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Abstract

Numerical solution of Burgers equation with nonlinear damping term
has been investigated.We developed new approach based on non-
polynomial cubic tension spline approximation.The proposed approach
depends on the parameters involving in tension spline.By choosing
suitable values of such parameters the optimal local truncation error
of the scheme can be obtained.Convergence analysis of presented
method has been discussed in details and we have shown under
appropriate condition the method convergence.The method tested on
two problems,numerical results have been compared with the exact so-
lution to justify the usefulness and accurate nature of proposed method.
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1. Introduction

The Burgers equation introduced by Burgers [1] provide fundamental pedagogical ex-
amples for many important equation in nonlinear Partial Differential equations such as
traveling waves,shock formation,similarity solutions and singular perturbations [14,27,40,43],
it appears in some of condensed matter and statistical Physics and non-physics prob-
lems such as vehicular traffic [7], The Kardar-Parisi-Zhang or KPZ equation[23,2],traffic
flow,shallow water waves, gas dynamics, and fluids with the dissipative viscous behav-
ior[28,29,39,30].

Furthermore,Burgers equation is studying in directed polymers[24,3] and has found in-
teresting applications in cosmology, such as "Zel'dovich approximation"[46] and "adhe-
sionmodel" [16]. Another application of Burgers equation is in the theory of turbulence
and field[34,37,15,31].

Hofe[20] and Cole[8] have shown the Burgers equation can reduce to heat conduction
equation.

In this paper, we investigate the solution of generalized one-dimensional Burgers equation
with nonlinear damping term [38] of the form

(1.1)  wt + avuz — Ugx = g(u), zr€Q=lcd, t>0,
with the initial condition

(1.2)  u(z,to) = (),

and the boundary conditions
u(c,t) = po(t),

(1.3)  wu(d,t) = pi(t),

where u(x,t) indicates the velocity for the space z and time ¢, a is parameter and g(u)
is damping term.

The Burgers equation in the first term is an unsteady term,the second and third term
represents nonlinear convection and diffusion problem,with nonlinearity term,can be sur-
vived by many researcher.

Different numerical technique have been used for solving Burgers equation.Finite differ-
ence methods have been given by Biringen et al[4] and Kutluay et al.[25]and recently,by
Inan et al [21].Finite elements methods have been given by Caldwell et al.[9]and Varglu
et al.[42] and Ozis et al.[35].Spectral methods have been developed by Bar-yoseph et
al.[5]and Mansell et al.[32].Pseudo-spectral method has been used by Darvishi et al.[12]
and distributed approximation function approach has studied by Zang et al.[47] and Wei
et al.[44].Boundary elements methods is given by Bahadir et al.[6]. A wavelet collocation
method has used by Garba [17],furthermore quasi wavelet based numerical method has
been suggested by Wan et al.[45].Fast adaptive diffusion wavelet method have been sur-
vived by Goyal et al.[18].Least square quadratic B-spline finite elements has been given
by Kutluay et al.[26].Various B-spline have been proposed by Dag et al.[13,41].B-spline
and multi-quadratic quasi-interpolation have been described by Zhu et al and Chen et
al.[48,10].

The present work attempts to use cubic non-polynomial spline[36,19,33].One of the im-
portant ability of this approximation is the tension parameters involving definition of
non-polynomial cubic spline which can be chosen in such a way that the local truncation
error of the proposed method can be optimal.Hence,it has been demonstrate that tension
spline give better result.This paper is organized as follows:In section 2,derivation and
formulation of the cubic non-polynomial tension spline along with consistency relation
of second derivatives discussed in details.In section 3,the derivation of two level scheme
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based on non-polynomial tension spline has been described.In section 4,convergence anal-
ysis of the present method has been discussed in detail and we have shown under appro-
priate condition the method converges.At the end,we illustrate the accuracy and efficiency
of the proposed method by testing this approach on two test problems.comparison of the
numerical result are given.

