
Hacettepe Journal of Mathematics and Statistics
Volume 45 (4) (2016), 1125 � 1134

A classi�cation of biharmonic hypersurfaces in the
Minkowski spaces of arbitrary dimension

Nurettin Cenk Turgay ∗

Abstract

In this paper we study hypersurfaces with the mean curvature function
H satisfying 〈∇H,∇H〉 = 0 in a Minkowski space of arbitrary dimen-
sion. First, we obtain some conditions satis�ed by connection forms of
biconservative hypersurfaces with the mean curvature function whose
gradient is light-like. Then, we use these results to get a classi�cation of
biharmonic hypersurfaces. In particular, we prove that if a hypersurface
is biharmonic, then it must have at least 6 distinct principal curvatures
under the hypothesis of having mean curvature function satisfying the
condition above.
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1. Introduction

After Bang-Yen Chen conjectured that every biharmonic submanifold of a Euclidean
space is minimal, biharmonic and biconservative submanifolds in semi-Euclidean spaces
have been studied by many geometers (cf. [4, 5, 7, 8]). In particular, many results on
biharmonic submanifolds in the Minkowski 4-space E4

1 and the semi-Euclidean space E4
2

have appeared since the middle of 1990s, [1, 2, 6, 9, 18].
On the other hand, several geometrical properties of biconservative submanifolds in

Euclidean spaces have been obtained and some classi�cation results of biconservative
hypersurfaces have been given so far, [3, 12, 15, 17]. For example in [12], Hasanis and
Vlachos obtained the complete classi�cation of biconservative hypersurfaces in E3 and
E4. Furthermore, Yu Fu have recently proved that the only biconservative surfaces in E3

1

are surfaces of revolution and null scrolls, [10]. Most recently, the complete classi�cation
of biconservative surfaces in 4-dimensional Lorentzian space forms is obtained in [11]
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LetM be a hypersurface in En+1
s , s = 0, 1 with the shape operator S, mean curvature

H and x : M → Em an isometric immersion. M is said to be biharmonic if the equation
∆2x = 0 is satis�ed or, equivalently, the system of di�erential equations

(BC) S(∇H) + ε
nH

2
∇H = 0,

(BH1) ∆H +HtrS2 = 0

is satis�ed, where N is the unit normal vector �eld (see [6, 13]) and ε = 〈N,N〉.
On the other hand, a hypersurface satisfying (BC) is said to be a biconservative

hypersurface. From (BC), one can see that if a hypersurface M with non-constant mean
curvature is biconservative, then ∇H is an eigenvector of its shape operator. Note that
along with the increase of index, the di�erence between Euclidean space and Minkowski
space is the appearance of light-like vectors. Thus, the hypersurfaces with light-like ∇H
has no counterparts in Euclidean spaces and they are worth to be studied separately in
terms of being biconservative or biharmonic.

1.1. Remark. For ease of elaboration, we want to abbreviate a hypersurface with mean
curvature whose gradient is light-like to a MCGL-hypersurface.

In this work we study MCGL-hypersurfaces in the Minkowski space of arbitrary dimen-
sion. In Sect. 2, after we describe our notations, we give a summary of the basic facts and
formulas that we will use. In Sect. 3, we focus on biconservative MCGL-hypersurfaces
and obtain some necessary conditions. In Sect. 4, we prove the non-existence of bihar-
monic MCGL-hypersurfaces under some conditions.

2. Prelimineries

Let Ems denote the pseudo-Euclidean m-space with the canonical pseudo-Euclidean
metric tensor g of index s given by

g = −
s∑
i=1

dx2i +

m∑
j=s+1

dx2j ,

where (x1, x2, . . . , xm) is a rectangular coordinate system in Ems . A non-zero vector
v ∈ Ems is called space-like, time-like or light-like if 〈v, v〉 > 0, 〈v, v〉 < 0 or 〈v, v〉 = 0,
respectively.

Consider an oriented hypersurface M of the Minkowski space En+1
1 . We denote the

Levi-Civita connections of En+1
1 and M by ∇̃ and ∇, respectively. Then, the Gauss and

Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h(X,Y )N,(2.1)

∇̃XN = −S(X)(2.2)

for all tangent vectors �elds X, Y , where h, ∇⊥ and S are the second fundamental form,
the normal connection and the shape operator of M , respectively, and N is the unit
normal vector �eld associated with the orientation of M .

