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A multi-item EPQ model with imperfect
production process for time varying demand with
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Abstract

In this paper, economic production quantity(EPQ)models for break-
able or deteriorating items are developed with time dependent linear
variable demands. Here rate of production and holding cost are time
dependent and unit production cost is a function of both production
reliability indicator and production rate. Set-up cost is also partially
production rate dependent. Here two models are developed in optimal
control framework considering the e�ect of time value of money and
in�ation. Shortages are allowed for both the models. The problems
are solved using Eulers-Lagrangian function based on variational
calculus and applying generalized reduced gradient method using
LINGO 13.0 software to determine the optimal reliability indicator (r)
and then corresponding production rates and total pro�ts. Numerical
experiments are performed for both the models to illustrate the models
both numerically and graphically.

Keywords: Optimal control, shortages, time dependent demand.

2000 AMS Classi�cation: 90B05,49J15

Received : 12.12.2014 Accepted : 04.06.2015 Doi : 10.15672/HJMS.20156911030

∗Department of Mathematics, National Institute of Technology, Agartala, Barjala, Jira-
nia,Tripura, India, Pin- 799046, Email: pinki.mjmdr@rediffmail.com
†Corresponding Author.
‡Department of Mathematics, National Institute of Technology, Agartala, Barjala, Jira-

nia,Tripura, India, Pin- 799046, Email: bera_uttam@yahoo.co.in
�Department of Applied Mathematics with oceanology and computer programming,

Vidyasagar University , Midnapur-721102, W. B. ,India, Email: mmaiti2005@yahoo.co.in



930

1. Introduction

In real life, we are accustomed with two categories of items mainly-damageable and
non-damageable items. Again damageable items can be divided into two sub-categories
namely-breakable item and deteriorating items. Deteriorating items deteriorate with
time like seasonal fruits, di�erent vegetable items etc. Since the items are deteriorated
with time ,as a result the holding cost of the items is increased. For example, the fruits
like grapes are available in the market from march to July in every year. Therefore the
business time of that type of fruit is �nite. Naturally, demand of the grapes increases
with time and it exist in the market for a short period of time i.e. the business time
horizon is �nite. Also, fruits like mango, apple,vegetable like ladies �nger, cabbage, beet
and carrot are available in the market for a �nite period and their demands increase
with time. Some research works already have been investigated so far by several re-
searchers on EOQ and EPQ/EMQ models with time dependent demand (cf. Dave and
Patel[15], Dutta and Pal[14],Cheng[9],Lee and Hsu[25],Sana[47],Sarkar et al.[48], Mai-
hami and Kamalabadi[32], Guchhait et al.[20]).

On the other hand, items made of glass, clay, ceramic, etc. belong to breakable
category. Mainly fashionable/decorating items are made of glass, ceramic, etc., and de-
mand of these types of items exists over �nite time only. As sale of these fashionable
products increases with the exhibition of stock, manufacturers of these items face a con-
�icting situation in their business. To stimulate the demand, they are tempted to go
for huge number of production to have a large display and in this process, invites more
damage to his units, as breakability increases with the increase of piled stock and the
duration of stress due to the stock. So, breakability depend on huge stock and duration
of accumulated stress due to stock. In the literature, there are only very few articles with
this type of items(cf. Maiti and Maiti[[35],[36],[37]], Mandal[[38],[39]],Lee[[26]]). Still
there is a scope to develop/modify some inventory models in this area considering time
dependent breakability specially in di�erent environments.

In real life, basically in metropolitan cities, holding cost increases with time due
to non availability of space, bank interest etc. Also set-up is cost partially dependent on
production rate. The researchers gave the less attention for research in this area. A no-
table remarks have been highlighted in inventory control problems with variable holding
cost (cf. Alfares[1], Urban[56]) and Set-up cost (cf. Matsuyama[31], Darwish[13]). As
per our knowledge, no one has formulated an inventory model for breakable/demegable
items with the assumption of variable set-up cost or time dependent holding cost.

In recent times, the economy of developing countries like India, Bangladesh,
Nepal, Bhutan, Pakistan etc. changes rigorously due to high in�ation. The e�ect of
in�ation and time value of money are also well established in inventory problems. Ini-
tially, Buzacott[4] used the in�ation subject to di�erent types of pricing policies. Then
consequently in the subsequent years, Mishra[33] , Padmanavan and Vrat[42] , Hariga
and Ben-daya[21] , Bierman and Thomas[6] , Chen[8] , Moon and Lee[34] , Dey et al.[16]
, Shah [50] etc. have worked in this area. Liao et al.[28] investigated the model of Ag-
garwal and Jaggi[2] with the assumption of in�ation and stock dependent demand rate.
Chen and Kang[7] presented integrated models with permissible delay in payments and
variant pricing energy.

In most of the previous production inventory models, the researchers considered
that all the produced items are of perfect quality. But, in real life, due to complex design
of mechinaries items, it is not possible to produce all the items of perfect quality and
is directly a�ected by the reliability of the production process.Recently some research
works have been done in an imperfect production process like as Bazan[5] , Paul[43],
Dey[17], Sarkar[[51],[52]], Mohammadia[40], Haidar[22] etc. In the literature there are
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few research publications in the two ware-house inventory model with defective items
like as Rad[45], Pal[44] etc . In the literature there are some notable works in the area
of rework of the imperfect product such as Cardenas-Barron [[10][11][12]], Taleizadeh
[[54],[55]], Sarkar[53], Wee[58] etc. In imperfect production-inventory models, reliability
of the production process is considered in di�erent ways. Firstly a fraction r of produced
units are considered as good product and remaining (1-r) defective units. Some authors
consider r as crisp (cf. Cheng[9], Maiti and Maiti[29]) and others consider r as uncertain
(cf. Yoo et al.[57],Liao and Sheu[28]) and they tried to determine optimal r so as to
optimize cost or pro�t.In reality if r is maximum, the manufactures are highly satis�ed.
Considering this fact some research works have been done in this area (cf. Sana[47] and
Sarkar et al.[48] ,Guchhait[20]) . In this research work, we consider this approach.

Nearly all inventory models are formulated with constant holding cost (cf. Sana[47],
Sarkar et al.[48], Maiti,[30]). In reality, due to rental charges, in�ation, preservation cost,
bank interest, etc., holding cost increases with time. Thus some factors contributing to
the holding cost change with time ( cf. Giri et al.[18]) . Also set-up cost depends on
production rate as high production rate require sophisticated modern mechanism. In this
paper set-up and holding costs are considered as functions of production rate and time
respectively.

Variational principle is a straightforward process for the analysis of optimal con-
trol problems. Few researchers have formulated the production- inventory models as
optimal control problems and solved using this method (cf. Sana[47],Sarkar et al.[48]
and Guchhait[20]). But all the researchers formulated their models with single item.To
the best of our knowledge, none has considered the multi-item with shortages via varia-
tional principle. The present problem has been solved under the assumption of multi-item
with shortages using variational principle.

Most of the EPQ models, unit production cost is taken as a constant. But in re-
ality production cost varies with production rate, raw material cost, labour charge, wear
and tear cost and reliability of the production process (cf. Khouja[24]). In this study,
unit production cost is dependent on production rate, reliability indicator, raw material,
labour charge and wear-and-tear costs.

