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Abstract

In this paper we estimate R = P{X ≤ Y } when X and Y are in-
dependent random variables from geometric and Poisson distribution
respectively. We find maximum likelihood estimator of R and its as-
ymptotic distribution. This asymptotic distribution is used to construct
asymptotic confidence intervals. A procedure for deriving bootstrap
confidence intervals is presented. UMVUE of R and UMVUE of its
variance are derived and also the Bayes estimator of R for conjugate
prior distributions is obtained. Finally, we perform a simulation study
in order to compare these estimators.

2000 AMS Classification: 62F10, 62F12, 62F15, 62F25, 62F40.

Keywords: stress-strength, geometric distribution, Poisson distribution, maxi-
mum likelihood estimator, Bayes estimator, UMVUE, bootstrap confidence inter-
vals.

Received 12/03/2014 : Accepted 19/08/2014 Doi : 10.15672/HJMS.2014267477

∗Faculty of Mathematics, University of Belgrade, Studenski trg 16, Belgrade, Serbia.
Email: marcone@matf.bg.ac.rs
†Faculty of Mathematics, University of Belgrade, Studenski trg 16, Belgrade, Serbia.

Email:mjovanovic@matf.bg.ac.rs
‡Faculty of Mathematics, University of Belgrade, Studenski trg 16, Belgrade, Serbia.

Email:bojana@matf.bg.ac.rs
§Faculty of Mathematics, University of Belgrade, Studenski trg 16, Belgrade, Serbia.

Email:v_jevremovic@matf.bg.ac.rs



950

1. Introduction
In reliability theory the main parameter is the reliability of a system. The system

fails if the applied stress X is greater than strength Y , so R = P{X ≤ Y } is a measure
of system performance. Its estimation is one of the main goals and it has been widely
studied in statistical literature.

The problem was first introduced by Birnbaum [4]. The estimation of R when X
and Y are normally distributed has been considered by Downtown [7], Govidarajulu [9],
Woodward and Kelley [26] and Owen [20]. Tong [24],[25], studied the case when X and
Y were exponentially distributed. Exponential case with common location parameter
was examined by Baklizi and Quader El-Masri [2]. The gamma case was studied by Con-
stantine and Karson [5], Ismail et al. [12] and Constantine et al. [6]. Kundu and Gupta
considered generalized exponetial case [16]. Kakade et al. [14] studied the exponentiated
Gumbel case. Gompertz distribution was examined by Saraçoglu et al. [22], and the
generalized Pareto case was considered by Rezaei et al. [21]. Kundu and Gupta [17]
examined the case of Weibull distribution. Recently, the Topp-Leone distribution was
studied by Genç [8]. Most of results are collected in Kotz et al. [15].

The majority of papers in this area deal with continuous probability distributions.
However, there are some applications where stress and strength can have discrete dis-
tributions. For example, this is the case when the stress is the number of shocks the
product undergoes and the strength is the number of shocks the product can withstand.
Maiti [19] and Ahmad et al. [1] studied the geometric case. The negative binomial dis-
tribution was considered by Ivshin and Lumelskii [13] and Sathe and Dixit [23]. Belyaev
and Lumelskii [3] examined the Poisson case.

In all mentioned papers both stress and strength come from the same type of dis-
tribution. In this paper we focus on the case when X and Y follow different types of
distribution, namely geometric and Poisson distribution.

If we consider the stress to be the demand for some product, and the strength its
supply, which are discrete in nature, then it might be convenient to model them with
geometric and Poisson distributions.

Another motivating example can be the following. An employer is interviewing po-
tential candidates for a vacant position. The number of interviews he needs to conduct
until he finds suitable candidate follows geometric distribution, while the number of per-
sons that apply for that job during a certain period of time follows Poisson distribution.
Therefore R is the probability that the employer will find the right candidate.

Let X and Y be independent random variables with geometric G(p) and Poisson
P(λ) distribution, respectively, where probability p and positive value λ are unknown
parameters. Their probability mass functions are

P{X = x} = (1− p)x−1p, x = 1, 2, . . . ,

and

P{Y = y} =
e−λλy

y!
, y = 0, 1, . . . .
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Then the reliability of the system is

R = P{X ≤ Y } =

∞∑
y=1

y∑
x=1

P{X = x, Y = y}

=

∞∑
y=1

y∑
x=1

(1− p)x−1p
e−λλy

y!
=

∞∑
y=1

e−λλy

y!
(1− (1− p)y)

= 1− e−λ −
∞∑
y=1

e−λ(λ(1− p))y

y!

= 1− e−λ − e−λp
∞∑
y=1

e−λ(1−p)(λ(1− p))y

y!