2. Non-polynomial tension spline

Following our earlier works,let s(x) of class c?[c,d] be non-polynomial tension spline
interpolating the function u(z) at the grid point z;,l = 0,1,2,...,n.For each segment
[z, 141],1 = 0,1, ...,n — 1,the non-polynomial s(z) defined by

(2.1) s(z) =ar +bi(x —x) + cl(e“(ﬁ_w’) —ewlEmm) dl(ew(x_xl) + e_w(x_”)),

where the a;, b, ¢;, d; are unknown coefficients and w is arbitrarily parameter. To deter-
mine the unknown coefficient in (2.1) we denote the following relations

s(z1) = w, s(Ti41) = w1,
s'(x) =my, 8 (2e1) = Mg
(2.2) S”(:L‘l) = Ml, S”(ZE1+1) = Ml+1-

The first and second derivatives of non-polynomial tension spline function s(x) are

(2.3) 5" = b +we (e 4T ETIIY gy (eI — ey =120

(2.4) s = —w2(cl(ew(x_xl) — e_w(x_”)) + dl(ew(m_”) + e_w(x_xl)), 1=1,2,...,n

Now using (2.2)-(2.4) and after some algebraic manipulation,we can determine the un-
known coefficients in (2.1) as

_ Ml _ Ul+1 — UL Ml — Ml+1
a=u = o b= h + o
_2Mi — (2 + e )M, M
= d;

2w2(ef? —e?) ’ T 2w?’

where h = d;C, 0 = wh.
Using the continuity of the first derivative at (z,w;),that is s'(z; ) = s'(z;").We obtain
the following equation for [ =1, ..., n.

U1 — 2up + Up—1

(2.5) =aM;+1 + 28M; + aM;_q,

n2
where
1 20 1,0(ef +e7?)
mEl-a—ea) I=pCa— =~V
When w — 0,that § — 0,then (a, 8) — (%, 3), and the relations defined by (2.5) reduced

into construction relation of conventional cubic spline.
Now by using the continuous of the first derivative,we have

(26)  §'(@)) = usy = “ELE — hlaMiss + AMI]

(27) sl(x;) = Uy = % + h[ﬁMl + Oélel]
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combining (2.6) and (2.7),we obtain

Up1 — U—1  ah

(2.8) mi=s"(m) =us = o7 = 7[Mz+1 + Mj—1]
Similarly ,we have

(2.9)  mup =5 (T141) = Uepy, = w + h[BMi41 + aM;]
(210) mioy =5 (21-1) = way_, = = — RBMio1 + oM

3. The method based on tension spline

The notation v is used for the discrete approximation value of u(z,¢;),l =0,1,...,n

and j = 0,1,...,m,in which n and m are integer and z; = ¢ + lh and t; = to + jk,where
k is the step size in t direction.
We consider the following finite difference approximation

@31) @ = “{Hk* U ul + O(k)

32) @, = vl - Ul _ ul,, +O(k)

(33) al, = M =ul,_ +O0(k)

34 @, = 7“{“2;“{*1 —ul, + O(h?)

(35) @, = Buiys — :Z{ Tl _ W, +O0(h?)
(36) @, , = —3ui, 2‘;"{ vl _ ul, . +O0(h?),

By replacing space derivatives by non-polynomial tension spline
(38.7) @l =s"(z1,t;) = M] + O(h?)
(3.8) ﬂil = 5'(z1,t;) = m] + O(h*)
By using the relations of (3.1),(3.7) and (3.8),we can obtain the new approximate solution
of equation (1) as

W o ) _
(3.9) (%) + auj.mj — g/ = My,

where m] similar to (2.8) in jth time level and g/ = g(u]) , | = 1(1)n — 1.

Furthermore,similar to (2.5) in jth time level,we get

J J J
Uy —2u] Uy

(3.10) 3 =aM,, +28M] +aMj_,.
We substitute (3.9) in (3.10) and by the help of (3.1)-(3.3),we obtain
uf — 2u{ + uL u{'H — uf . . )
= h2 - = o -t & ! )+ aa“ﬁrl-m{ﬂ - agzj+1
Wty . ,
+ 2'B(T) + 2Bau] .m] — 28g]
uj-‘rl _ uj ] ) )
(3.11) +a(M)+aau{_l.mf_l —ag]_,.
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Now by using equations of (3.4)-(3.6) in (2.8)-(2.10),we have

