(s) is the adjoint matrix of Aδ(s).

4.1. Theorem. For δ > 0, the generalized Lundberg’s fundamental equation det[Aδ(s)] =
0 has exactly n roots, say ρ1, ρ2, . . . , ρn with <(ρi) > 0.

Proof. det[Aδ(s)] = 0 can be rewritten as

1

(β − s)n

{
n∏
i=1

{µβ − [λ∗i + δ − λf̃(s)](β − s)} − (

n∏
i=1

λi)g̃(s)(β − s)n
}

= 0.

Thus, it is only needed to prove

(4.10)
n∏
i=1

{µβ − [λ∗i + δ − λf̃(s)](β − s)} − (

n∏
i=1

λi)g̃(s)(β − s)n = 0

has exactly n roots in the right half complex plane. Let z = (β − s)/β, then (4.10) may
be expressed as

(4.11)
n∏
i=1

{µ− [λ∗i + δ − λf̃(β(1− z))]z} − (

n∏
i=1

λi)g̃(β(1− z))zn = 0.

When δ > 0, choose r ∈ (0, 1) such that (µ+ δ)r > µ, and denote Cz = {z ∈ C||z| = r}.

Obviously,
n∏
i=1

{µ − [λ∗i + δ − λf̃(β(1 − z))]z} and (
n∏
i=1

λi)g̃(β(1 − z))zn are analytic on

and inside the contour Cz.
We first prove that each of equations µ − [λ∗i + δ − λf̃(β(1 − z))]z = 0, i = 1, · · · , n

has exactly one root in the interior of Cz. For any z ∈ Cz, we have

|(λ∗i + δ)z − µ| ≥ |(λ∗i + δ)z| − µ > (λi + λ)|z| > λ|z| ≥ |λf̃(β(1− z))]z|.

By virtue of Rouché’s theorem, (λ∗i + δ)z − µ = 0 and µ− [λ∗i + δ − λf̃(β(1− z))]z = 0

have the same number of roots inside Cz. Thus µ − [λ∗i + δ − λf̃(β(1 − z))]z = 0 has
exactly one root inside Cz. It implies that

(4.12)
n∏
i=1

{µ− [λ∗i + δ − λf̃(β(1− z))]z} = 0

has exactly n roots inside Cz.
Furthermore, for any z ∈ Cz,

|
n∏
i=1

{µ− [λ∗i + δ − λf̃(β(1− z))]z}|

=
n∏
i=1

|(λ∗i + δ)z − µ− λf̃(β(1− z))z|

≥
n∏
i=1

{|(λ∗i + δ)z − µ| − |λf̃(β(1− z))z|}

≥
n∏
i=1

{|(λ∗i + δ)z − µ| − |λz|}

=
n∏
i=1

{|(λi + λ)z + (µ+ δ)z − µ| − |λz|}

>
n∏
i=1

|λiz| ≥ |(
n∏
i=1

λi)g̃(β(1− z))zn|.

In the last second step, we use z ∈ Cz = {z ∈ C||z| = r} and r ∈ (µ/(µ+ δ), 1).
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By Rouché’s theorem, both Eq. (4.12) and Eq. (4.11) have the same number of
roots inside Cz. Then, we conclude that the equation Eq. (4.11) has exactly n roots
inside Cz. That is to say, Lundberg’s equation det[Aδ(s)] = 0 has exactly n roots in
Cs = {s ∈ C||β − s| = rβ}. From r ∈ (µ/(µ + δ), 1), the interior of Cs is entirely
contained in the right half complex plane. This completes the proof. �

4.2. Remark. If δ → 0+ then ρi(δ)→ ρi(0) for i = 1, · · · , n, and we have that s = 0 is
one of the roots from Lundberg’s equation det[Aδ(s)] = 0.

In what follows, we assume that ρ1, ρ2, . . . , ρn are distinct.
Divided difference plays an important role in the present paper. Now we recall divided

differences of a matrix L(s) with respect to distinct numbers r1, r2, · · · , which are defined
recursively as follows:

L[r1, s] =
L(s)− L(r1)

s− r1
, L[r1, r2, s] =

L[r1, s]− L[r1, r2]

s− r2
,

and so on.