= 1− e−λp.(1.1)

In the following sections we study various estimators of R. In section 2 the maximum
likelihood estimator (MLE) of R and its asymptotic distribution are derived. We use that
to construct asymptotic and bootstrap confidence intervals. The uniformly minimum
variance unbiased estimator (UMVUE) of R and UMVUE of its variance are obtained in
section 3. Bayes estimator of R with respect to mean square error is found in section 4.
In section 5 we perform a simulation study and compare the obtained estimators.

2. MLE of R and its Asymptotics
Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be the samples from the distributions of

random variables X and Y . Therefore, the log-likelihood function of combined sample is

lnL(p, λ) =
( n∑
k=1

xk − n
)

ln(1− p) + n ln p−mλ+ lnλ

m∑
k=1

yk − ln

m∏
k=1

yk! .

Solving the likelihood equations with respect to p and λ we get that the MLEs for p and
λ are

p̃ =
1

X
, λ̃ = Y .

Using the invariance property of MLE, from (1.1) we get the MLE of R

(2.1) R̃ = 1− e−
Y
X .

2.1. Asymptotic Distribution. In the following two theorems we shall find the as-
ymptotic distributions of (p̃, λ̃) and R̃.

2.1. Theorem. Let the ratio n
m

converge to a positive number s when both n and m
tend to infinity. Then

(
√
n(p̃− p),

√
n(λ̃− λ))

D−→
n→∞

N2(0, J(p, λ)),

where

J(p, λ) =

[
p2(1− p) 0

0 sλ

]
.
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Proof. Since

−E
(∂2 lnL

∂p2

)
=

n

p2(1− p)
and

−E
(∂2 lnL

∂λ2

)
=
m

λ
,

from the asymptotic normality of maximum likelihood estimator (see [11]) it follows that
√
n(p̃− p) D−→

n→∞
N(0, p2(1− p))

and
√
m(λ̃− λ)

D−→
m→∞

N(0, λ).

Then
√
n(λ̃− λ)

D−→
n→∞

N(0, sλ).

From the independence of p̃ and λ̃ we get the statement of the theorem. 2

2.2. Theorem. Let the ratio n
m

converge to a positive number s when both n and m
tend to infinity. Then

√
n(R̃−R)

D→ N(0, e−2λpp2λ(λ(1− p) + s)).

Proof. In order to prove this theorem we shall use the method from [11]. Since
R = R(p, λ) is the transformation such that the matrix of partial derivatives

B =
[
∂R
∂p

∂R
∂λ

]
=
[
λe−λp pe−λp

]
has continuous elements and does not vanish in the neighbourhood of (p, λ), then we
have

√
n(R̃−R)

D→ N(0, BJB′).

Inserting the values of B and J we get the statement of the theorem. 2

Using this theorem we can construct the asymptotic confidence interval for R. Denote
σ̃2 = e−2λ̃p̃p̃2λ̃(λ̃(1− p̃) + s). Then the estimator of the variance of R̃ is

(2.2) Ṽ ar(R̃) =
σ̃2

n
.

The interval of confidence level 1− α is given by

(2.3) IR =

(
R̃−

z1−α
2
σ̃

√
n

, R̃+
z1−α

2
σ̃

√
n

)
,

where zγ is the γth quantile from standard normal distribution.

2.2. Bootstrap-t Confidence Interval. The confidence intervals based on the asymp-
totic distribution do not perform very well for small sample sizes. Therefore, we propose
a construction of the confidence interval based on bootstrap-t method (see [10]). The
algorithm is illustrated below.
Step 1: From initial samples x = (x1, x2, ..., xn) and y = (y1, y2, ..., ym) calculate MLEs

p̃ and λ̃.
Step 2: Use those estimates to generate bootstrap samples x∗ and y∗ and compute

bootstrap sample estimates R∗ of R using (2.1).
Step 3: Repeat step 2, N boot times.
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Step 4: For each R∗i , 1 ≤ i ≤ N , calculate the following statistic

T ∗i =
R∗i − R̃√
V ar(R∗)

,

where V ar(R∗) =

N∑
i=1

(R∗i−R∗)
2

N−1
and R∗ =

N∑
i=1

R∗i

N
.

Step 5: For sample of T ∗i obtained in step 4, calculate sample quantiles of order α
2
(tα

2
)

and 1− α
2
(t1−α

2
). Then, the bootstrap-t confidence interval is given by

(2.4)
(
R̃− t1−α

2

√
V ar(R∗), R̃− tα

2

√
V ar(R∗)

)
.

3. UMVUE of R

In this section we find the UMVUE of R, denoted by R̂, and UMVUE of the variance
of R̂.

The complete sufficient statistics for p and λ are TX =
n∑
j=1

Xj and TY =
m∑
j=1

Yj . The

statistic TX , as a sum of n independent identically distributed random variables with
geometric distribution, has negative binomial distribution with parameters n and p, and
the statistic TY , as a sum of m independent identically distributed random variables with
Poisson distribution, has Poisson distribution with parameter mλ.