Thus, major contributions of the present investigation is as follows:
• A notable remark has been put in the area of production-inventory research where
the models are developed with the assumption of in�nite time horizon (cf. Porteous[41],
Cheng[9],Maiti and Maiti[29], Yoo et al. [57]etc). According to their assumptions, de-
mand of an item remains unchanged for interminably. But, in real life, Gurnani[19]
pointed out that rapid development of technology leads to the change in product spec-
i�cation with latest feature which in turn, motivates the customers to go for buy new
products. For this reason, many researchers have investigated and analysised the inven-
tory models with �nite time horizon (cf. Khanra and Choudhuri[23], Maiti[30] etc). But
in the existing literature of inventory model with demagable/deteriorating items,they
overlooked this phenomenon (cf. Maiti and Maiti[29], Guchhait et al.[20]). For this
reason, here a �nite time horizon multi-item production manufacturing model of a dam-
ageable items with shortages has been formulated and solved.
• In this paper, due to this reasons mentioned above holding and set-up costs are con-
sidered as functions of time and production rate for both the item respectively.
• In imperfect production inventory control problem,reliability factors play an important
role in manufacturing process. But in the competitive market, due to existence in the
market, managers of the production �rms are highly satis�ed if r i.e. reliability (also
called process reliability)reaches its maximum levels and they can not allow the reliabil-
ity to fall below a minimum level. Following, this approach, recently some works have
been done by Sana[47],Sarker et al.[48], Sarkar[46] and Guchait et al.[20]. In the present
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investigation, the authors have considered this approach for both the items.
• But in the common business practices that customers are allured with displayed stock
and for that, demand is considered as stock-dependent. Some works have been done by
Levin et al.[27], Baker and Urban[3], Alfares[1], Stavrulaki[49], etc. In recent market
policy of the big departmental stores like Big Bazar, Metro Bazar, Bazar Kolkata, Wall
Mart, TESCO, Carrefour etc.,where the items are displayed in huge stock and for the
breakable items, huge stocks invites more breakability / damageability along with more
sales. Hence, a balanced is to be maintained between increased breakability and sale for
maximum pro�t. Till now, inventory practitioners have been paid a little attention in
this area of inventory problem with damageable items (cf. Maiti and Maiti[29]). In this
present investigation, optimum reliability indicator and the inventory level of breakable
items made a balance between the process reliability and increased sale so as to maximize
the pro�t.
• Due to simplicity and e�ectiveness of the variational principle as mentioned above ,
the present models are solved using Variational principle method by considering the aug-
mented pro�t function.
• Thus, here an attempt has made to formulate and solve multi-item EPQ models in-
corporating all the features. As per the above arguments,in this present investigation,
unit production cost taken depends on production rate, reliability indicator, raw material
cost, etc.
•Till now, none has considered all the above features into account in a single model.

In this paper, a multi-item production-inventory model with imperfect produc-
tion process is formulated for a breakable or deteriorating items over a �nite time horizon.
Here we formulate two models with shortages. First model is for two items with short-
ages and the second model is for single item with shortages. The unit production cost is
a function of production rate, raw material cost, labour charge, wear and tear cost and
product reliability indicator. The �rst model is formulated as optimal control problems
for the maximization of total pro�ts over the planning horizon with budget constraint
and optimum pro�t with pro�ts along with optimum reliability indicator(r) are obtained
using Euler-Lagrange equation based on variational principle. The second model is of
single item also solved under the same assumptions and technique. Both problems have
been solved using a non-linear optimization technique -GRG (LINGO-13.0) and illus-
trated with some numerical data. Several particular cases are derived and the results are
presented in both tabular and graphical forms. Finally, some sensitivity analyses can be
made with respect to di�erent parameters.

The rest of the research paper is structured as follows. Some notations and as-
sumptions are given by section 2. Section 3 is followed by the mathematical development
and description of the proposed model with shortages through optimal control framework.
Here three lemmas are proposed and proved. Also, the mathematical development and
description of the model with single item are proposed in section 4. Section 5 proposed
the solution procedure. Section 6 represents the numerical data and results of di�erent
models and pictographic representation of the e�ect of di�erent parameters. Discussion
and managerial insights are discussed in section 7. After that a summarization of this
study is included in section 8 by naming it as conclusion and future research work. At
last, the list references that are used to make this study possible.

2. Notations and assumptions for the proposed model

2.1. Notations:

(i) q1(t) and q2(t) be the inventory at any time t of item-1 and -2 respectively.
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(ii) q̇1(t) and q̇2(t) are the derivative of q1(t) and q2(t) with respect to time t respec-
tively.

(iii) B1(q1, t) and B2(q2, t) be the breakability or damageability function of item-1
and item- 2 respectively.

(iv) P1(t) and P2(t) are the production rate of item-1 and item-2 respectively at any
time t.

(v) r1 and r2 are the production reliability indicator for item-1 and item-2 respec-
tively,
0 ≤ r1, r2 ≤ 1.

(vi) r1min, r2min. and r1max, r2max are the minimum and maximum value of r1 and
r2 respectively,
0 ≤ r1min, r2min ≤ 1,0 ≤ r1max, r2max ≤ 1.

(vii) λ1 and λ2 are the variation constant of tool or die costs for item-1 and-2
respectively,λ1 > 0 , λ2 > 0.

(viii) χ(r1) and χ(r2) are the development cost of item-1 and-2 respectively.
(ix) Cp1 and Cp2 are the unit production cost of item-1 and item-2 respectively.
(x) Cd1 and Cd2 are the rework cost per defective item-1 and item-2 respectively.
(xi) Ch1(t) and Ch2(t) are the unit holding cost of item-1 and item-2 respectively.
(xii) C3 and C4 are the setup cost of item-1 and item-2 respectively.
(xiii) Sp1 and Sp2 is the unit selling price for the item-1 and item-2 respectively,Sp1 >

Cp1 ,Sp2 > Cp2 .
(xiv) Sh1 and Sh2 is the unit shortages cost for the item-1 and item-2 respectively.

2.2. Assumptions:

(i) The imperfect production-inventory system involves single and multi-item and
which are to be sold .

(ii) The planning horizon for both the models are limited i.e. T is �nite.
(iii) Here, it is assume that the inventory levels at t = 0 is −S1 for item-1 and −S2

for item-2 and both the inventory reaches to 0 at t = T .
(iv) In the show-rooms, the items made of China-clay, mud, glass,ceramic, etc., are

kept in a heaped stocks. Due to this reason, the items at the bottom are under
stress due to weight and for a long time, items are get damaged and break.
Therefore, the breakability or damageability rate depends upon the stock of item
and as well as how many times is under stress. Therefore the breakability rate of
item-1 can be expressed as a function of stock levels and time and is of the form:
B1(q1, t) = b10q1 + b11t for q1 > 0 where b10 and b11 are the parameters can be
chosen for best �t for the reliability function. Similarly, B2(q2, t) = b20q2 + b21t
for q2 > 0 where b20 and b21 are the parameters can be chosen for best �t for
the reliability function.

(v) For the seasonal fruits like mango, apple etc., theirs demand is increases with
time though their business period is limited and �nite. Here demand rate is
linear time-dependent for both the item.

(vi) Production rate for both items increases with time.
(vii) r1 and r2 indicates the defective rate of the production. Therefore, r1P1(t),

r2P2(t) are the rate of producing defective item-1 and -2 respectively.
(viii) λ1 and λ2 are the variation constant of tool or die costs for item-1 and-2 respec-

tively.
(ix) χ(r1) and χ(r2) depends upon the production reliability indicator, r1 and r2

respectively and are represented as χ(r1) = N1 + N2e
CA(r1max−r1)/(r1−r1min)

and χ(r2) = N3 +N4
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eCA(r2max−r2)/(r2−r2min) where N1 and N3 are the �xed cost like labour, en-
ergy, etc., and is independent of r1 and r2. N2 and N4 are the cost of modern
technology, resource and design complexity for production when r1 = r1max,
r2 = r2max,. Also, CA represents the di�culties in increasing reliability, which
depends on the design complexity, technology and resource limitations, etc for
both the items.

(x) Unit production cost,Cp1 and Cp2 are the function of production rate P1(t),P2(t)
respectively and production reliability and can be expressed in the form

Cp1(r1, t) = Cr1+
χ(r1)
P1(t)

+λ1P1(t) for item-1 and Cp2(r2, t) = Cr2+
χ(r2)
P2(t)

+λ2P2(t)

for item-2, where Cr1 and Cr2 are the �xed material cost for item-1 and 2
respectively. Second term is the development cost which is equally distributed
over the production P1(t),P2(t) at any time t. Also, the third term λ1P1(t)
and λ2P2(t) are the tool/ die cost which is proportional to the production rate
respectively for both the item.

(xi) Now-a-days, due to in�ation, bank interest, hiring charge, etc., holding cost
increases with time. For this reason the holding cost changes with time and
other factors remain constant. Hence the holding cost Ch1(t) and Ch2(t) can
be expressed as Ch1(t) = C10 + C11t and Ch2(t) = C20 + C21t respectively for
item-1 and item-2, where C10, C11, C20 and C21 are constants.

(xii) Set-up cost, C3 and C4, are normally constant with time for both the items. But,
, if dynamic production rate is considered, some machineries, etc., are to be set-
up and maintained in such a way that the production system can stand with the
pressure of increasing demand. Thus, a part of C3,C4 are linearly proportional
to production rate and hence C3, C4 are of the form: C3(P1(t)) = C30+C31P1(t)
and C4(P2(t)) = C40 +C41P2(t), where C30, C31, C40 andC41 are the constants.

(xiii) In the developing countries, in�ation is predominant and interest rate depends
on the in�ation value. Thus µ = R − i, where R and i are the interest and
in�ation per unit currency, respectively,µ > 0.

(xiv) All inventory costs are positive.