The Gauss and Codazzi equations are given, respectively, by

R(X,Y, Z,W ) = 〈h(Y,Z), h(X,W )〉 − 〈h(X,Z), h(Y,W )〉,(2.3)

(∇̄Xh)(Y,Z) = (∇̄Y h)(X,Z),(2.4)

where R is the curvature tensor associated with the connection ∇ and ∇̄h is de�ned by

(∇̄Xh)(Y,Z) = ∇⊥Xh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ).
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M is said to be Lorentzian if its tangent space TmM at every point m ∈ M has two
linearly independent null vectors. In this case, there exists a pseudo-orthonormal frame
�eld {e1, e2, . . . , en} of the tangent bundle of M satisfying

〈eA, eB〉 = 1− δAB , 〈eA, ea〉 = 0, 〈ea, eb〉 = δab

for all A,B = 1, 2, a, b = 3, 4, . . . , n. Then, the Levi-Civita connection ∇ of M becomes

∇eie1 = φie1 +

n∑
b=3

ω1b(ei)eb,(2.5a)

∇eie2 = −φie2 +

n∑
b=3

ω2b(ei)eb,(2.5b)

∇eiea = ω2a(ei)e1 + ω1a(ei)e2 +
n∑
b=3

ωab(ei)eb,(2.5c)

where φi = φ(ei) = 〈∇eie2, e1〉 and ωjk(ei) = 〈∇eiej , ek〉, i.e., φ = −ω12.
On the other hand, the shape operator S of an oriented Lorentzian hypersurface

in En+1
1 can be non-diagonalizable. If S is non-diagonalizable, then its characteristic

polynomial may also have complex roots. However, in this case all eigenvectors of S are
space-like.

Now, assume that M has non-diagonalizable shape operator S and consider the case
that all of the eigenvalues of S are real at any point of M . In this case, locally, we
may assume that the multiplicities of eigenvalues are constant at every point of M .
Therefore, [14, Lemma 2.3 and Lemma 2.5] imply that there exists an appropriate pseudo-
orthonormal frame �eld {e1, e2, . . . , en} of smooth vector �elds such that the matric
representation of S is in one of the following two forms.

Case I. S =



k1 1 0 0 . . . 0
0 k1 0 0 . . . 0
0 0 k3 0 . . . 0
0 0 0 k4 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . kn


,

Case II. S =



k1 0 1 0 . . . 0
0 k1 0 0 . . . 0
0 −1 k1 0 . . . 0
0 0 0 k4 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . kn



(2.6)

for some smooth functions k1, k3, k4, . . . , kn, where the eigenvector e1 of S is light-like,
(see also [13, 16]). With the abuse of terminology, we call these vector �elds e1, e2, . . . , en
as principal directions and the functions k1, k3, k4, . . . , kn as principal curvatures. More-
over, we put

s1 = 2k1 + k3 + · · ·+ kn = nH,

where H is the mean curvature of M .
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3. Biconservative MCGL-hypersurfaces

In this section we focus on biconservative MCGL-hypersurfaces in the Minkowski
space En+1

1 . As we described in the previous section, the shape operator S of a MCGL-
hypersurfaces in the Minkowski space En+1

1 is one of two forms given in (2.6). We study
these two cases separately.

3.1. Case I. Consider a hypersurface M in the Minkowski space En+1
1 with the shape

operator S given by case I of (2.6). Then, we have

h(e1, e2) = −k1, h(e2, e2) = −1,

h(eA, eB) = δABkA,

h(e1, e1) = h(e1, eA) = h(e2, eA) = 0, A,B = 3, 4, . . . , n.