An unbiased estimator for R is I{X1 ≤ Y1}. Then

E(I{X1 ≤ Y1}|TX = tX , TY = tY ) = P{X1 ≤ Y1|TX = tX , TY = tY }

=

P{X1 ≤ Y1,
n∑
j=1

Xj = tX ,
m∑
j=1

Yj = tY }

P{
n∑
j=1

Xj = tX ,
m∑
j=1

Yj = tY }

=

tY∑
y=1

M∑
x=1

P{X1 = x}P{Y1 = y}P{
n∑
j=2

Xj = tX − x}P{
m∑
j=2

Yj = tY − y}

P{
n∑
j=1

Xj = tX}P{
m∑
j=1

Yj = tY }

=

tY∑
y=1

M∑
x=1

(1− p)x−1p e
−λλy

y!

(
tX−x−1
n−2

)
pn−1(1− p)tX−x−n+1 e

−(m−1)λ((m−1)λ)tY −y

(tY −y)!(
tX−1
n−1

)
pn(1− p)tX−n e−mλ(mλ)

tY

tY !

=

tY∑
y=1

(
tY
y

)
(m− 1)tY −y

M∑
x=1

(
tX−x−1
n−2

)
(
tX−1
n−1

)
mtY

,

where M = min{tX − n+ 1, y}.
Using the identity

n∑
s=0

(
s

c

)
=

(
n+ 1

c+ 1

)
,
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we get that

E(I{X1 ≤ Y1}|TX=tX , TY=tY ) =

tY∑
y=1

(
tY
y

)
(m− 1)tY −y

M∑
x=1

(
tX−x−1
n−2

)
(
tX−1
n−1

)
mtY

=

tY∑
y=1

(
tY
y

)
(m− 1)tY −y

tX−2∑
s=tX−M−1

(
s

n−2

)
(
tX−1
n−1

)
mtY

=

tY∑
y=1

(
tY
y

)
(m− 1)tY −y

( tX−2∑
s=0

(
s

n−2

)
−
tX−M−2∑
s=0

(
s

n−2

))
(
tX−1
n−1

)
mtY

=

tY∑
y=1

(
tY
y

)
(m− 1)tY −y

((
tX−1
n−1

)
−
(
tX−M−1
n−1

))
(
tX−1
n−1

)
mtY

.

Using Rao-Blackwell and Lehmann-Sheffé theorems we get that the UMVUE of R is

(3.1) R̂ = 1−
(

1− 1

m

)TY
−

TY∑
y=1

(
TY
y

)(
TX−M−1
n−1

)(
TX−1
n−1

) (
1− 1

m

)TY −y ( 1

m

)y
.

This formula is valid for TY > 0. If TY = 0, then R̂ = 0.
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Now, in order to find the UMVUE of variance of R̂, we calculate the UMVUE of R2.
An unbiased estimator for R2 is I{X1 ≤ Y1, X2 ≤ Y2}. Then

E(I{X1 ≤ Y1, X2 ≤ Y2}|TX = tX , TY = tY )

=

P{X1 ≤ Y1, X2 ≤ Y2,
n∑
j=1

Xj = tX ,
m∑
j=1

Yj = tY }

P{
n∑
j=1

Xj = tX ,
m∑
j=1

Yj = tY }

=
1

P{
n∑
j=1

Xj = tX}P{
m∑
j=1

Yj = tY }

×
tY −1∑
y1=1

tY −y1∑
y2=1

M1∑
x1=1

M2∑
x2=1

P{X1 = x1}P{X2 = x2}P{Y1 = y1}P{Y2 = y2}

× P
{ n∑
j=3

Xj = tX − x1 − x2
}
P
{ m∑
j=3

Yj = tY − y1 − y2
}

=
1(

tX−1
n−1

)
pn(1− p)tX−n e−mλ(mλ)

tY

tY !

×
tY −1∑
y1=1

tY −y1∑
y2=1

M1∑
x1=1

M2∑
x2=1

p(1− p)x1−1p(1− p)x2−1 e
−λλy1

y1!

e−λλy2

y2!

×

(
tX − x1 − x2 − 1

n− 3

)
pn−2(1− p)tx−x1−x2−n+2 e

−(m−2)λ((m− 2)λ)tY −y1−y2

(tY − y1 − y2)!