3. Mathematical formulation of the proposed multi-item model:

3.1. Model-1: Model with stock and time dependent breakable items: In real
life, a production company not only produce one item but produce di�erent types of
item i.e. multi-item. Due to continuous long operation of machinery units and over duty
of the workers , the production �rm produces good quality item as well as imperfect
quality items.These defective or imperfect quality items are instantly reworked at a per
unit cost to make the product as new as perfect one to maintain the brand image of the
manufacturer. The production of the defective items increases with time and reliability
parameter of the produced item. The parameters r1 and r2 are the reliability indicator
of the item-1 and -2 respectively. The production system became more stable and reliable
, if r1 and r2 decreases i.e. smaller value of r1 and r2 provides the better quality product
and produced smaller imperfect quality unites.
The inventory levels decreases due to demand and breakability/deterioration. Thus, the
rate of change of inventory level at any time t for the item -1 can be represented by the
following di�erential equation:

dq1(t)

dt
= P1 −D1 −B1(q1 , t)

i.e P1(t) = q̇1 +D1 +B1(q1 , t),with q1(0) = −S1 and q1(T ) = 0 ,(3.1)

where D1 ≡ D1(t)
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Thus, the rate of change of inventory level at any time t for the item -2 can be represented
by the following di�erential equation:

dq2(t)

dt
= P2 −D2 −B2(q2 , t)

i.e. P2(t) = q̇2 +D2 +B2(q2, t)with q2(0) = −S2 and q2(T ) = 0,(3.2)

whereD2 ≡ D2(t)

where D1 and D2 are the demand function of time t and is of the form D1(t) = a1 + b1t
and D2(t) = a2 + b2t for item-1 & 2 respectively.
The end condition q1(0) = −S1, q2(0) = −S2 and q1(T ) = 0 and q2(T ) = 0 indicate
that at time t = 0 the maximum shortages is −S1 for item-1 and −S2 for item-2 i.e.
the inventory starts with shortages at time t = 0. As P1 and D1 are the function of
time t and combined e�ect of theses two the shortages reaches to zero and the inventory
build-up as P1(t) > D1 + B1(q1 , t) in the �rst part of the cycle. After some time, as
demand is a function of time t, D1 is more than the combined e�ect of D1 + B1(q1 , t)
i.e. the accumulated stock decreases as P1(t) < D1 + B1(q1, t) and ultimately the stock
reaches to zero. Similar process is also followed for the item-2.
Since the production �rm manufacturers two di�erent types of items, then a budget
constraint is imposed for procurement of the raw materials cost. Here Cr1 and Cr2 are
the �xed material cost for item-1 and -2 respectively and ifM be the maximum available
budget for both the items, then the budget constraint can be expressed as

Cr1q1 + Cr2q2 ≤M(3.3)

The corresponding pro�t function for both the items, incorporation the in�ation and
time value of money during the time duration [0, T ] is given by

Zp =

∫ T

0

{
e−µt

[
Sp1D1 − Cp1(r1, t)P1(t)− Cd1r1P1(t)− Ch1(t)q1 −

C3(P1(t))

T
−

Sh1S1

]
+ e−µt

[
Sp2D2 − Cp2(r2, t)P2(t)− Cd2r2P2(t)− Ch2(t)q2 −

C4(P2(t))

T
−

Sh2S2

]}
dt

=

∫ T

0

e−µt
[
Sp1D1 + Sp2D2 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− (Cr2 + Cd2r2)

(q̇2 +D2 +B2)− χ(r1)− χ(r2)− λ1(q̇1 +D1 +B1)
2 − λ2(q̇2 +D2 +B2)

2

−(C10 + C11t)q1 − (C20 + C21t)q2

−{C30 + C31(q̇1 +D1 +B1])}/T − {C40 + C41(q̇2 +D2 +B2)}/T − Sh1S1 − Sh2S2

]
dt

=

∫ T

0

f(q1 , q2 , q̇1 , q̇2 , t)dt

where f(q1 , q2 , q̇1 , q̇2 , t) = e−µt
[
Sp1D1 + Sp2D2 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)

−(Cr2 + Cd2r2)(q̇2 +D2 +B2)− χ(r1)− χ(r2)− λ1(q̇1 +D1 +B1)
2 − λ2(q̇2 +D2 +B2)

2
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−(C10 + C11t)q1 − (C20 + C21t)q2 − {C30 + C31(q̇1 +D1 +B1])}/T − {C40 + C41

(q̇2 +D2 +B2)}/T − Sh1S1 − Sh2S2

]
(3.4)

Now our problem is to �nd the path of q1(t), q2(t) , P1(t) and P2(t) such that Zp is
maximum with respect to the budget constraint. Since the problem is involved with a
constraint, then to �nd the optimal solution of the optimal control problem, we construct
the augmented pro�t functional as

ZT =

∫ T

0

[
f(q1 , q2 , q̇1 , q̇2 , t) + λe−µt(Cr1q1 + Cr2q2 −M)

]
dt(3.5)

where,F (q1 , q2 , q̇1 , q̇2 , t) = f(q1 , q2 , q̇1 , q̇2 , t) + λe−µt(Cr1q1 + Cr2q2 −M) and λ is the
Lagrange multiplier having any real value.

3.1. Lemma. ZT has a maximum value for a path q1 = q1(t) and q2 = q2(t)in the
interval [0, T ]

Proof. Proof of the Lemma 3.1 . we consider a path(curve)q1 = q1(t) and q2 = q2(t)
such that the functional ZT is maximum in that path in the interval [0, T ] i.e. t = 0
and t = T . Let us consider a path q0 which is given by the path q = q0 for which ZT
has a maximum value.We consider a class of neighboring curves pρ which is given by
q1 = q1ρ(t) = q0(t) + ρ1η1(t) and q2 = q2ρ(t) = q0(t) + ρ2η2(t), where ρ1 and ρ2 is a very
small constant and η1(t) and η2(t) (> 0, for all values of t) is any two di�erential functions

of t.Therefore, the value of ZT for the path pρ is given by the relation ZT (ρ) =
∫ T
0
Fρ1ρ2

dt, where Fρ1ρ2 = F (q0(t) + ρ1η1(t), q̇0(t) + ρ1η̇1(t), q0(t) + ρ2η2(t), q̇0(t) + ρ2η̇2(t), t)
For maximum value of ZT , we must have

∂
∂ρ1

(ZT (ρ1, ρ2)) |ρ1=0= 0

and ∂
∂ρ2

(ZT (ρ1, ρ2)) |ρ2=0= 0 and

[
∂2ZT

∂ρ21

∂2ZT

∂ρ22
− ∂2ZT
∂ρ1∂ρ2

]
> 0 and ∂2

∂ρ21
(ZT (ρ1, ρ2)) < 0

Now,

∂

∂ρ1
(ZT (ρ1, ρ2)) =

∫ T

0

{
η1(t)

∂Fρ
∂q1

+ η̇1(t)
∂Fρ
∂q̇1

}
dt

=

∫ T

0

[
η1(t)

∂Fρ
∂q1

]
dt+

[
η1(t)

∂Fρ
∂q̇1

]T
0
−
∫ T

0

η1(t)
d

dt

(∂Fρ
∂q̇1

)
dt

=

∫ T

0

η1(t)
{∂Fρ
∂q1
− d

dt

(∂Fρ
∂q̇1

)}
dt

As q1(t) is �xed at the end points t = 0 and t = T , so, η1(0) = η1(T ) = 0. Therefore,
d
dρ1

(ZT (ρ1, ρ2)) |ρ1=0= 0 gives

∂Fρ
∂q1
− d

dt
(
∂Fρ
∂q̇1

) = 0(3.6)

Similarly,

∂

∂ρ2
(ZT (ρ1, ρ2)) =

∫ T

0

{
η2(t)

∂Fρ
∂q2

+ η̇2(t)
∂Fρ
∂q̇2

}
dt

=

∫ T

0

[
η2(t)

∂Fρ
∂q2

]
dt+

[
η2(t)

∂Fρ
∂q̇2

]T
0
−
∫ T

0

η2(t)
d

dt

(∂Fρ
∂q̇2

)
dt

=

∫ T

0

η2(t)
{∂Fρ
∂q2
− d

dt

(∂Fρ
∂q̇2

)}
dt(3.7)
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As q2(t) is �xed at the end points t = 0 and t = T , so, η2(0) = η2(T ) = 0. Therefore,
∂
∂ρ2

(ZT (ρ1, ρ2)) |ρ2=0= 0 gives

∂Fρ
∂q2
− d

dt
(
∂Fρ
∂q̇2

) = 0(3.8)

Equations (3.6) and (3.8) are the necessary conditions for extreme value of PT .