(3.1)

Now, assume that M is a biconservative MCGL-hypersurface, i.e., ∇s1 is light-like
and (BC) is satis�ed. Then, e1 is proportional to ∇s1 and we have

k1 = −s1
2
, k3 + k4 + · · ·+ kn = 2s1,(3.2a)

e1(k1) = e3(k1) = e4(k1) = · · · = en(k1) = 0, e2(k1) 6= 0.(3.2b)

Let the distinct principal curvatures of M be K1,K2, . . . ,Kp with the multiplicities
ν1, ν2, . . . , νp, respectively, i.e., the characteristic polynomial of S is

(3.3) ρS(t) = (t−K1)ν1(t−K2)ν2 . . . (t−Kp)
νp

with K1 = k1 and ν1 ≥ 2. We also suppose that the functions Kα −Kβ does not vanish
on M , for all α 6= β ∈ {1, 2, . . . , p}. Then, (3.2a) becomes

(3.4) K1 = −s1
2
, ν2K2 + ν3K3 + · · ·+ νpKp = (−2− ν1)K1.

On the other hand, from the Codazzi equation (2.4) for X = e1, Y = Z = eA we get

(3.5) ψα = ω1A(eA) =
e1(KA)

K1 −KA
if kA = Kα, α = 2, 3, . . . , p.

By rearranging the indices if necessary, we may assume that ψ2, ψ3, . . . , ψr 6= 0 and
ψr+1 = ψr+2 = · · · = ψp = 0 for some r ≤ p. Thus, from (3.5) we have

(3.6) e1(KA) = 0 if kA = Kα, α > r.

From Codazzi equation (2.4) for X = e1, Y = eA, Z = eB and X = eA, Y = eB ,
Z = e1 we obtain

(3.7) ω1A(eB)(k1−kA) = ω1B(eA)(k1−kB) = ωAB(e1)(kA−kB), A,B = 2, 3, . . . , n.

Moreover, from the equation [eA, eB ](k1) = 0 we have

ω1A(eB) = ω1B(eA).

By combining the above equation with (3.7) one may obtain

(3.8) ω1B(eA) = 0 if kA, kB 6= K1.

On the other hand, from the Codazzi equation X = e1, Y = e1, Z = ej and X = e2,
Y = e1, Z = ej we have

(3.9) ω1j(e1) = 0, j = 3, 4, . . . , n.

In addition, by combining the Codazzi equation (2.4) for X = eA, Y = e1, Z = ea and
[ea, eA] (k1) = 0, we obtain

(3.10) ωaA(e1) = ω1A(ea) = ω1a(eA) = 0
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for all a,A = 3, 4, . . . , n such that ka = K1 6= kA. By summing up (3.8)-(3.10) we obtain

∇e1e1 = φ1e1, ∇eAe1 = φAe1 + ω1A(eA)eA,

ω1A(ex) = 0, x 6= 2, x 6= A
(3.11)

for all A = 3, 4, . . . , n such that K1 6= kA.
Hence, by combaining (3.11) and the Gauss equation R(eA, e1, e1, eA) = 0 we obtain

e1(ω1A(eA)) = ω1A(eA)(φ1 − ω1A(eA)) if kA 6= K1

from which we get

(3.12) e1(ψα) = ψα(φ1 − ψα), ψα = 2, 3, . . . , r.

Next, we obtain the following lemma which we will use later.

3.1. Lemma. Let M be a biconservative MCGL-hypersurface in the Minkowski space
En+1

1 with the shape operator given by (3.1). Then the functions ψ3, ψ4, . . . , ψr de�ned
above satisfy

(3.13a) W (ψ2, ψ3, . . . , ψr)


ν2(K1 −K2)
ν3(K1 −K3)

...
νr(K1 −Kr)

 = 0,

where W (ψ2, ψ3, . . . , ψr) is an r × r matrix given by

(3.13b) W (ψ2, ψ3, . . . , ψr) =


ψ2 ψ3 . . . ψr
ψ2

2 ψ2
3 . . . ψ2

r

...
...

. . .
...

ψr2 ψr3 . . . ψrr

 .

Proof. By applying e1 to the second equation in (3.4) and using (3.2b), we obtain

(3.14) ν2e1(K2) + ν3e1(K3) + · · ·+ νpe1(Kp) = 0.

Now, by induction we would like to show

(3.15)
r∑

α=2

(ψα)tνα(K1 −Kα) = 0, t = 1, 2, . . . .

Note that by combining (3.5) and (3.14) one can obtain (3.15) for t = 1. Suppose that
(3.15) is satis�ed for t = l − 1, i.e.,

(3.16)
r∑

α=2

(ψα)l−1να(K1 −Kα) = 0, n = 1, 2, . . . .