=

tY −1∑
y1=1

tY −y1∑
y2=1

(
tY

y1+y2

)(
y1+y2
y1

)
(m− 2)tY −y1−y2

M1∑
x1=1

M2∑
x2=1

(
tX−x1−x2−1

n−3

)
(
tX−1
n−1

)
mtY

,(3.2)

where M1 = min{y1, tX − n + 1} and M2 = min{y2, tX − n + 2 − x1}. Using similar
technique as when finding R̂, we get that

M1∑
x1=1

M2∑
x2=1

(
tX − x1 − x2 − 1

n− 3

)
=

M1∑
x1=1

tX−x1−2∑
s=tX−x1−M2−1

(
s

n− 3

)

=

M1∑
x1=1

((
tX − x1 − 1

n− 2

)
−

(
tX − x1 −M2 − 1

n− 2

))

=

tX−2∑
s=0

(
s

n− 2

)
−
tX−M1−2∑

s=0

(
s

n− 2

)
−

M1∑
x1=1

(
tX − x1 −M2 − 1

n− 2

)

=

(
tX − 1

n− 1

)
−

(
tX −M1 − 1

n− 1

)
−

M1∑
x1=1

(
tX − x1 −M2 − 1

n− 2

)
.
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Inserting this into (3.2) and using Rao-Blackwell and Lehmann-Sheffé theorems we get
that the UMVUE of R2 is

R̂2 =
1(

TX−1
n−1

)
mTY

TY −1∑
y1=1

TY −y1∑
y2=1

(
TY

y1 + y2

)(
y1 + y2
y1

)
(m− 2)TY −y1−y2

×

((
TX−1

n− 1

)
−

(
TX −M1 − 1

n− 1

)
−

M1∑
x1=1

(
TX − x1 −M2 − 1

n− 2

))
.(3.3)

This formula is valid for TY > 1. If TY ≤ 1, then R̂2 = 0.
Finally, we obtain the UMVUE of variance of R̂ using the following theorem.

3.1. Theorem. The UMVUE of V ar(R̂) is given by

(3.4) V̂ ar(R̂) = (R̂)2 − R̂2,

where R̂ and R̂2 are given by (3.1) and (3.3).

The proof follows from general result obtained in [18] and [13].

4. Bayes Estimator of R

In this section we shall find the Bayes estimator of R with respect to mean square
error. Let us suppose that p and λ have conjugate prior distributions, beta B(a, b),
a, b ∈ N, and gamma Γ (α, β), α ∈ N, β > 0, with the following joint density:

π(p, λ) =
pa−1(1− p)b−1

B(a, b)

λα−1βαe−βλ

Γ(α)
, p ∈ (0, 1), λ > 0.

Then the joint posterior density given the sample (x,y), or, equivalently, given the suf-
ficient statistics (tX , tY ) is

π(p, λ|tX , tY ) = Kpa−1+n(1− p)tX−n+b−1λα−1+tY e−λ(β+m), p ∈ (0, 1), λ > 0,

where

K =

(∫ 1

0

∫ ∞
0

pa−1+n(1− p)tX−n+b−1λα−1+tY e−λ(β+m)dλ dp

)−1

is the proportionality constant.
Denote, for simplicity, A = a + n − 1, B = tX − n + b − 1, C = α − 1 + tY and

D = β +m. Since R = 1− e−λp, we get that p = − ln(1−R)
λ

. Using the transformation of
random variables (p, λ) to (R, λ) we get

π(r, λ|tX , tY ) = π
(
p(r, λ), λ(r, λ)|tX , tY

) ∣∣∣∣ ∂p
∂r

∂p
∂λ

∂λ
∂r

∂λ
∂λ

∣∣∣∣
= π

(
p(r, λ), λ(r, λ)|tX , tY

) ∣∣∣∣ 1
λ

1
1−r

ln(1−r)
λ2

0 1

∣∣∣∣
= K

(
− ln(1− r)

λ

)A(
1 +

ln(1− r)
λ

)B
λCe−λD

1

λ

1

1− r

= K (− ln(1− r))A
(

1 +
ln(1− r)

λ

)B
λC−A−1 e

−λD

1− r ,

r ∈ (0, 1), λ > − ln(1− r).
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Then the marginal posterior density of R is

πR(r|tX , tY ) = K

∞∫
− ln(1−r)

(− ln(1− r))A
B∑
j=0

(
B

j

)(
ln(1− r)

λ

)j
λC−A−1 e

−λD

1− r dλ

= K

B∑
j=0

(
B

j

)
(−1)j

(− ln(1− r))A+j

1− r

∞∫
− ln(1−r)

λC−A−j−1e−λDdλ

= K

B∑
j=0

(
B

j

)
(−1)j

(− ln(1− r))A+j

(1− r)DC−A−j

∞∫
−D ln(1−r)

tC−A−j−1e−tdt, r ∈ (0, 1).