Again, to �nd the maximum value of ZT we must have,

[
∂2ZT

∂ρ21

∂2ZT

∂ρ22
− ∂2ZT
∂ρ1∂ρ2

]
> 0 and

∂2ZT

∂ρ21
< 0

Now,

∂2ZT
∂ρ21

=

∫ T

0

{
η21
∂2Zp
∂q2

1

+ 2η1η̇1
∂2Zp
∂q1∂q̇1

+ η̇1
2 ∂

2Zp

∂q̇1
2

)
dt

= −2λ1e
−µt
{
η21b

2
10 + 2η1η̇1b10 + η̇1

2
}
< 0 as 2λ1e

−µt > 0

Similarly,

∂2ZT
∂ρ22

=

∫ T

0

{
η22
∂2Zp
∂q2

2

+ 2η2η̇2
∂2Zp
∂q2∂q̇2

+ η̇2
2 ∂

2Zp

∂q̇2
2

)
dt

= −2λ2e
−µt
{
η22b

2
20 + 2η2η̇2b20 + η̇2

2
}
< 0 as 2λ2e

−µt > 0

Finally,
∂2ZT
∂ρ1∂ρ2

= 0

Therefore, [
∂2ZT
∂ρ21

∂2ZT
∂ρ22

− ∂2ZT
∂ρ1∂ρ2

]
= 2λ1e

−µt
{
η21b

2
10 + 2η1η̇1b10 +

η̇1
2
}
2λ2e

−µt
{
η22b

2
20 + 2η2η̇2b20 + η̇2

2
}
> 0

and
∂2ZT
∂ρ21

= −λ1e
−µt
{
η21b

2
10 + 2η1η̇1b10 + η̇1

2
}
< 0 as λ1e

−µt > 0

Hence the su�cient condition,

[
∂2ZT

∂ρ21

∂2ZT

∂ρ22
− ∂2ZT
∂ρ1∂ρ2

]
> 0 and ∂2ZT

∂ρ21
< 0 shows that ZT

has a maximum in [0, T ]. �

3.2. Lemma.
∂ZT (r1, r2)

∂r1
= 0 must have at least one solution in [r1min, r1max], if

∂ZT (r1, r2)

∂r1
< 0, provided

∂ZT (r1, r2)

∂r1
→∝ at r1 = r1min for all r2, otherwise

∂ZT (r1, r2)

∂r1
= 0 may have or may not have a solution in [r1min, r1max]. The solution

gives a maximum value of ZT , if
∂2ZT
∂r21

< 0 and
∂2ZT
∂r21

∂2ZT
∂r22

−
( ∂2ZT
∂r1∂r2

)2
> 0 in the

rectangle [r1min, r1max : r2min, r2max]

Proof. Proof of the Lemma 3.2 .For maximization of the associate pro�t for both the
items, ZT (r1, r2), di�erentiating ZT (r1, r2) with respect to r1, we have

∂ZT
∂r1

= N2e
CA(r1max−r1)/(r1−r1min)CA

r1min − r1max
(r1 − r1min)2

e−µT − 1

µ
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As r1 → r1min, then
∂ZT
∂r1

→∝
Again,

∂2ZT
∂r21

=
N2CAe

−µT−1

µ

[
eCA(r1max−r1)/(r1−r1min) r1min − r1max

(r1 − r1min)4
+ eCA(r1max−r1)/(r1−r1min)

r1min − r1max
(r1 − r1min)3

]
As r1 → r1min then

∂ZT
∂r1

→∝, therefore ∂ZT
∂r1

has at least one solution if
∂ZT
∂r1

→∝

holds; otherwise
∂ZT (r1, r2)

∂r1
= 0 may have or may not have a solution in [r1min, r1max].

If
∂ZT
∂r1

|r1=r∗1= 0 for r∗1 ∈ [r1min, r1max] and
∂2ZT
∂r21

< 0 and
∂2ZT
∂r21

∂2ZT
∂r22

−( ∂
2ZT

∂r1∂r2
)2 > 0,

then PT (r
∗
1) is maximum.

Similarly,Lemma 3.3 can be written as, �

3.3. Lemma.
∂ZT (r1, r2)

∂r2
= 0 must have at least one solution in [r2min, r2max], if

∂ZT (r1, r2)

∂r2
< 0, provided

∂ZT (r1, r2)

∂r2
→∝ at r2 = r2min for all r1 otherwise

∂ZT (r1, r2)

∂r2
=

0 may have or may not have a solution in [r2min, r2max]. The solution gives a max-

imum value of ZT , if
∂2ZT
∂r22

< 0 and
∂2ZT
∂r21

∂2ZT
∂r22

− (
∂2ZT
∂r1∂r2

)2 > 0 in the rectangle

[r1min, r1max : r2min, r2max]

Proof. Proof of the Lemma 3.3.we can proof the Lemma 3.3 following the same of Lemma
3.2. �

Now, for �nd the optimal path, we have from the Euler-Lagranges equation for the
maximum value of F (q1 , q2 , q̇1 , q̇2 , t) is

∂F

∂q1
− d

dt
(
∂F

∂q̇1
) = 0(3.9)

∂F

∂q2
− d

dt
(
∂F

∂q̇2
) = 0(3.10)

Firstly, we consider the �rst Euler-Lagrangian equation (3.9) and the boundary condition
(3.1), we have

q̈1 − µq̇1 − (b10 + µ)b10q1 = H1(t)(3.11)

where

H1(t) = (µ+ b10)D1 − b1 − b11(b10t− 1 + µt)

+
(Cr1 + r1Cd1 + C31/T )(µ+ b10) + (C10 + C11)t

2λ1
− λ

2λ1
Cr1

= K1 +K2t+K
′
1

where K1 = a1(µ+ b10)− b1 − b11 +
(Cr1 + r1Cd1 + C31/T )(µ+ b10) + C10

2λ1

K2 =
[
b1(µ+ b10) + b11(b10 + µ) +

C11

2λ1
],K

′
1 = − λ

2λ1
Cr1(3.12)
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The complementary function of the Eq. (3.11) is C1e
(b10+µ)t+C2e

−b10t, where C1 and C2

are arbitrary constants and the particular integral is given by the 1
D2−µD−(µ+b10)b10

{
K1+

K2t+K
′
1

}
. Here D(≡ d

dt
) represents the di�erential operator. Therefore, the complete

solution of the Eq.(3.11) can be represented as

q1(t) = C1e
(b10+µ)t + C2e

−b10t − 1

K2
3

[
K1K3 +K2

(
K3t− µ

)]
− K

′
1

K3
(3.13)

P1(t) = K4e
(b10+µ)t +K5t+K6 +K7,(3.14)

where,K4 = C1(2b10 + µ),K3 = b10(b10 + µ),K5 = (b1 + b11 −
b10K2

K3
),K6 = −K

′
1

K3
b10

K7 =
1

K2
3

[
a1K

2
3 −K2K3 − b10(K1K3 −K2µ),

]

C2 =
1

[e(b10+µ)T − e−b10T ]
(
1

K2
3

[(K1K3 −K2µ)e
(b10+µ)T − (K1K3 +K2(K3T − µ))]

−K
′
1

K3
(e(b10+µ)T − 1)− S1e

(b10+µ)T )

C1 = −S1 − C2 +
1

K2
3

(K1K3 −K2µ) +
K
′
1

K3

Substituting the value of q1(t) and P1(t) in the expression of (3.4), the corresponding
pro�t function for the item-1 can be expressed as

Zp1 =

∫ T

0

e−µt
[
Sp1D1 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− χ(r1)− λ1(q̇1 +D1 +B1)

2

−(C10 + C11t)q1 − {C30 + C31(q̇1 +D1 +B1)}/T − Sh1S1

]
dt

= Sp1
[
− a1

(e−µT − 1)

µ
− b1

(e−µT − 1 + µTe−µT )

µ2

]
− (Cr1 + r1Cd1)

[K4(e
b10T − 1)

b10

+ K5

(−Te−µT
µ

− e−µT

µ2
+

1

µ2
) +

K6

µ
(1− e−µT ) + K7

µ
(1− e−µT )

]
+
[
N1 +N2

eCA(r1max−r1)/(r1−r1min)](e−µT − 1

µ
) + λ1

[
(K4e

(b10+µ)T +K5T +K6 +K7)
2 e

−µT

µ

− (K4 +K6 +K7)
2

µ
+

2

µ2

(K2
4 (b10 + µ)