mi = U{Jrl —ul_, B ih(ugif - U{H) B ahauj (3uf+l — du] +uf71)
! 2h 2 k 2 1+1 2h
3.12 ah Uity —ui,,  aha (_3"5—1 + duj _Ufﬂ) ah ;  ah
( . ) 2 ( k ) 2 U171 2h 2 gl+1 ) gz,l
i ul,, —u wltl —ud B V9% S Py R
mi,, = z+1h Ly gh(t2 - Hl)—i—ﬁhaufﬂ( 141 th 1)
wl T — ) Ry . .
(3.13) + ah(%) + ahau{(%) _ ﬂhgiﬂ _ Oéhglj
J J Jj+1 J _ j i
m_, = " _hul—1 _ ﬁh(ul_l ;Ul_l) _ Bhaud_,( 3uy_y +2Z;LU1 Ul+1)
I R Y . ,
(3.14) —an(™ 2 ) - ahau?(mzihl_l) + Bhg]_, + ahg]

By substituting equations (3.12)-(3.14) in (3.11),we can obtain

(bo)fuify + (br)iuy ™t} + (b2)]ul ™ = bs(u,y +ui_,) + ba]
+ b5(glj+1 +g/_1) +biog] + b6((“?+1)2 - (ugfl)Q) — bruj (U{H —uj_y)
—bsuj (BY) — b9(u{+1(Af) +u_,(C})),

(3.15) 1=1(1)n—-1,

where

(bo){ = h*aBa(ul,, —u) + h*a,
(b1)] = h*aBa(u] —ul_,) + h’a,
(b2){ = h3a2a(u{+1 - “{—1) + 25h27
by = h’a + k,

by = 2Bh° — 2k,

bs = kha,

bs = h’afa,

by = h’aa(a — B),

bs = 28kh’a,

by = akh’a,

bio = 2Bkh°,
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and

ol — o 3ul . —du] +ul

A = B ] (R
. uj — u]; X .

+ ahauf(%) - (hﬁglj+1 + ahg{)v
e e SO UL P e e S

1 2% 9 i+l 2h

ah ; =3ul_ +4ul —uf ah ;  ah

+ 7%{*1( L o 1)+ (791]+1 - 79571)7

Cou] — o 3ul ]
Ol = I Bhan_ )

fahauj(M)Jr(hﬁ 7 +ahgl)
1 oh Ji—1 91 )

The above system can be associated with boundary conditions.By solving this system
the approximate solution can be obtain.

3.1. The appropriate parameters. Using Taylor expansion about the grid point
u(xy, tj),finally we obtain the local truncation error
j 0%u 1,0 h'%k* 0%
1) = k*h? — +th'k{a— =} ...
l lat g Thke = g T 5 “g@aar T
The consistency relation for (2.5) lead to the equation 2a 4+ 28 = 1,by simplifying the
above equation and choose a = 5 and 8 = 2 obtain the scheme of O(k” + h* + h*k?).

4. Convergence of the method

Here we analyze the convergence of the system,we can write system (3.15) in the
matrix form

(4.1) PUT' =QU’ + G(U7)

P is tri-diagonal matrix with variable entries,Q is coefficient matrix of U? with constant
entries and G(U”) is nonlinear terms in this system.

to prove convergence,we suppose a > 0,p = max |u{|,l =11)n-1,7 =0(1)m.

In this paper |.|| means ||.||oo-

4.1. Lemma. P is nonsingular.
proof. It is sufficient to solve that P is strictly diagonally dominant.Therefore we must
prove

(42) [ (bo)] + (b2)] I<] (B2)] |

We have
| (B0} + (b1)] |=| hPaBa(u],, —ul) + h’afa(ul —u_;) +2h%a |
=| KaBa(ul,, —ui_,) | +2h°a

(4.3) > 2h%a— | h3a,8a(u{+1 - u{_l) |

By using inequality (4.3) in left hand side of equation (4.2),we obtain
2ha— | h30‘5“(“’{+1 - u{—1) I<| h3o¢2a(ug+l - u{—l) | +2ﬁh2

(4.4)  2h%(a—B) <a(h®af +h*a?) | u{H —ul .