The Bayes estimator Ř of R for mean square loss function is the posterior mean. After
some calculations (see Appendix) we obtain

(4.1) Ř = 1−K

I{C−A>0}

min{C−A−1,B}∑
j=0

W1 + I{0≤C−A≤B}W2 + I{C−A<B}

B∑
j=max{0,C−A+1}

W3

 ,
where

W1 = (−1)j
(
B

j

)
(C − 1)!(
C−1
A+j

) C−A−j−1∑
i=0

(
A+j+i

i

)
DC−A−j−i(D + 1)A+j+i+1

,

W2 = (−1)C−A−1

(
B

C −A

)
C!

[
lnD +

∞∑
i=1

(−1)i

i

(
Di

(
C + i

i

)
−

(
C

i

))]
,

W3 =

(
B

j

)
(C − 1)!

A−C+j∑
i=1

(−1)i+j+1 Di−1
(
C+i−1

i

)
(D + 1)C+i

(
A−C+j

i

) +
(−1)A−C+1

DC−A−j

×

(
B

j

)(
A+ j

C

)
C!

[
lnD +

∞∑
i=1

(−1)i

i

(
Di

(
A+ j + i

i

)
−

(
A+ j

i

))]
.

It is possible to generalize this estimator for real values of the hyperparametres, but
it would be much more complicated and not practical for presentation.

5. Simulation Study
In this section we perform a simulation study for various sample sizes and different

values of unknown parameters.
For fixed values of n, m, p and λ we do the following procedure. We choose a sample

and calculate the MLE and its variance using (2.1) and (2.2), and the UMVUE and its
variance using (3.1), (3.3) and (3.4). Since we do not know the prior distributions and
to get better comparison with other types of estimates, we obtain Bayes estimates using
non-informative Jeffreys’ priors where π(p) ∼ p−1(1 − p)−

1
2 and π(λ) ∼ λ−

1
2 . We find

the estimates from posterior distribution for R using Monte Carlo method with 5000
replicates.

We also calculate 95% asymptotic confidence interval using (2.3) and 95% bootstrap-t
confidence interval using (2.4) with N = 1000 boot times.

This procedure is repeated for 500 samples and the averages for each estimate are
calculated.

In table 1 we present point estimates for R and their standard errors. In table 2 we
present 95% asymptotic and bootstrap-t confidence intervals as well as 95% Bayes credible
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intervals based on a Monte Carlo method mentioned above. The coverage percentages of
these intervals (the percentage of intervals that contain true value of R) are also shown.

In table 1 we can notice that in most cases the UMVUE has the value closest to R as
expected due to its unbiasedness. However, its standard error is the largest. For most
values of R the standard error of Bayes estimate is the smallest, while for larger values
of R, the standard error of MLE has that property. In the last case (R = 0.7981), the
standard error of Bayes estimate is even larger than the UMVUE one.

From table 2 we can see that in almost all cases the asymptotic intervals have the
worst coverage percentages, which is expected because we have small sample sizes, while
Bayes credible intervals and bootstrap-t confidence intervals both perform very well.
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Table 1. Point estimates for R and their standard errors

samples parameters reliability MLE UMVUE Bayes
n m p λ R R̃ σ(R̃) R̂ σ̂(R̂) Ř σ(Ř)

10 15

0.5 0.5 0.2212 0.2226 0.0813 0.2176 0.0825 0.2133 0.0778
0.25 1 0.2212 0.2324 0.0742 0.2215 0.0746 0.2257 0.0719
0.3 1 0.2592 0.2634 0.0809 0.2527 0.0821 0.2552 0.0782
0.5 1 0.3935 0.3986 0.1003 0.3929 0.1047 0.3824 0.0966
0.8 1 0.5507 0.5398 0.1024 0.5454 0.1069 0.5146 0.1007
0.4 2 0.5507 0.5550 0.1045 0.5478 0.1106 0.5353 0.1023
0.67 1.5 0.6340 0.6415 0.0972 0.6343 0.1023 0.6162 0.0975
0.5 2 0.6340 0.6369 0.1011 0.6346 0.1067 0.6137 0.1006
0.8 1.5 0.6988 0.6918 0.0891 0.6987 0.0964 0.6648 0.0915
0.6 2 0.6988 0.7019 0.0927 0.7008 0.0982 0.6767 0.0945
0.8 2 0.7981 0.7868 0.0737 0.7940 0.1043 0.7611 0.0790

20 15

0.5 0.5 0.2212 0.2236 0.0762 0.2228 0.0774 0.2174 0.0735
0.25 1 0.2212 0.2229 0.0625 0.2202 0.0625 0.2190 0.0612
0.3 1 0.2592 0.2648 0.0706 0.2605 0.0712 0.2596 0.0689
0.5 1 0.3935 0.3914 0.0899 0.3921 0.0923 0.3818 0.0872
0.8 1 0.5507 0.5597 0.0970 0.5573 0.0998 0.5324 0.0949
0.4 2 0.5507 0.5561 0.0881 0.5547 0.0910 0.5436 0.0864
0.67 1.5 0.6340 0.6260 0.0895 0.6312 0.0920 0.6093 0.0884
0.5 2 0.6340 0.6374 0.0864 0.6392 0.0891 0.6226 0.0854
0.8 1.5 0.6988 0.6894 0.0834 0.6977 0.0848 0.6712 0.0835
0.6 2 0.6988 0.6975 0.0813 0.7021 0.0832 0.6812 0.0813
0.8 2 0.7981 0.7895 0.0668 0.7975 0.0668 0.7725 0.0688