By applying e1 to this equation and using (3.2b), (3.5) and (3.12) we obtain

r∑
α=2

(l − 1)(ψα)l−1να(φ1 − ψα)(K1 −Kα) =

r∑
α=2

(ψα)lνα(K1 −Kα).

By combining this equation and (3.16) we obtain (3.15) for t = l. Thus, we have (3.15)
for all t which implies (3.13). �
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3.2. Case II. In this subsection, we consider the hypersurfaces with the shape opera-
tor given by case II of (2.6) in the Minkowski space En+1. Now, assume that M is a
biconservative MCGL-hypersurface. In this case, we have

h(e1, e2) = −k1, h(e1, e1) = h(e1, e3) = h(e2, e2) = 0,

h(e3, e3) = k1, h(eA, eB) = δABkA,

h(e1, e1) = h(e1, eA) = h(e2, eA) = h(e3, eA) = 0, A,B = 4, 5, . . . , n.

(3.17)

Assume that the characteristic polynomial of S is as given by (3.3) withK1 = k1 = −s1/2
and ν1 ≥ 3. Then, we have (3.4) and

(3.18) e1(K1) = e3(K1) = e4(K1) = · · · = en(K1) = 0, e2(K1) 6= 0.

We again suppose that the functions Kα −Kβ does not vanish on M .
Note that the Codazzi equation (2.4) for X = e1, Y = eA, Z = eA gives e1(kA) =

ω1A(eA)(k1 − kA) if k1 6= kA. Let ψ2, ψ3, . . . , ψp be the functions de�ned by (3.5) such
that ψ2, ψ3, . . . , ψr 6= 0 and ψr+1 = ψr+2 = · · · = ψp = 0 for some r ≤ p.

(3.18) implies [e1, eA](k1) = 0. By computing the left-hand side of this equation we get
ω1A(e1) = 0, A = 3, 4, . . . , n. In addition, the Codazzi equation (2.4) for X = e1, Y = e2,
Z = e3 gives φ1 = 0. Thus, we have ∇e1e1 = 0. Next, similar to previous subsection,
we apply the Codazzi equation (2.4) for X = ei, Y = ej , Z = ek for each triplet (i,
j, k) in the set {(1, 2, a), (1, 3, A), (3, A, 1), (1, A,B), (A,B, 1), (1, a, A)} and combine
equations obtained with [eA, eB ](k1) = [eA, ea](k1) = 0 to get ∇eA(e1) ∈ span{e1, eA}
and ω1A(ex) = 0, x 6= 2, A, where A,B, a = 4, 5, . . . , n with A 6= B, kA, kB 6= K1,
ka = K1. By combaining these equations with the Gauss equation R(e3, e1, e1, e3) = 0
we obtain

e1(ψα) = −ψ2
α, α = 1, 2, . . . , r.

Therefore, similar to Lemma 3.1 we have

3.2. Lemma. Let M be a biconservative MCGL-hypersurface in the Minkowski space
En+1
1 with the shape operator given by (3.17). Then the functions ψ3, ψ4, . . . , ψr de�ned

above satisfy (3.13).

3.3. Biconservative hypersurfaces. In this subsection, we would like to obtain condi-
tions satis�ed by connection forms of biconservative MCGL-hypersurfaces (See [17, 10, 11]
for implicit examples of biconservative hypersurfaces that have recently obtained).

Now we would like to obtain some necessary conditions for being biconservative of an
MCGL-hypersurface by using Lemma 3.1 and Lemma 3.2.

3.3. Proposition. Let M be an MCGL-hypersurface in the Minkowski space En+1
1 and

e1, e2, . . . , en its principal directions with corresponding principal curvatures
k1, k1, k3, k4, . . . , kn such that e1 is proportional to gradient of its mean curvature. If M
is biconservative, then

(i) For any 3 ≤ i ≤ n such that ki 6= k1, ω1i(ei) 6= 0, there exists a j 6= i such that
ω1j(ej) = ω1i(ei), kj 6= ki.

(ii) Let Ii = {3 ≤ j ≤ n|ω1j(ej) = ω1i(ei)}. Then,

(3.19)
∑
j∈Ii

(k1 − kj) = 0.

(iii) There exists a j ∈ {3, 4, . . . , n} such that e1(kj) = ω1l(ej) = 0, k1 6= kl.