(2b10 + µ)
(e(2b10+µ)T − 1) +

K4K5

b10
(eb10T − 1) +

K4K5(b10 + µ)

b10
{Te

b10T

b10
− eb10T

b210
+

1

b210
}+ (K7 +K6)K4(b10 + µ)

b10
(eb10T − 1)

− K2
5 (
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K6 +K7)K5

µ
(1− e−µT ))]− C10

[C1

b10
(eb10T − 1)

− C2

(b10 + µ)
(e−(b10+µ)T − 1) +

K
′
1

K3µ
(e−µT − 1) +

1

K2
3

(K1K3 +K2(K3T − µ))
e−µT

µ

+
K2

K3µ2
(e−µT − 1)− 1

K2
3µ

(K1K3 −K2µ)
]
− C11

[
C1(

Teb10T

b10
− eb10T

b210
+

1

b210
)+
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C2(
−Te−(b10+µ)T

(b10 + µ)
− e−(b10+µ)T

(b10 + µ)2
+

1

(b10 + µ)2
)− K1

K3
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)

− K2µ

K2
3

(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

K2

K3
(
−T 2e−µT

µ
− 2Te−µT

µ2
− 2

µ3
e−µT +

2

µ3
)

− K
′
1

K3
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)
]
− 1

T
[
C30

µ
(1− e−µT ) + C31(

K4

b10
(eb10T − 1)

+ K5(−
Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K6 +K7)

µ
(1− e−µT ))]− Sh1S1(

1− e−µT

µ
)(3.15)

From the second Euler-Lagranges Equation and using the boundary condition, we have

q̈2 − µq̇2 − (b20 + µ)b20q2 = H2(t)(3.16)

where

H2(t) = (µ+ b20)D2 − b2 − b21(b20t− 1 + µt)

+
(Cr2 + r2Cd2 + C41/T )(µ+ b20) + (C20 + C21)t

2λ2
− λ

2λ2
Cr2

= K11 +K22t+K
′
11

where,K11 = a2(µ+ b20)− b2 − b21 +
(Cr2 + r2Cd2 + C41/T )(µ+ b20) + C20

2λ2

K22 =
[
b2(µ+ b20) + b21(b20 + µ) +

C21

2λ2
, K

′
11 = − λ

2λ2
Cr2

andK33 = b20(b20 + µ)

The complementary function of the Eq. (3.16) is C3e
(b20+µ)t + C4e

−b20t, where C3 and
C4 are arbitrary constants and the particular integral is given by the

1
D2−µD−(µ+b20)b20

{
K11+K22t+K

′
11

}
. HereD(≡ d

dt
) represents the di�erential operator.

Therefore, the complete solution of the Eq.(16) can be represented as

q2(t) = C3e
(b20+µ)t + C4e

−b20t − 1

K2
33

[
K11K33 +K22

(
K33t− µ

)]
(3.17)

−K
′
11

K33

and P2(t) = K8e
(b20+µ)t +K9t+K10 +K12,(3.18)

where, K8 = C3(2b20 + µ),K9 = (b2 + b21 − b20
K22

K33
),K10 = −K

′
11b20
K33

,

K12 =
1

K2
33

[a2K33
2 −K22K33 − b20(K11K33 −K22µ)]

C4 =
1

[e(b20+µ)T − e−b20T ]
(

1

K2
33

[(K11K33 −K22µ)e
(b20+µ)T − (K11K33 +K22(K33T − µ))]

−K
′
11

K33
(e(b20+µ)T − 1)− S2e

(b20+µ)T )

C3 = −S2 − C4 +
1

K2
33

(K11K33 −K22µ) +
K
′
11

K33

Substituting the value of q2(t) and P2(t) in the expression of (3.4), the corresponding
pro�t function for the item-2 can be expressed as
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Zp2 =

∫ T

0

e−µt
[
Sp2D2 − (Cr2 + Cd2r2)(q̇2 +D2 +B2)− χ(r2)− λ2(q̇2 +D2 +B2)

2

− (C20 + C21t)q2 − {C40 + C41(q̇2 +D2 +B2])}/T − Sh2S2

]
dt

= Sp2
[
− a2

(e−µT − 1)

µ
− b2

(e−µT − 1 + µTe−µT )

µ2

]
− (Cr2 + r2Cd2)

[K8(e
b20T − 1)

b20

+ K9

(−Te−µT
µ

− e−µT

µ2
+

1

µ2
) +

K10

µ
(1− e−µT ) + K12

µ
(1− e−µT )

]
+
[
N3

+ N4e
CA(r2max−r2)/(r2−r2min)]e−µT − 1

µ
+ λ1

[
(K8e

(b20+µ)T +K10T +K10 +K12)
2

e−µT

µ
− (K8 +K10 +K12)

2

µ
+

2

µ2

(K2
8 (b20 + µ)

(2b20 + µ)
(e(2b20+µ)T − 1) +

K8K9

b20
(eb20T

− 1) +
K8K9(b20 + µ)

b20
{Te

b20T

b20
− eb20T

b220
+

1

b220
}+ (K12 +K10)K8(b20 + µ)

b20
(eb20T −

1)−K2
9 (
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K10 +K12)K9

µ
(1− e−µT ))]− C20

[C3

b20
(eb20T

− 1)− C4

(b20 + µ)
(e−(b20+µ)T − 1) +

K
′
11

K33µ
(e−µT − 1) +

1

K2
33

(K11K33 +K22(K33T

−µ))e
−µT

µ
+

K22

K33µ2
(e−µT − 1)− 1

K2
33µ

(K11K33 −K22µ)
]
− C21

[
C3(

Teb20T

b20
−

eb20T

b220
+

1

b220
) + C4(

−Te−(b20+µ)T

(b20 + µ)
− e−(b20+µ)T

(b20 + µ)2
+

1

(b20 + µ)2
)− K11

K33
(
−Te−µT

µ

− e−µT

µ2
+

1

µ2
)− K22µ

K2
33

(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

K22

K33
(
−T 2e−µT

µ
− 2Te−µT

µ2
− 2

µ3

e−µT +
2

µ3
)− K

′
11

K33
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)
]
− 1

T
[
C40

µ
(1− e−µT ) + C41(

K8

b20
(eb20T−

1) +K9(−
Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K10 +K12)

µ
(1− e−µT ))]− Sh2S2(

1− e−µT

µ
)(3.19)

Therefore total pro�t for item-1 and -2 can be expressed as Zp = Zp1 + Zp2 , where Zp1
and Zp2 are given by (3.15)&(3.19) respectively, Therefore,

Zp =

∫ T

0

e−µt
[
Sp1D1 + Sp2D2 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− (Cr2 + Cd2r2)(q̇2 +D2

+B2)− χ(r1)− χ(r2)− λ1(q̇1 +D1 +B1)
2 − λ2(q̇2 +D2 +B2)

2 − (C10 + C11t)q1 − (C20

+C21t)q2 − {C30 + C31(q̇1 +D1 +B1)}/T − {C40 + C41(q̇2 +D2 +B2)}/T − Sh1S1

−Sh2S2 + λ(Cr1q1 + Cr2q2 −M)

]
dt
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= Sp1
[
− a1

(e−µT − 1)

µ
− b1

(e−µT − 1 + µTe−µT )

µ2

]
− (Cr1 + r1Cd1)

[K4(e
b10T − 1)

b10

+ K5

(−Te−µT
µ

− e−µT

µ2
+

1

µ2
) +

K6

µ
(1− e−µT ) + K7

µ
(1− e−µT )

]
+
[
N1 +N2

eCA(r1max−r1)/(r1−r1min)](e−µT − 1

µ
) + λ1

[
(K4e

(b10+µ)T +K5T +K6 +K7)
2 e

−µT

µ

− (K4 +K6 +K7)
2

µ
+

2

µ2

(K2
4 (b10 + µ)

(2b10 + µ)
(e(2b10+µ)T − 1) +

K4K5

b10
(eb10T − 1)

+
K4K5(b10 + µ)

b10
{Te

b10T

b10
− eb10T

b210
+

1

b210
}+ (K7 +K6)K4(b10 + µ)

b10
(eb10T − 1)

− K2
5 (
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K6 +K7)K5

µ
(1− e−µT ))]− C10

[C1

b10
(eb10T − 1)−

C2

(b10 + µ)
(e−(b10+µ)T − 1) +

K
′
1

K3µ
(e−µT − 1) +

1

K2
3

(K1K3 +K2(K3T − µ))
e−µT

µ

+
K2

K3µ2
(e−µT − 1)− 1

K2
3µ

(K1K3 −K2µ)
]
− C11

[
C1(

Teb10T

b10
− eb10T

b210
+

1

b210
)