20 20

0.5 0.5 0.2212 0.2256 0.0680 0.2240 0.0688 0.2200 0.0660
0.25 1 0.2212 0.2277 0.0579 0.2225 0.0580 0.2241 0.0569
0.3 1 0.2592 0.2665 0.0649 0.2616 0.0654 0.2617 0.0636
0.5 1 0.3935 0.3965 0.0817 0.3948 0.0836 0.3872 0.0796
0.8 1 0.5507 0.5449 0.0865 0.5500 0.0887 0.5297 0.0850
0.4 2 0.5507 0.5469 0.0823 0.5491 0.0848 0.5358 0.0809
0.67 1.5 0.6340 0.6350 0.0802 0.6352 0.0823 0.6201 0.0798
0.5 2 0.6340 0.6348 0.0798 0.6341 0.0822 0.6215 0.0793
0.8 1.5 0.6988 0.6951 0.0738 0.7010 0.0749 0.6791 0.0744
0.6 2 0.6988 0.6924 0.0751 0.6949 0.0770 0.6779 0.0754
0.8 2 0.7981 0.7960 0.0593 0.8018 0.0593 0.7809 0.0614

50 50

0.5 0.5 0.2212 0.2214 0.0432 0.2207 0.0434 0.2192 0.0427
0.25 1 0.2212 0.2226 0.0364 0.2205 0.0364 0.2212 0.0362
0.3 1 0.2592 0.2605 0.0410 0.2585 0.0411 0.2586 0.0406
0.5 1 0.3935 0.3960 0.0522 0.3953 0.0527 0.3923 0.0517
0.8 1 0.5507 0.5489 0.0552 0.5509 0.0558 0.5426 0.0548
0.4 2 0.5507 0.5494 0.0528 0.5483 0.0535 0.5449 0.0524
0.67 1.5 0.6340 0.6355 0.0513 0.6348 0.0518 0.6294 0.0512
0.5 2 0.6340 0.6327 0.0514 0.6338 0.0521 0.6273 0.0512
0.8 1.5 0.6988 0.6964 0.0472 0.6997 0.0475 0.6908 0.0474
0.6 2 0.6988 0.6952 0.0482 0.6962 0.0487 0.6892 0.0483
0.8 2 0.7981 0.7974 0.0379 0.7977 0.0379 0.7912 0.0385

6. Conclusion
In this paper we considered the estimation of the probability P{X ≤ Y } when X

and Y are two independent random variables from geometric and Poisson distribution
respectively. We determined MLE, UMVUE and Bayes point estimator. The asymptotic
and bootstrap-t confidence intervals were constructed.

A simulation study was performed. The obtained point estimates were compared and
in most cases UMVUEs have the smallest bias, while Bayes estimates have the smallest
standard error. Comparison of interval estimates was also done and we concluded that
bootstrap-t and Bayes intervals had notably higher coverage percentages than asymptotic
ones.
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Table 2. Interval estimates for R and their coverage percentages

samples parameters reliability asymptotic bootstrap Bayes
n m p λ R CI cov. CI cov. CI cov.

10 15

0.5 0.5 0.2212 (0.06, 0.38) 91.4 (0.09, 0.40) 93.2 (0.09, 0.39) 94.0
0.25 1 0.2212 (0.09, 0.38) 92.0 (0.12, 0.41) 93.4 (0.11, 0.38) 94.0
0.3 1 0.2592 (0.11, 0.42) 93.0 (0.14, 0.45) 95.2 (0.12, 0.42) 94.8
0.5 1 0.3935 (0.20, 0.60) 91.4 (0.22, 0.61) 93.8 (0.21, 0.58) 94.2
0.8 1 0.5507 (0.34, 0.74) 92.6 (0.32, 0.76) 91.6 (0.32, 0.71) 93.8
0.4 2 0.5507 (0.35, 0.76) 89.6 (0.36, 0.76) 93.2 (0.33, 0.73) 93.8
0.67 1.5 0.6340 (0.45, 0.83) 90.6 (0.44, 0.81) 94.8 (0.41, 0.79) 94.8
0.5 2 0.6340 (0.44, 0.83) 92.8 (0.44, 0.83) 96.4 (0.40, 0.79) 94.6
0.8 1.5 0.6988 (0.52, 0.87) 92.2 (0.50, 0.84) 94.6 (0.47, 0.83) 93.4
0.6 2 0.6988 (0.52, 0.88) 90.2 (0.51, 0.86) 94.2 (0.47, 0.84) 94.4
0.8 2 0.7981 (0.64, 0.93) 92.8 (0.62, 0.90) 94.0 (0.58, 0.89) 94.4