4.3. Theorem. m̃1(β) and m̃2(β) are given by

(4.13)

m̃1(β) =
λ

µβ

 n∑
i=1

A?
δ [ρ1, · · · , ρi]

1
n∏
l=i

(β − ρl)


−1(

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn]

)
e1,

(4.14)

m̃2(β) =
λn
µβ

 n∑
i=1

A?
δ [ρ1, · · · , ρi]

1
n∏
l=i

(β − ρl)


−1(

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃2[ρi, · · · , ρn]

)
e2.

Proof. Since m̃kj(s) is finite for k = 1, 2, j = 1, 2, . . . , n, from (4.8), we have, for distinct
numbers ρ1, ρ2, . . . , ρn,

A?
δ(ρi)

µβ

β − ρi
m̃1(β) = A?

δ(ρi)ζ̃1(ρi)λe1.

Hence[
A?
δ(ρ1)

µβ

β − ρ1
−A?

δ(ρ2)
µβ

β − ρ2

]
m̃1(β) = [A?

δ(ρ1)ζ̃1(ρ1)−A?
δ(ρ2)ζ̃1(ρ2)]λe1.

Namely [
A?
δ(ρ1) 1

β−ρ1
−A?

δ(ρ1) 1
β−ρ2

+ A?
δ(ρ1) 1

β−ρ2
−A?

δ(ρ2) 1
β−ρ2

]
µβm̃1(β)

= [A?
δ(ρ1)ζ̃1(ρ1)−A?

δ(ρ1)ζ̃1(ρ2) + A?
δ(ρ1)ζ̃1(ρ2)−A?

δ(ρ2)ζ̃1(ρ2)]λe1.

Using the divided difference, we derive[
A?
δ(ρ1) 1

(β−ρ1)(β−ρ2)
+ A?

δ [ρ1, ρ2] 1
β−ρ2

]
µβm̃1(β)

= {A?
δ(ρ1)ζ̃1[ρ1, ρ2] + A?

δ [ρ1, ρ2]ζ̃1(ρ2)}λe1.

We finally have by recursively deriving

(4.15)
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i=1

A?
δ [ρ1, · · · , ρi]

1
n∏
l=i

(β − ρl)

µβm̃1(β) = λ

(
n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn]

)
e1,

which leads to (4.13).
Similarly, we can obtain (4.14) from (4.9). �

Applying the divided difference repeatedly to the numerators of (4.8) and (4.9), re-
spectively, we obtain the following theorem.

4.4. Theorem. The Laplace transforms of the expected discounted penalty function are
given by

(4.16)

m̃1(s) =

n∏
i=1

(s−ρi)

det[Aδ(s)]

{
A?
δ [ρ1, · · · , ρn, s]

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
+

n∑
i=1

A?
δ [ρ1, · · · , ρi] 1

n∏
l=i

(β−ρl)

(
µβ
β−sm̃1(β)

)
−

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn, s](λe1)

}
,

and

(4.17)

m̃2(s) =

n∏
i=1

(s−ρi)

det[Aδ(s)]

{
A?
δ [ρ1, · · · , ρn, s]

[
µβ
β−sm̃2(β)− λnζ̃2(s)e2

]
+

n∑
i=1

A?
δ [ρ1, · · · , ρi] 1

n∏
l=i

(β−ρl)

(
µβ
β−sm̃2(β)

)
−

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃2[ρi, · · · , ρn, s](λne2)

}
.

Proof. By the fact that s = ρ1 is a root of the numerator in (4.8), we have

(4.18)

A?
δ(s)

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
= A?

δ(s)
[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
−A?

δ(ρ1)
[

µβ
β−ρ1

m̃1(β)− λζ̃1(ρ1)e1

]
= (s− ρ1)

 A?
δ [ρ1, s]

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
+

A?
δ(ρ1) 1

(β−ρ1)

(
µβ
β−sm̃1(β)

)
−A?

δ(ρ1)ζ̃1[ρ1, s](λe1)

 .

Since s = ρ2 is also a root of numerator in (4.8), it shows that s = ρ2 is a zero of the
expression within the brace in (4.18), namely

(4.19) (
A?
δ [ρ1, s] + A?

δ(ρ1) 1
β−ρ1

)
µβ
β−sm̃1(β)−

(
A?
δ [ρ1, s]ζ̃1(s) + A?

δ(ρ1)ζ̃1[ρ1, s]
)
λe1

=
(
A?
δ [ρ1, s] + A?