+ C2(
−Te−(b10+µ)T

(b10 + µ)
− e−(b10+µ)T

(b10 + µ)2
+

1

(b10 + µ)2
)− K1

K3
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)

− K2µ

K2
3

(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

K2

K3
(
−T 2e−µT

µ
− 2Te−µT

µ2
− 2

µ3
e−µT +

2

µ3
)−

K
′
1

K3
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)
]
− 1

T
[
C30

µ
(1− e−µT ) + C31(

K4

b10
(eb10T − 1) +

K5(−
Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K6 +K7)

µ
(1− e−µT ))]− Sh1S1(

1− e−µT

µ
)

+ Sp2
[
− a2

(e−µT − 1)

µ
− b2

(e−µT − 1 + µTe−µT )

µ2

]
− (Cr2 + r2Cd2)

[K8(e
b20T − 1)

b20

+ K9

(−Te−µT
µ

− e−µT

µ2
+

1

µ2
) +

K10

µ
(1− e−µT ) + K12

µ
(1− e−µT )

]
+
[
N3 +N4

eCA(r2max−r2)/(r2−r2min)]e−µT − 1

µ
+ λ2

[
(K8e

(b20+µ)T +K10T +K10 +K12)
2

e−µT

µ
− (K8 +K10 +K12)

2

µ
+

2

µ2

(K2
8 (b20 + µ)

(2b20 + µ)
(e(2b20+µ)T − 1) +

K8K9

b20

(eb20T − 1) +
K8K9(b20 + µ)

b20
{Te

b20T

b20
− eb20T

b220
+

1

b220
}+ (K12 +K10)K8(b20 + µ)

b20
−

(eb20T − 1)K2
9 (
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K10 +K12)K9

µ
(1− e−µT ))]− C20

[C3

b20

(eb20T − 1)− C4

(b20 + µ)
(e−(b20+µ)T − 1) +

K
′
11

K33µ
(e−µT − 1) +

1

K2
33

(K11K33 +K22

(K33T − µ))
e−µT

µ
+

K22

K33µ2
(e−µT − 1)− 1

K2
33µ

(K11K33 −K22µ)
]
− C21

[
C3(

Teb20T

b20

− eb20T

b220
+

1

b220
)
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+ C4(
−Te−(b20+µ)T

(b20 + µ)
− e−(b20+µ)T

(b20 + µ)2
+

1

(b20 + µ)2
)− K11

K33
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)

− K22µ

K2
33

(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

K22

K33
(
−T 2e−µT

µ
− 2Te−µT

µ2
− 2

µ3
e−µT +

2

µ3
)−

K
′
11

K33
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)
]
− 1

T
[
C40

µ
(1− e−µT ) + C41(

K8

b20
(eb20T − 1)

+ K9(−
Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K10 +K12)

µ
(1− e−µT ))]− Sh2S2

1− e−µT

µ
+ λ[

Cr1

{C1

b10
(eb10T − 1)− C2

(b10 + µ)
(e−(b10+µ)T − 1) +

1

K2
3µ

(K1K3 +K2(K3T − µ))

e−µT +
K2

K3µ2
(e−µT − 1)− 1

K2
3µ

(K1K3 −K2µ) +
K
′
1

K3µ
(e−µT − 1)

}
+ Cr2

{C3

b20

(eb20T − 1)− C4

(b20 + µ)
(e−(b20+µ)T − 1) +

1

K2
33µ

(K11K33 +K22(K33T − µ))e−µT

+
K22

K33µ2
(e−µT − 1)− 1

K2
33µ

(K11K33 −K22µ) +
K
′
11

K33µ
(e−µT − 1)

}
+

M

µ
(e−µT − 1)

]
(3.20)

3.2. Model-1a: Model with two stock-dependent breakable items. In the above
Model-1, if we take the the parametric values of breakability/deterioration which are di-
rectly related to the time equal to zero i.e. b11 = 0 and b21 = 0 , then we get another
Model-1a. Therefore, the Model-1 reduces to a production-inventory model for deterio-
rating items with stock dependent breakability/deterioration. So, the total pro�t can be
obtain by optimizing the Eq. (3.20) with b11 = 0 and b21 = 0

3.3. Model-1b: Model with two items without breakability. In the above Model-
1, if we take the parametric value of deterioration which is directly related to stock and
time is equal to zero i.e. b10 = 0, b11 = 0,b20 = 0, b21 = 0, then we get a another
Model-1b. Therefore, the Model-1 reduces to a production-inventory model with out
deteriorating item. As b10,b11, b20,b21 appears in the denominator of the expression of
(3.20) So, the total pro�t can not obtain by optimizing the Eq. (3.20) by directly putting
with b10 = 0,b11 = 0, b20 = 0, b21 = 0. Thus, for the total pro�t of Model-1b can be
obtain by omitting the breakability term from the expression of 1 and 2 and processing
the same way as before in Model-1.

3.4. Model-1c: Model with two breakable items with constant demand. In the
above Model-1, if we take the the parametric value of demand which is directly related to
the time is equal to zero i.e. b1 = 0,b2 = 0, then we get a another Model-1c. Therefore,
the Model-1 reduces to a production-inventory model for breakable item with constant
demand . So, the total pro�t can be obtain by optimizing the Eq. (3.20) with b1 = 0
and b2 = 0.
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3.5. Model-1d: Model two breakable items with constant holding cost. In the
above Model-1, if we take the the parametric value of holding cost which is directly
related to the time is equal to zero i.e. C11 = 0,C21 = 0, then we get a another Model-1d.
Therefore, the Model-1 reduces to a production-inventory model for breakable item with
constant holding cost. So, the total pro�t can be obtain by optimizing the Eq. (3.20)
with C11 = 0 and C21 = 0.

3.6. Model-1e: Model with two breakable items with constant set-up cost.

In the above Model-1, if we take the the parametric value of setup cost which is directly
related to the production rate is equal to zero i.e. C31 = 0,C41 = 0, then we get a another
Model-1e. Therefore, the Model-1 reduces to a production-inventory model for breakable
item with constant set up cost. So, the total pro�t can be obtain by optimizing the Eq.
(3.20) with C31 = 0 and C41 = 0.

4. Mathematical formulation of the proposed model with single

item:

4.1. Model-2: Model with single item. In real life, the manager of a production
�rm always wants to produce more quantity through a long-run process by imposing
over-time to its labour as well as machinery items. As a result, there may aries di�erent
types of di�culties in the production process which results the production of perfect
quality item as well as defective item. These defective items are reworked instantly at
a per unit cost to make the product as new as perfect one to maintain the brand image
of the manufacturer. The production of the defective items increases with time and the
reliability parameter of the produced item. The parameter r1 is the reliability indicator
of the item-1. The production system became more stable and reliable , if r1 decreases i.e.
smaller value of r1 provides the better quality product and produced smaller imperfect
quality unites.
The inventory levels decreases due to demand and deterioration. Thus, the change of
inventory level at any time t can be represented by the following di�erential equation:

dq1(t)

dt
= P1 −D1 −B1(q1 , t)

i.e. P1(t) = q̇1 +D1 +B1(q1, t)

(4.1) with q1(0) = −S1 and q1(T ) = 0 , where D1 ≡ D1(t)

where D1 is the demand function of time t and is of the form D1(t) = a1 + b1t .
The end condition q1(0) = −S1 and q1(T ) = 0 indicate that at time t = 0 the maximum
shortages is −S1 i.e. the inventory starts with shortages at time t = 0. As P1 and
D1 are the function of time t and combined e�ect of theses two the shortages reaches
to zero and the inventory build-up as P1(t) > D1 + B1(q1 , t) in the �rst part of the
cycle. After some time, as demand is a function of time t, D1 is more than the combined
e�ect of D1 + B1(q1, t) i.e. the accumulated stock decreases as P1(t) < D1 + B1(q1 , t)
and ultimately the stock reaches to zero.
The corresponding pro�t function, incorporation the in�ation and time value of money
during the time duration [0, T ] is given by

Zp =

∫ T

0

e−µt
[
Sp1D1 − Cp1(r1, t)P1(t)− Cd1r1P1(t)− Ch1(t)q1 − C3(P1(t))/T − Sh1S1

]
dt

=

∫ T

0

e−µt
[
Sp1D1 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− χ(r1)− λ1(q̇1 +D1 +B1)