20 15

0.5 0.5 0.2212 (0.07, 0.37) 91.6 (0.09, 0.38) 93.0 (0.09, 0.38) 93.4
0.25 1 0.2212 (0.10, 0.35) 94.6 (0.12, 0.36) 95.2 (0.11, 0.35) 95.4
0.3 1 0.2592 (0.13, 0.40) 93.6 (0.14, 0.42) 93.8 (0.14, 0.41) 94.4
0.5 1 0.3935 (0.22, 0.57) 93.0 (0.22, 0.57) 94.8 (0.22, 0.56) 94.0
0.8 1 0.5507 (0.35, 0.73) 93.6 (0.33, 0.74) 92.0 (0.34, 0.71) 94.8
0.4 2 0.5507 (0.38, 0.73) 93.2 (0.39, 0.73) 95.0 (0.37, 0.71) 94.4
0.67 1.5 0.6340 (0.45, 0.80) 95.2 (0.44, 0.78) 97.4 (0.43, 0.77) 96.4
0.5 2 0.6340 (0.47, 0.81) 94.2 (0.46, 0.79) 95.6 (0.45, 0.78) 95.8
0.8 1.5 0.6988 (0.53, 0.85) 93.4 (0.50, 0.83) 94.2 (0.50, 0.82) 95.0
0.6 2 0.6988 (0.54, 0.86) 93.8 (0.52, 0.84) 95.6 (0.51, 0.83) 94.6
0.8 2 0.7981 (0.66, 0.92) 92.4 (0.63, 0.89) 93.0 (0.62, 0.89) 93.6

20 20

0.5 0.5 0.2212 (0.09, 0.36) 92.8 (0.10, 0.37) 94.0 (0.11, 0.36) 93.8
0.25 1 0.2212 (0.12, 0.34) 94.0 (0.13, 0.36) 93.8 (0.13, 0.35) 94.2
0.3 1 0.2592 (0.14, 0.39) 93.0 (0.16, 0.41) 92.4 (0.15, 0.40) 93.4
0.5 1 0.3935 (0.24, 0.56) 94.2 (0.24, 0.56) 95.2 (0.24, 0.55) 95.4
0.8 1 0.5507 (0.37, 0.71) 93.8 (0.36, 0.70) 95.0 (0.36, 0.69) 94.8
0.4 2 0.5507 (0.40, 0.71) 92.6 (0.39, 0.71) 93.8 (0.38, 0.69) 93.2
0.67 1.5 0.6340 (0.48, 0.79) 95.0 (0.47, 0.78) 95.8 (0.46, 0.77) 96.8
0.5 2 0.6340 (0.48, 0.79) 91.6 (0.47, 0.78) 93.2 (0.50, 0.77) 94.0
0.8 1.5 0.6988 (0.55, 0.84) 91.6 (0.53, 0.82) 93.0 (0.52, 0.81) 94.0
0.6 2 0.6988 (0.55, 0.84) 90.8 (0.53, 0.83) 93.4 (0.52, 0.81) 92.6
0.8 2 0.7981 (0.68, 0.91) 91.8 (0.66, 0.89) 94.6 (0.65, 0.89) 95.2

50 50

0.5 0.5 0.2212 (0.14, 0.31) 95.4 (0.14, 0.31) 95.8 (0.14, 0.31) 95.8
0.25 1 0.2212 (0.15, 0.30) 94.6 (0.16, 0.31) 95.0 (0.16, 0.30) 95.0
0.3 1 0.2592 (0.18, 0.34) 92.6 (0.19, 0.35) 94.2 (0.18, 0.34) 94.2
0.5 1 0.3935 (0.29, 0.50) 93.2 (0.30, 0.50) 94.2 (0.29, 0.50) 94.0
0.8 1 0.5507 (0.44, 0.66) 96.0 (0.44, 0.65) 95.2 (0.43, 0.65) 95.6
0.4 2 0.5507 (0.45, 0.65) 93.6 (0.45, 0.65) 94.8 (0.44, 0.65) 94.4
0.67 1.5 0.6340 (0.53, 0.74) 93.6 (0.53, 0.73) 93.4 (0.53, 0.73) 93.2
0.5 2 0.6340 (0.53, 0.73) 94.0 (0.53, 0.73) 95.4 (0.52, 0.72) 94.4
0.8 1.5 0.6988 (0.60, 0.79) 93.6 (0.60, 0.78) 94.0 (0.59, 0.78) 94.4
0.6 2 0.6988 (0.60, 0.79) 94.2 (0.60, 0.78) 94.2 (0.59, 0.78) 94.8
0.8 2 0.7981 (0.72, 0.87) 93.0 (0.72, 0.86) 93.6 (0.71, 0.86) 94.4