We know o — 8 = — 1 therefore inequality (4.4) is obvious and proof complete.
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4.1. Theorem. The discrete numerical scheme defined by (3.15) is convergent,provided
that |N|| < h*(2+ h(22)).

proof. We assume that Ut and U3t are ezact and approzimation solution of (4.1),
respectively. The error in the solution is:

U -0 = pTIQUY - T7) + PTHG(UY) - G(UY)] j=0(1)m
(4.5) BT = PTIQE + P GUY) — G(U7))
where E = (e1, ez, A..7en)T
Following [11] we have
(4.6) GU-GU)=EN

N s the coefficient matriz of the nonlinear term.
Now by using of equation (4.6) in (4.5)we obtain

(4.7) ET' =P 'QE + P 'E'N
Using the infinity norm,we can write
| B < 1P Q + PTNILIEY|
I E7H < (1PTHQ + N)LIE|
B < 1P + N)ILIE |
< UPTHLIQ+ M IE

I E7H < APTHIQ + NI FHIE”
The method is convergent if

IPH @+ NIl < 1

1
N -
1@+ M < oy

1
(4.8) |HNH—HQH|SH(Q+N)HSW-
Since ||P||||P™*|| > 1,we have
1

NI -l € 55— < IP

N = 1QI < 7=y < 1P
(4.9) NI < IQIl + 1P
By simple calculation,we achieve
(4.10) QI =n?,
(411) [P < B +Ha(L)
By substitute (4.10) and (4.11) in (4.9),the proof complete.

5. Numerical illustrations

To illustrate accuracy and ability of the proposed method,we considered two examples.
Note that,the proposed non-linear tension spline is a two-level scheme therefore the start-
ing level can be determined by the given initial condition.Finally we solve the arising
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system.
Examplel. We consider equation

Ut + AQUUy = Uz, t20, 0<2x<1
with the following initial and boundary conditions
u(zx,0) = sin(nx), 0<z<1

u(0,t) =0,
u(l,t) =0, t>0.
The exact solution of the above equation is taken

21 30 | anexp(—n’mt)nsin(nrx)

7t = o0
u(@;?) ao + > oo, anexp(—n?m2t) cos(nmrx)

ap = /0 exp{(—2m) [l — cos(nz)]}dx

an = 2/0 exp{(—27) [l — cos(nz)]} cos(nmz)da n=123,..

Ezample 1 is the Burgers equation without damping terms.The proposed scheme (3.15)
applied on example 1,with a = 0.1 and 0.01,k = 0.00001 and values of step size h = 0.02
and h = 0.01 forty = 0.1.The computed solution are compare with ezact solution,the maz-
imum absolute errors are tabulated in table 1.In table 2,we take h = 0.1 and k = 0.001,the
results are computed for different time levels and different a.the mazimum absolute error
are tabulated in table 2. In Figures 1 —3,we show the graphs between ezact and numerical
solutions att = 1,t = 3 and t =5 in different a.

Table 1. Maximum absolute error for example 1

T a=0.1 a = 0.01
h =0.02 h =0.01 h =0.02 h =0.01
0.10 8.45119(—4) 2.07841(—5) 8.37944(=7)  2.0917(-T7)
0.20 1.44193(—4) 3.56293(—5) 1.43739(—6) 3.58991(—7)
0.30 1.83155(—4) 4.54565(—5) 1.83520(—6) 4.58581(—7)
0.40 2.04631(—4) 5.09991(—5) 2.06059(—6) 5.15176(—7)
0.50 2.10730(—4) 5.27339(—5) 2.13234(—6) 5.33425(—7)
0.60 2.02309(—4) 5.08367(—5) 2.05703(—6) 5.14941(—7)
0.70 1.78959(—4) 4.51683(—5) 1.82853(—6) 4.58146(—7)
0.80 1.39121(—4) 3.52934(—5) 1.42858(—6) 3.58431(—7)
0.90 6.59886(—4) 2.05162(—5) 8.28727(—7) 2.08597(—7)