Proof. Let K1, . . . ,Kn and ψ2, . . . , ψr be the functions de�ned on the beginning of this
section.
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Assume that ψ2 6= 0 and ψ2 6= ψj , 2 < j ≤ r. Then, we have detW (ψ2, ψ3, . . . , ψr) = 0
from (3.13) since the functions K1−K2 is non-vanishing by the assumptions. Therefore,
ψ3, . . . , ψr are not distinct and we may assume ψr−1 = ψr. Thus (3.13) gives

W (ψ2, ψ3, . . . , ψr−1)


ν2(K1 −K2)
ν3(K1 −K3)

...
νr(K1 −Kr) + νr−1(K1 −Kr−1)

 = 0.

Since (K1 −K2) is non-vanishing, the above equation implies that ψ3, . . . , ψr−1 are not
distinct and we may assume either ψr−2 = ψr−1 or ψ3 = ψ4. By repeating this procedure,
one can get ψ3 = · · · = ψr−1 and

ψ2(K1 −K2) + ψ3

(
r∑

α=3

να(K1 −Kα)

)
=0,

ψ2
2(K1 −K2) + ψ2

3

(
r∑

α=3

να(K1 −Kα)

)
=0

which gives ψ2 = ψ3 or K1 −K2 = 0 which yields a contradiction. Hence we have (i) of
the proposition.

Let l − 1 of ψ2, ψ3, . . . ψr be distinct and by rearranging indices if necessary, assume
that they are ψ2, ψ3, . . . ψl. Note that we have l − 1 ≤ (r − 1)/2 because of (i) of the
proposition. Moreover, we have detW (ψ2, ψ3, . . . , ψl) 6= 0. Thus, (3.13) implies

W (ψ2, ψ3, . . . , ψl)



∑
j∈I2

νj(K1 −Kj)∑
j∈I3

νj(K1 −Kj)

...∑
j∈Il

νj(K1 −Kj)


= 0

which gives (ii) of the proposition.
Now, assume that all of the functions ω1j(ej) are non-zero, i.e., r = p and ψ2, ψ3, . . . ψl

are distinct. Note that we have
l⋃

j=2

Ij = {2, 3, . . . , p} and (ii) of the proposition implies∑
j∈Iα

νj(K1 −Kj) = 0 or, equivalently,

∑
j∈Iα

νjKj =

(∑
j∈Iα

νj

)
K1, α = 2, 3, . . . , l.

By summing these equations over α we get

ν2K2 + ν3K3 + · · ·+ νpKp = (ν2 + ν3 + · · ·+ νp)K1.

However, this equation and (3.4) give K1 ≡ 0 on M which implies ∇s1 = 0. This is a
contradiction because we have assummed that ∇s1 is light-like. Hence, we have (iii) of
the proposition. �

4. Biharmonic MCGL-Hypersurfaces

In this section we study biharmonic MCGL-hypersurfaces with the shape operator
given by (3.1) in the Minkowski space En+1

1 and obtain some classi�cation results.
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Let M be a biharmonic MCGL- hypersurface with the shape operator given by (3.1).
Then, we have (3.2a)-(3.13) obtained in the Sect. 3.1. In addition, from the Codazzi
equation X = e2, Y = e1, Z = e2 and X = eA, Y = e2, Z = eA we have

(4.1) e2(k1) = 2φ1 = ω1A(eA), if kA = K1, A > 2.

Moreover, since e1e2(k1) = [e1, e2](k1), by using (3.2b) we get

(4.2) e1e2(k1) = −φ1e2(k1).

This equation and (4.1) imply

(4.3) e1(φ1) = −φ2
1.

Now we would like to consider the biharmonic equation (BH1). By a direct calculation
using (3.2b) and (4.2) we get(

e1e2 + e2e1 −
n∑
j=3

ejej −∇e1e2 −∇e2e1

)
(k1) = 0

which gives

∆k1 =

n∑
j=3

ω1j(ej)e2(k1) =

r∑
α=1

 ∑
kA=Kα

ω1A(eA)e2(k1)


= (2ν1φ1 + ν2ψ2 + ν3ψ3 + · · ·+ νrψr) e2(k1).