2 − (C10

+C11t)q1 − {C30 + C31(q̇1 +D1 +B1)}/T − Sh1S1

]
dt(4.2)
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=

∫ T

0

F (q1 , q̇1 , t)dt

where F (q1, q̇1, t) = e−µt
[
Sp1D1 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− χ(r1)− λ1

(q̇ +D1 +B1)
2 − (C10 + C11t)q − {C30 + C31(q̇1 +D1 +B1)}/T − Sh1S1

]
Now our problem is to �nd the path of q1(t) and P1(t) such that F (q1, q̇1, t) is to be
maximized. Now, for �nd the optimal path, we have from the Euler-Lagranges equation
for the maximum value of F (q1, q̇1, t) is

∂F

∂q1
− d

dt
(
∂F

∂q̇1
) = 0(4.3)

using (4.2), we have,

q̈1 − µq̇1 − (b10 + µ)b10q1 = H1(t)(4.4)

where

H1(t) = a1(µ+ b10)− b1 − b11 +
(Cr1 + r1Cd1 + C31/T )(µ+ b10) + C10

2λ1
+ t[

b1(µ+ b10) + b11(b10 + µ) +
C11

2λ1
]

= K1 +K2t

where K1 = a1(µ+ b10)− b1 − b11 +
(Cr1 + r1Cd1 + C31/T )(µ+ b10)

2λ1

K2 =
[
b1(µ+ b10) + b11(b10 + µ) +

C11

2λ1
]

The complementary function of the Eq. (4.4) is C
′
1e

(b10+µ)t + C
′
2e

−b10t, where C
′
1 and

C
′
2 are arbitrary constants and the particular integral is given by the

1
D2−µD−(µ+b10)b10

H1(t). Here D(≡ d
dt
) represents the di�erential operator.

Therefore, the complete solution of the Eq.(4.4) can be represented as

q1(t) = C
′
1e

(b10+µ)t + C
′
2e

−b10t − 1

K2
3

[
K1K3 +K2

(
K3t− µ

)]
and the corresponding rate is

P1(t) = K4e
(b10+µ)t +K5t+K7,(4.5)

where, K3 = b10(b10 + µ),K4 = C
′
1(2b10 + µ),K5 = (b1 + b11 −

b10K2

K3
),

and K7 =
1

K2
3

(a1K
2
3 + b10K2µ− b10K1K3 −K2K3)

Using the boundary conditions given with q1(0) = −S1 and q1(T ) = 0 in the expression

of q1(t),we can get the value of C
′
1 and C

′
2. Substituting the value of q1(t) and P1(t) in

the expression of (4.2), the corresponding pro�t function can be expressed as

Zp =

∫ T

0

e−µt
[
Sp1D1 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− χ(r1)− λ1(q̇1 +D1 +B1)

2

−(C10 + C11t)q1 − {C30 + C31(q̇1 +D1 +B1)}/T − Sh1S1

]
dt
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= Sp1
[
− a1

(e−µT − 1)

µ
− b1

(e−µT − 1 + µTe−µT )

µ2

]
− (Cr1 + r1Cd1)

[K4(e
b10T − 1)

b10

+ K5

(−Te−µT
µ

− e−µT

µ2
+

1

µ2
) +

K7

µ
(1− e−µT )

]
+
[
N1 +N2

eCA(r1max−r1)/(r1−r1min)](e−µT − 1

µ
) + λ1

[
(K4e

(b10+µ)T +K5T +K7)
2 e

−µT

µ
−

(K4 +K7)
2

µ
+

2

µ2
{K

2
4 (b10 + µ)

(2b10 + µ)
(e(2b10+µ)T − 1) +

K4K5

b10
(eb10T − 1) +

K4K5

b10

(b10 + µ){Te
b10T

b10
− eb10T

b210
+

1

b210
}+ K4K7(b10 + µ)

b10
(eb10T − 1)− K5K7

µ
(e−µT − 1)}]

−C10

[C′1
b10

(eb10T − 1)− C
′
2

(b10 + µ)
(e−(b10+µ)T − 1) +

K1

K3µ
(e−µT − 1) +

1

K2
3

(K1K3

+ K2(K3T − µ))
e−µT

µ
+

K2

K3µ2
(e−µT − 1)− 1

µK3
2 (K1K3 −K2µ)

]
− C11

[
C
′
1(
Teb10T

b10
− eb10T

b210
+

1

b210
) + C

′
2(
−Te−(b10+µ)T

(b10 + µ)
− e−(b10+µ)T

(b10 + µ)2
+

1

(b10 + µ)2
)

− K1

K3
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)− K2µ

K2
3

(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

K2

K3
(
−T 2e−µT

µ

− 2Te−µT

µ2
− 2

µ3
e−µT +

2

µ3
)
]
− 1

T
[
C30

µ
(1− e−µT ) + C31(

K4

b10
(eb10T − 1)

+ K5(−
−TeµT

µ
− e−µT

µ2
+

1

µ2
) +

K7

µ
(1− e−µT ))]− Sh1S1(

1− e−µT

µ
)(4.6)

4.2. Model-2a: Model with single stock-dependent breakable item. In the
above Model-2, if we take the the parametric values of breakability/deterioration which
are directly related to the time equal to zero i.e. b11 = 0, then we get another Model-2a.
Therefore, the Model-2 reduces to a production-inventory model for deteriorating items
with stock dependent breakability/deterioration. So, the total pro�t can be obtained by
optimizing the Eq. (4.6) with b11 = 0

4.3. Model-2b: Model with single non-breakable item. In the above Model-2, if
we take the the parametric value of deterioration which is directly related to stock and
time is equal to zero i.e. b10 = 0, b11 = 0, then we get a another model-2b. Therefore,
the Model-2 reduces to a production-inventory model with out deteriorating item. As
b10, b11 appears in the denominator of the expression of (4.6), So the total pro�t can
not obtain by optimizing the Eq. (4.6) by directly putting with b10 = 0, b11 = 0. Thus,
for the total pro�t of Model-2b can be obtain by omitting the reliability term from the
expression of (4.6) and processing the same way as before in Model-2.

4.4. Model-2c: Model with single breakable item with constant demand. In
the above Model-2, if we take the the parametric value of demand which is directly related
to the time is equal to zero i.e. b1 = 0, then we get a another Model-2c. Therefore,
the Model-2 reduces to a production-inventory model for breakable item with constant
demand . So, the total pro�t can be obtain by optimizing the Eq. (4.6) with b1 = 0.
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4.5. Model-2d: Model with single breakable item with constant holding cost.

In the above Model-2, if we take the the parametric value of holding cost which is directly
related to the time is equal to zero i.e. C11 = 0, then we get a another Model-2d.
Therefore, the Model-2 reduces to a production-inventory model for breakable item with
constant holding cost. So, the total pro�t can be obtain by optimizing the Eq. (4.6) with
C11 = 0.

4.6. Model-2e: Model with single breakable item with constant set-up cost.

In the above Model-2, if we take the the parametric value of setup cost which is directly
related to the production rate is equal to zero i.e. C31 = 0, then we get a another Model-
2e. Therefore, the Model-2 reduces to a production-inventory model for breakable item
with constant set up cost. So, the total pro�t can be obtain by optimizing the Eq. (4.6)
with C31 = 0.

5. Solution procedure:

In section 3.2, we already prove that there exists a path q = q1(t) and q = q2(t) lying
between the interval [0, T ] for which Zp is maximum. In this problem, only the reliability
indicator is the decision variable and others parameters are known, so the pro�t function
Zp given by (3.20) and (4.6) are the function of a two variable r1 and r2 for Model-1
and single variable r1 for Model-2 respectively. So, there are two method for �nding
the optimal value of r1 and r2. First we discussed the analytical method for �nding the
optimal value of r1 and r2. To �nd the optimal value of r1 and r2, the �rst order partial
derivative of the pro�t function with respect to r1 and r2 are made equal to zero. Thus for
the Model-1, we get two di�erent transcendental equation on r1 and r2 and for Model-2,
we get one transcendental equation on r1 and solve using Newton-Raphson method. Now
to �nd the second order derivative of Zp with respect to r1 and r2 are calculate separately
for both the models. Both the value of second order derivative with to the calculated r1

and r2 value are less than zero i.e.
∂2ZT
∂r21

< 0,
∂2ZT
∂r22

< 0, ∂
2ZT

∂r21

∂2ZT

∂r22
−
( ∂2ZT
∂r1∂r2

)2
> 0 for

model-1 and
d2ZT
dr21

< 0 for Model-2. So for both the model, we conclude that both the

pro�t function are maximized and the corresponding pro�t can be calculated by putting
the value of r1 and r2 respectively for both the models. Also the pro�t functions are
optimized using LINGO-13 software and the result obtained are same as those obtained
by analytical method. Therefore, we conclude that the result obtained by the above
mentioned procedure is a global optimal solution for di�erent models.