Table 2. Maximum absolute error for example 1
T a t=1 t=3 t=5
0.1 0.1 3.05996(—5) 3.06791(—5) 3.07569(—5)
0.01  3.07903(—7) 3.07924(—7) 3.79320(—7)
0.001 3.08122(—9) 2.08135(—9) 3.08135(—9)
0.5 0.1 8.37130(—5) 8.39331(—5) 8.41479(—5)
0.01 8.45321(—7) 8.45385(—7) 8.45406(—7)
0.001 8.46212(—9) 8.46255(—9) 8.46255(—9)
0.9 0.1 2.70077(=5) 2.70793(—5) 2.71493(—5)
0.01  2.73069(—7) 2.73089(—7) 2.73096(—7)
0.001 2.73389(—9) 2.73402(—9) 2.73402(—9)
u[x,t]
0.500, ) - < =
0498 o . .
o4 >-a=0. 01
A N . o—»a=0.1
4L °-a=0. 001
0492} N
0490 |- IS \O\
L L L L L L L L L L L L L L L L \\\ X
02 0.4 06 08 10

Figure 1:Approzimate and ezact solution for example 1 at t = 1,with different a

u[x,t]
0.502 |-

0.500, =

0498 o
i PN >—a=0. 01
0.496 N o=a=0.1

; . o»a=0. 001
0'494f =

0492|- o,

0490/ N

1 1 1
0.2 0.4 0.6 0.8 10

Figure 2:Approzimate and ezact solution for example 1 at t = 3,with different a
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o> >—a=0.01
~ o=a=0.1
AN o»a=0. 001

0.498

0.496

0.494

0.492

L e e e e B B s e e
/7

1 1 1 1 L

0.2 0.4 0.6 0.8 10

Figure 3:Approzimate and ezact solution for example 1 at t = 5,with different a
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Example2. We consider nonlinear damping equation
Ut + QUUZ = Uze +bu(l —u), t>0, 0<z<1

with the following initial and boundary conditions

u(z,0) = 1Jrltaunh(ijasﬂ), 0<z<1

2 2
1 1 —a a 2b
U(O,t) = 5 + 5 tanh[T(f(§ + E)t)],
1 1 - 2b
u(l,t) =3+ tanh[Ta(l - (g +=p) >0

The ezact solution is

u(z,t) = % + %tanh[fa(:ﬂ - (% + %b
In our computation,the computed solution are compare with exact solution. The mazximum
absolute error are reported in table 8-5.In Table 3,we take a = b = 0.001, k£ = 0.00001
and h = 0.02.The results are computed for different time levels.In table 3,results have
been compared with the results in references[22]. The result show,our numerical results
are more accurate in comparison to those given by Ismail et al.That result has been
calculated by 5 terms in Adomian methods.In table 4,we take a = 0.001 and k = 0.0001,the
results are computed for different step size and different b. The mazimum absolute error
for time t = 1 has been computed and tabulated in table 4.In table 5,we take h = 0.05 and
k = 0.00001.The result are computed for different a and b.The mazimum absolute error
for two time level t = 0.5 and t = 1 have been computed and tabulated in table5. We show
the graphs between exact and numerical solutions at t = 1 and a = 0.001,with different
values of h and b in figures 4 — 6.

)] t>o0.

Table 3. Maximum absolute error for example 2

z t [22] present method

0.1 0.005 9.68763(—6) 1.20184(—10)
0.001 1.93753(—6) 3.04431(—11)
0.01 1.93752(—5) 2.21709(—10)

0.5 0.005 9.68691(—6) 1.41649(—10)
0.001 1.93738(—6) 3.05515(—11)
0.01 1.93738(—5)  2.80496(—10)

0.9 0.005 9.68619(—6) 1.17931(—10)
0.001 1.93724(—6)  3.02686(—11)
0.01 1.93724(—5)  1.9840(—10)
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Table 4. Maximum absolute error for example 2