δ(ρ1) 1
β−ρ1

)
µβ
β−sm̃1(β)−

(
A?
δ [ρ1, s]ζ̃1(s) + A?

δ(ρ1)ζ̃1[ρ1, s]
)
λe1

−
(
A?
δ [ρ1, ρ2] + A?

δ(ρ1) 1
β−ρ1

)
µβ
β−ρ2

m̃1(β) +
(
A?
δ [ρ1, ρ2]ζ̃1(ρ2) + A?

δ(ρ1)ζ̃1[ρ1, ρ2]
)
λe1

= (s− ρ2)


A?
δ [ρ1, ρ2, s]

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
+

2∑
i=1

A?
δ [ρ1, ρi]

1
2∏
l=i

(β−ρl)

(
µβ
β−sm̃1(β)

)
−

2∑
i=1

A?
δ [ρ1, ρi]ζ̃1[ρi, ρ2, s](λe1)

 ,

where we denote A?
δ [ρ1, ρi] = A?

δ(ρ1), when i = 1.
Substituting (4.19) into (4.18), recursively from the fact s = ρ3, . . . , ρn are roots of

the numerator in (4.8), (4.16) is derived.
By similar arguments, we obtain (4.17) from (4.9). �
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4.2. Closed forms for rational family claim-size distribution. Now, we restrict
the further analysis to the case of the claim amount distributions F (x) and G(x) both
with rational Laplace transforms, viz,

f̃(s) =
fr1−1(s)

fr1(s)
, g̃(s) =

gr2−1(s)

gr2(s)
, r1, r2 ∈ N+,

where fr1−1(s), gr2−1(s) are polynomials of degree r1− 1 and r2− 1 or less, respectively,
while fr1(s) and gr2(s) are polynomials of degree r1 and r2 with only negative roots, and
satisfy fr1−1(0) = fr1(0), gr2−1(0) = gr2(0). Without loss of generality, we assume that
fr1(s) and gr2(s) have leading coefficient 1. This wide class of distributions includes the
phase-type distributions, and in particular, it includes the Erlang, Coxian and exponential
distribution and all the mixtures of them.

In what follows, let h(s) = (s − β)n[fr1(s)]ngr2(s). Multiplying both numerator and
denominator of (4.16) by h(s), we get

(4.20)

m̃1(s) =

n∏
i=1

(s−ρi)

h(s)det[Aδ(s)]

{
A?
δ [ρ1, · · · , ρn, s]h(s)

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
+h(s)

n∑
i=1

A?
δ [ρ1, · · · , ρi] 1

n∏
l=i

(β−ρl)

(
µβ
β−sm̃1(β)

)
−h(s)

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn, s](λe1)

}
.

It is obvious that the factor h(s)det[Aδ(s)] of the denominator is a polynomial of degree

n(r1+1)+r2 with leading coefficient
n∏
i=1

(λ∗i +δ). Therefore, the equation h(s)det[Aδ(s)] =

0 has n(r1+1)+r2 roots on the complex plane. We can factorize h(s)det[Aδ(s)] as follows

(4.21) h(s)det[Aδ(s)] =

n∏
i=1

(λ∗i + δ)

n∏
j=1

(s− ρj)
nr1+r2∏
j=1

(s+Rj),

where Rj for each j has positive real part and we assume that all of them are distinct
from each other.

Substituting (4.21) into (4.20) then canceling the same factor
n∏
j=1

(s− ρlj), we derive

from (4.20) that

(4.22)

m̃1(s) = 1
n∏
i=1

(λ∗i+δ)
nr1+r2∏
j=1

(s+Rj)

{
A?
δ [ρ1, · · · , ρn, s]h(s)

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
+h(s)

n∑
i=1

A?
δ [ρ1, · · · , ρi] 1

n∏
l=i

(β−ρl)

(
µβ
β−sm̃1(β)

)
−h(s)

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn, s](λe1)

}
.

It is easy to find that the elements in matrix h(s)A?
δ [ρ1, · · · , ρn, s] are polynomials of

degree less than nr1 + r2, of course, the elements in matrix h(s)A?
δ [ρ1, · · · , ρn, s] 1

β−s are
polynomials of degree less than nr1 + r2 − 1, and each A?