6. Numerical Experiment:

Model-1: The following parametric value have been used to validate the model:
a1 = 60; b1 = 50; λ1 = 0.05; Cr1 = 4; Cd1 = 4; C10 = 1, C11 = 0.02; C30 = 10;
C31 = 0.02; CA = 0.002; Sp1 = 75; b10 = 0.05; b11 = 1.5; r1max = 0.9; r1min = 0.1
N1 = 200; N2 = 30; T = 12; Sh1 = 1.02; S1 = 10;S2 = 20; µ = 0.03;M = 2000; a2 = 65;
b2 = 55; λ2 = 0.06; Cr2 = 5; Cd2 = 5; C20 = 2, C21 = 0.03; C40 = 11; C41 = 0.03;
Sp2 = 76; b20 = 0.06; b21 = 1.6; r2max = 0.9; r2min = 0.1, Sh2 = 1.03; N3 = 205;
N4 = 32;
Model-2: In this model i.e.,only one item is considered. In this case, we consider the
inputs of 1st item and all the parameters are same as Model 1.
With the above input data, the optimum values of r1 and r2 and the corresponding value
of pro�t function for both the models are obtained and presented in Tables-1 and 2.
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Table-1: Optimum results of Models-1

Model-1 Model-1a Model-1b Model-1c Model-1d Model-1e

r1 0.1065489 0.1066123 0.107523 0.107528 0.101572368 0.124578
r2 0.1064327 0.1066529 0.107439 0.157423 0.1792436 0.14132563
Zp 609575.45 611359.89 702204.56 120451.97 617561.24 624578.57

Table-2: Optimum results of Models -2

Model-2 Model-2a Model-2b Model-2c Model-2d Model-2e

r1 0.1065357 0.1066117 0.1081474 0.0059423 0.1065271 0.1065355
r2 −− −− −− −− −− −−
Zp 307580.8 307731.6 398616.8 50141.1 315486 307629

With the optimal values of r1 and r2, di�erent pictorial representations of inventory,
production and demand against time, pro�t and development cost against reliability
indicator , unit production cost and set-up cost against time for Model-1 are depicted in
Figs.1-6, respectively. Similar graphical representation for Model-2 are given in Figs.7-9.

Figure 1. Time vs. production, demand and inventory of item-1 in Model-1

Figure 2. Time vs. production, demand and inventory of item-2 in Model-1
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Figure 3. Time vs. unit production cost and set-up cost of item-1 in
Model-1

Figure 4. Time vs. unit production cost and set-up cost of item-2 in
Model-1

Figure 5. Reliability vs.developement cost and Pro�t of item-1 (Model-1)

7. Discussion:

For the presumed parametric values, it is very clear that pro�ts for the models without
damageability i.e. Model-1b and Model-2b gives the more pro�ts than the corresponding
models with damageability models such as Model-1, Model-1a, Model-2 and Model-2a.
It is as per expectation of the real life phenomena. It occurs because pro�ts decreases
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Figure 6. Reliability vs.developement cost and Pro�t of item-2 (Model-1)

Figure 7. Time vs. production, demand and inventory for Model-2

Figure 8. Time vs. set-up cost and unit production cost for Model-2

due to damageability of the units. Also from the Tables-1 and -2, it is observed that
the models with stock dependent breakable items i.e. Model-1a and Model-2a give more
pro�ts than the corresponding models of breakable items i.e. Model-1 and Model-2. It is
because the damageability rates for breakable items with both stock and time dependent
breakability are higher than that of stock dependent breakability.

From Tables -1 and -2 it can be observe that the pro�t for the time dependent demand
i.e Model -1 and -2 is greater than the constant demand i.e Model -1c and -2c, it can be
explained from the real life situation that if demand increases with time then the pro�t
will be more.It is also observed from Tables -1 and -2 that the pro�ts for the constant
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Figure 9. Reliability vs. pro�t and development cost for Model-2

holding cost and constant set up cost i.e pro�ts for Model -1d,Model -2d,Model -1e and
Model -2e are more than the pro�ts for Model -1 and -2.It can be justi�ed from the real
fact that if unit holding cost and set up cost are constant than the retailer has to pay
less amount for holding cost and set up cost and as a result the retailer gets more pro�t.
Again process reliability indicators plays an important role for the pro�t making imper-
fect production system. Reliability indicator of a imperfect production process can be
controlled using high quality machineries and skilled and e�cient manpowers workers.
In our present investigation, demand of both models are time dependent. For both the
models, production rate increases with time as demand increases with time. This phe-
nomenon is justi�ed by our pictorial representation i.e. Figs.-1,-2 and -7. It is observed
from the Figs.1,2,7 that as the terminal conditions for stock are q1(0) = −10, q1(T ) = 0,
q2(0) = −20, q2(T ) = 0 for Model-1 and q1(0) = −10 and q1(T ) = 0 for Model-2, initially
when time t = 0 shortages occurs at maximum level and as the demand and production
dependent on time t and due to their combine e�ect, the shortages reach to zero after
certain time. Due to this e�ect, the inventory is built-up as production is greater than
the combine e�ect of demand and damageability. But after some time when considerable
stock is built-up i.e., when the stock level becomes highest,production is discontinued.
After this, to meet the demand, after allowing breakability, stock gradually reduces and
ultimately becomes zero at t = T . Again from the Figs.-5,-6 and-9, it is observed that
optimum pro�t ZT is attained for a particular value of the process reliability r. Also it is
noticed that the pro�t deceases with increasing process reliability,since reliability is de-
�ned as the ratio of number of damageable item with total items. Since the breakability
increases with time i.e. damageability increases with time, so the pro�t is decreases with
increasing reliability. This Phenomenon is also agree with the real life situation. Again
from this �gure, we observed that for some initial increasing value of r, the development
cost sharply decreases and then become almost constant for higher values of r.Initially
the pro�t become maximum and then decreases with increasing reliability. As set-up cost
and production cost are partially production dependent, and production is time depen-
dent, set-up cost and production cost increases with increasing time.These observation
are found from the Figs.-3,-4 and-8.

8. Conclusions and Future Research work:

In this paper, for the �rst time, a multi-item production-inventory model with imperfect
production process is considered for a breakable or deteriorating item over �nite time
horizon, where the process reliability indicator of the production process together with
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the production rate is controllable. For the present models, we observed that an opti-
mum reliability indicator lures the maximum pro�t for an item having time dependent
demand. Also it is found from our �ndings that minimum unit production cost for an
item does not guaranty for giving maximum pro�t always. From the present models, it
can be concluded that optimal control of production rate reduces holding cost as well as
damageability which in turn increases pro�t separately for breakable/deteriorating items.
The present investigation reveals that process reliability indicator is an important fac-
tor which determines the production rate and thus determining the optimal production
path, unit production cost and optimal pro�t for the production-inventory managers.
Here we formulate two types of models with shortages. First model is for two items with
shortages and second model is for single item with shortages. The unit production cost
is a function of production rate, raw material cost, labour charge, wear and tear cost and
product reliability indicator. The �rst model is formulated as optimal control problems
for the maximization of total pro�ts over the planning horizon with budget constraint
and optimum pro�t with pro�ts along with optimum reliability indicator(r) are obtained
using Euler-Lagrange equations based on variational principle.The second model is also
solved under the same assumptions and using the same technique. Both the problems
have been solved using a non-linear optimization technique -GRG (LINGO-13.0) and
illustrated with some numerical data. Several particular cases are derived and the results
are presented in both tabular and graphical forms. Finally, some sensitivity analyses
can be made with respect to di�erent parameters.The present models can be extended
to fuzzy environment taking constant part of holding cost, set-up cost, etc as fuzzy in
nature.Now a days due to inherent various and highly uncertinity of real life informa-
tions/data , impreciseness of fuzzy set i.e type-2 fuzzy sets in quite popular. Hence the
present problem can be solved with type-2 fuzzy inventory cost,etc.This is a new area of
research in which integrand of a �nite integral is fuzzy or type-2 fuzzy and variational
principle is applied.
More-over with the deterministic integrand and the limits of a �nite integral as fuzzy,
models can be formulated and solved using Fuzzy Riemann integral, not using variational
principle.
The present model can also be extended to multi-period models where period starts with
inventory and end with shortages or starts with inventory and end with inventory or
di�erent variations can be done with respect to shortages.
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