T b= 0.001

h=0.1 h =0.05 h = 0.02
0.1 3.08469(—8) 7.78978(—9) 1.24965(—9)
0.2 5.47325(—8) 1.30415(—8)  2.22143(—9)
0.3 7.16608(—8) 1.81554(—8)  2.91536(—9)
0.4 8.16355(—8) 2.07319(—8)  3.33144(-9)
0.5 8.46606(—8) 2.15716(—8)  3.46967(—9)
0.6 8.07397(—8) 2.06747(—8)  3.33005(—9)
0.7 6.98764(—8) 1.80417(—8)  2.91259(—9)
0.8 5.20745(—8) 1.367281(—8) 2.21728(—9)
0.9 2.73372(—8) 7.56845(—9) 1.2441(—9)
T b=10.01

h=0.1 h =0.05 h = 0.02
0.1 3.09723(—8) 7.82111(—9) 1.25449(—9)
0.2 5.49535(—8) 1.38968(—8)  2.22997(—9)
0.3 7.19487(—8) 1.82276(—38) 2.9265(—9)
0.4 8.19626(—8) 2.08142(—8)  3.34412(—9)
0.5 8.49993(—8) 2.16571(—8)  3.48284(—9)
0.6 8.10628(—8) 2.07567(—8)  3.34269(—9)
0.7 7.01566(—8) 1.81134(—8)  2.92366(—9)
0.8 5.22838(—8) 1.37274(—8)  2.22573(—9)
0.9 2.7447(-8) 7.5988(—9) 1.24887(—9)
T b=1

h=0.1 h =0.05 h =0.02
0.1 1.53032(—7) 1.80708(—7) 1.86514(—7)
0.2 2.71202(—7) 3.19366(—7)  3.29698(—7)
0.3 3.54373(=7) 4.17367(=7)  4.03961(-7)
0.4 4.04031(—7) 4.75743(-7) 4. 913151( 7)
0.5 4.20779(—7) 4.95119(—7)  5.11369(—7)
0.6 4.04834(—=7) 4.75713(=7)  4.91322(-7)
0.7 3.56028(—7) 4.17331(—7)  4.30974(—7)
0.8 2.73812(—7) 3.19371(=7)  3.29714(—7)
0.9 1.57255(—7) 1.80824(—7)  1.86529(—7)
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Table 5. Maximum absolute error for example 2

T a=b=0.001 a=b=0.0001
t=0.5 t=1 t=0.5 t=1
0.10 7.76059(—8) 7.8118(—8) 7.73848(—10) 7.78809(—10)
0.20 1.3774(=7) 1.38711(=7) 1.37441(—9)  1.38383(—9)
0.30 1.80401(—7) 1.81813(—7)  1.802181(—9) 1.81513(—9)
0.40 2.05904(—7) 2.07467(—T7) 2.05754(—9) 2.07274(-9)
0.50 2.14074(—7) 2.15714(—7) 2.14076(—9)  2.15672(—9)
0.60 2.05038(—7) 2.06597(—7) 2.05189(—9)  2.06705(—9)
0.70  1.78832(—7) 1.80157(—7) 1.79091(—9)  1.8038(—9)
0.80 1.35472(—7) 1.36436(—7) 1.35763(—9)  1.36699(—9)
0.90 7.4967(—8) 7.69406(—8)  T7.51754(—10) 7.56673(—9)
u[x,t]
0.73106 o B0
Ss ‘e,
RN obe,
0.73104 |- AN S
H Sl %, .
- b,
I opy
0.73102 AN ° >-h=0. 05
I \\\ on, 0 o->h=0.1
073100 s Toon o o->h=0. 02
I “
0.73098 |- NN °
‘ 012 ‘ ‘ 014 T oe o‘.s 1\10 X

Figure 4:Approzimate and exact solution for example 2 at b = 1,with different h

u[x,t]
0.50250
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Figure 5:Approzimate and ezact solution for example 2 at b = 0.01,with different h
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Figure 6:Approzimate and ezact solution for ezample 2 at b = 0.001,with different h

6. Conclusion

The basic goal of this work has been employed the non-polynomial tension spline as a
reasonable basis for studying the approzimate solutions for Burgers equations with nonlin-
ear damping term.Finite difference approzimation for time and tension spline for spatial
are used.Presented scheme are of order O(h2 + k*h? + h4) and under appropriate con-
dition the method convergence.The performance and accuracy of the method have been
examined by applying in 2 examples.
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