By combaining the above equation and (4.1), we see that the biharmonic equation (BH1)
becomes

(BH2) (4ν1φ1 + 2ν2ψ2 + 2ν3ψ3 + · · ·+ 2νrψr)φ1 = −k1(ν1K
2
1 + ν2K

2
2 + · · ·+ νpK

2
p).

4.1. Theorem. There exists no biharmonic MCGL-hypersurface with at most 5 distinct

principal curvatures and the shape operator given by (3.1) in the Minkowski space En+1
1 .

Proof. Let the distinct principal curvatures of M be K1,K2,K3,K4,K5 with the multi-
plicities ν1, ν2, ν3, ν4, ν5, respectively, and consider the functions ψ2, ψ3, ψ4, ψ5 de�ned by
(3.5). Now, toward contradiction we assume thatM is a biharmonic MCGL-hypersurface,
i.e., (BC) and (BH1) are satis�ed.

Case I. p < 4. If the number of distinct principal curvatures is less then 4, the proof
directly follows from Proposition 3.3.

Case II. p = 4. Next, we consider the case that M has exactly 4 distinct principal
curvatures, i.e., K4 = K5. Then, because of (iii) of Proposition 3.3, we may assume
ψ2 = 0. Note that if ψ3 = 0, then (i) of Proposition 3.3 implies ψ4 = 0. In this subcase,
we have r = 1 and (3.6) implies e1(Kα) = 0, α = 1, 2, 3, 4. Thus (BH2) becomes

(4.4) 4ν1φ
2
1 = −k1(ν1K

2
1 + ν2K

2
2 + ν3K

2
3 + ν4K

2
4 ).

By applying e1 to this equation and using (4.3) one can �nd ν1φ
3
1 = 0. However, this

equation and (4.4) implies k1 ≡ 0. Thus, we have ∇s1 = 0 which contradicts with being
light-like of ∇s1. Hence, ψ3 and ψ4 are non-zero.

Therefore, (i) and (ii) of Proposition 3.3 imply

(4.5) ψ3 = ψ4, ν3(K1 −K3) + ν4(K1 −K4) = 0.

Thus, (BH2) becomes

(4.6) (aφ1 + bψ3)φ1 = −k1(ν1K
2
1 + ν2K

2
2 + ν3K

2
3 + ν4K

2
4 ),

where a = 4ν1 and b = 2(ν3 + ν4) are some non-negative constants. Note that ψ2 = 0
and (3.5) imply e1(K2) = 0.
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Next, we apply e1 to (4.6) and use (3.2b), (4.3), (3.12) to get

−(2aφ2
1 + bψ2

3)φ1 = −k1e1(ν3K
2
3 + ν4K

2
4 ).(4.7)

Then we use, (3.5) and (4.5) to compute the right-hand side of (4.7) and get

−(2aφ2
1 + bψ2

3)φ1 = −2k1ψ3(bK2
1 − ν3K2

3 − ν4K2
4 ).(4.8)

By applying e1 to (4.8) again and using (3.2b), (4.3), (3.12) we get

(6aφ3
1 − bφ1ψ

2
3 + 2bψ3

3)φ1 =− 2k1ψ3(φ1 − ψ3)(bK2
1 − ν3K2

3 − ν4K2
4 )

+ 2k1ψ3e1(ν3K
2
3 + ν4K

2
4 )

(4.9)

By combining (4.7), (4.8) and (4.9) we get(
6aφ3

1 − bφ1ψ
2
3 + 2bψ3

3 + (φ1 − 3ψ3)(2aφ2
1 + bψ2

3)
)
φ1 = 0.(4.10)

Thus, we have ψ3 = cφ1 for a constant c. However, in this case, from (4.3) and (3.12) we
get c = 2, i.e., ψ3 = 2φ1. However, this equation and (4.10) give (a + 2b)φ4

1 = 0 which
is impossible to be satis�ed because a, b are non-negative constants. Thus, the proof for
this case is completed.

Case III. p = 5. Then, because of (iii) of Proposition 3.3, we may assume ψ2 = 0.
Note that, if ψ3 = 0, then we have either ψ4 = ψ5 6= 0 or ψ3 = ψ4 = ψ5 = 0. However,
these subcases and the other possible subcase ψ3 = ψ4 = ψ5 are similar to case II. �
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