δ [ρ1, · · · , ρi] for i = 1, 2, · · · , n
is constant. Therefore, we have the following partial fractions:

h(s)A?
δ [ρ1, · · · , ρn, s]

nr1+r2∏
j=1

(s+Rj)

=

nr1+r2∑
j=1

Qj

s+Rj
,
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h(s)A?
δ [ρ1, · · · , ρn, s] 1

β−s
nr1+r2∏
j=1

(s+Rj)

=

nr1+r2∑
j=1

Dj

s+Rj
,

and
h(s) 1

β−s
nr1+r2∏
j=1

(s+Rj)

=

nr1+r2∑
j=1

ςj
s+Rj

,
h(s)

nr1+r2∏
j=1

(s+Rj)

= 1 +

nr1+r2∑
j=1

τj
s+Rj

,

where Qj , Dj , τj and ςj are given respectively by

(4.23) Qj =
h(−Rj)Aδ

?[ρ1, · · · , ρn,−Rj ]
nr1+r2∏
i=1,i 6=j

(Ri −Rj)
,

(4.24) Dj =
h(−Rj)Aδ

?[ρ1, · · · , ρn,−Rj ] 1
β+Rj

nr1+r2∏
i=1,i 6=j

(Ri −Rj)
,

and

(4.25) ςj =
h(−Rj) 1

β+Rj

nr1+r2∏
i=1,i 6=j

(Ri −Rj)
, τj =

h(−Rj)
nr1+r2∏
i=1,i 6=j

(Ri −Rj)
.

In view of the above partial fractions, (4.22) can be rewritten as

(4.26)

m̃1(s) = 1
n∏
i=1

(λ∗i+δ)

nr1+r2∑
j=1

1
s+Rj

{
Djµβm̃1(β)−Qjλζ̃1(s)e1

+ςj
n∑
i=1

A?
δ [ρ1, · · · , ρi] µβ

n∏
l=i

(β−ρl)
m̃1(β)

−τj
n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn, s](λe1)

}
− 1

n∏
i=1

(λ∗i+δ)

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn, s](λe1).

By the same arguments, we have

(4.27)

m̃2(s) = 1
n∏
i=1

(λ∗i+δ)

nr1+r2∑
j=1

1
s+Rj

{
Djµβm̃2(β)−Qjλnζ̃2(s)e2

+ςj
n∑
i=1

A?
δ [ρ1, · · · , ρi] µβ

n∏
l=i

(β−ρl)
m̃2(β)

−τj
n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃2[ρi, · · · , ρn, s](λne2)

}
− 1

n∏
i=1

(λ∗i+δ)

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃2[ρi, · · · , ρn, s](λne2).

From [4], we have the Laplace inverse of ζ̃[ρ1, ρ2, · · · , ρn, s] as follows

(4.28) L
−1
(
ζ̃[ρ1, ρ2, · · · , ρn, s]

)
= (−1)n

(
n∏
i=1

Tρi

)
ζ(x).

Thus, by inverting (4.26) and (4.27) results in the following theorem
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4.5. Theorem. If the claim-size distributions F (x) and G(x) both belong to the rational
family, the expected discounted penalty function are given by

(4.29)

m1(u) = 1
n∏
i=1

(λ∗i+δ)

nr1+r2∑
j=1

{
e−RjuDjµβm̃1(β)−Qjλ[e−Rju ~ ζ1(u)]e1

+ςje
−Rju

n∑
i=1

A?
δ [ρ1, · · · , ρi] µβ

n∏
l=i

(β−ρl)
m̃1(β)

+τje
−Rju ~

(
n∑
i=1

A?
δ [ρ1, · · · , ρi](−1)n−i

(
n∏
l=i

Tρl

)
ζ1(u)

)
(λe1)

}
+ 1

n∏
i=1

(λ∗i+δ)

n∑
i=1

A?
δ [ρ1, · · · , ρi](−1)n−i

(
n∏
l=i

Tρl

)
ζ1(u)(λe1), u ≥ 0,

and

(4.30)

m2(u) = 1
n∏
i=1

(λ∗i+δ)

nr1+r2∑
j=1

{
e−RjuDjµβm̃2(β)−Qjλn[e−Rju ~ ζ2(u)]e2

+ςje
−Rju

n∑
i=1

A?
δ [ρ1, · · · , ρi] µβ

n∏
l=i

(β−ρl)
m̃2(β)

+τje
−Rju ~

(
n∑
i=1

A?
δ [ρ1, · · · , ρi](−1)n−i

(
n∏
l=i

Tρl

)
ζ2(u)

)
(λne2)

}
+ 1

n∏
i=1

(λ∗i+δ)

n∑
i=1

A?
δ [ρ1, · · · , ρi](−1)n−i

(
n∏
l=i

Tρl

)
ζ2(u)(λne2), u ≥ 0,

where ~ represents the convolution operator. Qj, Dj, τj and ςj are given respectively by
(4.23)-(4.25).

5. Numerical illustrations
In this section, we present a numerical example to illustrate an application of the main

results in this paper. We suppose that the claim amounts from class 1 and class 2 have
density functions, respectively,

f(x) = µ1e
−µ1x, µ1 > 0, x > 0, g(y) = µ2e

−µ2y, µ2 > 0, y > 0.

Hence, LTs f̃(s) = µ1
s+µ1

, g̃(s) = µ2
s+µ2

. The inter-claim times from class 1 occur following
a Poisson process with parameter λ, and inter-claim times from class 2 occur following
a generalized Erlang(2) distribution with parameters λ1, λ2. In addition, the number of
insurer’s premium income M(t) follows a Poisson process with parameter µ > 0 and the
premium sizes are exponentially distributed with parameter β > 0.

In order to obtain the probability of ultimate ruin, we assume δ = 0 and w1(x1, x2) =
w2(x1, x2) = 1. Thus

A0(s) =

(
µβ
β−s − λ

∗
1 + λf̃(s) λ1

λ2g̃(s) µβ
β−s − λ

∗
2 + λf̃(s)

)
.

Now,mkj(u), k = 1, 2, j = 1, 2, . . . , n simplify to the probability of ultimate ruin ψkj(u), k =
1, 2, j = 1, 2, . . . , n. Eventually, we are only interested in ψk(u) = ψk1(u), k = 1, 2.

For illustration purpose, we set µ1 = 1, µ2 = 2, λ = 2, λ1 = 1, λ2 = 3, µ = 3, β = 1.
It is easy to check that the positive security loading conditions are satisfied. Un-
der this hypothesis, the solutions of h(s)det[A0(s)] = 0 are −R1 = −1.9087,−R2 =
−0.7394,−R3 = −0.1222, ρ1 = 0, ρ2 = 0.6037. From Theorem 4.2, we have m̃1(β) =
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m̃1(1) =

(
0.6906
0.5948

)
and m̃2(β) = m̃2(1) =

(
0.0911
0.2267

)
. Substituting m̃1(1), m̃2(1)

into (4.29) and (4.30), respectively, we obtain the probability of ruin due to a claim from
class k,

(5.1) ψ1(u) = −0.0214e−1.9087u−0.2504e−0.7394u+0.8202e−0.1222u+0.3333e−u, u ≥ 0,

(5.2) ψ2(u) = 0.0040e−1.9087u − 0.0303e−0.7394u + 0.0958e−0.1222u, u ≥ 0.

Thus, in view of ψ(u) = ψ1(u) + ψ2(u), we can obtain the probability of ruin ψ(u).
Figure 1 shows the probabilities of ruin ψ1(u), ψ2(u) and ψ(u) for different values of
u ∈ [0, 10].
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Figure 1. Ruin probabilities for different values of u ∈ [0, 10].

6. Concluding remarks
In present paper, we investigate the expected discounted penalty functions in a risk

model involving two independent classes of risks with stochastic income, in which the
claim number processes are independent Poisson and generalized Erlang(n) processes,
respectively. Namely, we extend the model in [13] by assuming that the premium income
arrival process is a Poisson process. The integro-differential equations for the expected
discounted penalty functions are established. By aid of Dickson-Hipp operator and di-
vided difference, the Laplace transforms for the expected discounted penalty functions
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are obtained, and explicit expressions are derived when the claim amount distributions
belong to the rational family.

The results in our paper can be extended. For example, the premium income ar-
rival process may be a renewal process, the model can also be perturbed by diffusion.
We remark that it is very challenging to obtain closed form solutions for the expected
discounted penalty functions if we move away from the exponential assumption for the
premium sizes. Of course, we can find the solutions numerically for some complicated
premium size distributions.
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