Appendix

Ř = E(R|tX , tY ) = 1− E(1−R|tX , tY ) = 1−
1∫

0

(1− r)πR(r|tX , tY )dr

= 1−
1∫

0

(1− r)K
B∑
j=0

(
B

j

)
(−1)j

(− ln(1− r))A+j

(1− r)DC−A−j

∞∫
−D ln(1−r)

tC−A−j−1e−tdtdr

= 1−K
B∑
j=0

(
B

j

)
(−1)j

DC−A−j

1∫
0

(− ln(1− r))A+j

∞∫
−D ln(1−r)

tC−A−j−1e−tdtdr

= 1−K
B∑
j=0

(
B

j

)
(−1)j

DC−A−j

∞∫
0

sA+je−s
∞∫

Ds

tC−A−j−1e−tdtds.(.1)
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We need to calculate the integral Lq(z) =
∞∫
z

tq−1e−tdt, z > 0, q ∈ Z. Depending on q we

have the following three possibilities:
(1) q > 0

Lq(z) = Γ(q, z) = (q − 1)!e−z
q−1∑
i=0

zi

i!
,

where Γ(q, z) is the incomplete gamma function.
(2) q = 0

Lq(z) = −Ei(−z) = −γ − ln z +

∞∑
i=1

(−1)i+1 zi

i · i! ,

where Ei(x) is the exponetial integral and γ is Euler’s constant.
(3) q < 0

Using integration by parts |q| times we get

Lq(z) = e−z
−q∑
i=1

(−1)i+1 z
i+q−1

(−q)! (−q − i)! +
(−1)−q

(−q)! L0(z).

Thus, the summands in (.1) can be expressed as(
B

j

)
(−1)j

DC−A−j

∞∫
0

sA+je−sLC−A−j(Ds)ds,

and depending on j, we have three types of summands:
(1) j < C −A

W1 =

(
B

j

)
(−1)j

DC−A−j

∞∫
0

sA+je−s(C −A− j − 1)!e−Ds
C−A−j−1∑

i=0

(Ds)i

i!
ds

= (−1)j
(
B

j

)
(C −A− j − 1)!

DC−A−j

C−A−j−1∑
i=0

Di

i!

∞∫
0

sA+j+ie−(D+1)sds

= (−1)j
(
B

j

)
(C − 1)!(
C−1
A+j

) C−A−j−1∑
i=0

(
A+j+i

i

)
DC−A−j−i(D + 1)A+j+i+1

.

This type of summand appears in (.1) whenever C −A > 0.
(2) j = C −A

W2 =

(
B

C−A

)
(−1)C−A

∞∫
0

sCe−s(−γ − ln(Ds) +

∞∑
i=1

(−1)i+1 (Ds)i

i · i! )ds

=

(
B

C−A

)
(−1)C−A−1

(
(γ + lnD)

∞∫
0

sCe−sds+

∞∫
0

ln s sCe−sds

+

∞∑
i=1

(−1)i
Di

i · i!

∞∫
0

sC+ie−sds

)

=

(
B

C−A

)
(−1)C−A−1

(
(γ + lnD)C! + ψ(C + 1)C!
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+

∞∑
i=1

(−1)i
Di

i · i! (C + i)!

)

=

(
B

C−A

)
(−1)C−A−1

(
(γ + lnD)C! + C!

(
− γ −

∞∑
i=1

(−1)i

i

(
C

i

))

+

∞∑
i=1

(−1)i
Di

i · i! (C + i)!

)

= (−1)C−A−1

(
B

C−A

)
C!

[
lnD +

∞∑
i=1

(−1)i

i

(
Di

(
C+i

i

)
−

(
C

i

))]
,

where ψ(x) is digamma function.
This type of summand appears in (.1) whenever 0 ≤ C −A ≤ B.

(3) j > C −A

W3 =

(
B

j

)
(−1)j

DC−A−j

∞∫
0

sA+je−s

×
(
e−Ds

A−C+j∑
i=1

(−1)i+1 (Ds)C−A−j+i−1

(A− C + j)!
(A− C + j − i)!

+
(−1)A−C+j

(A− C + j)!

(
− γ − ln(Ds) +

∞∑
i=1

(−1)i+1 (Ds)i

i · i!

))
ds

=

(
B

j

)
A−C+j∑
i=1

(−1)i+j+1Di−1(A− C + j − i)!
(A− C + j)!

×
∞∫
0

sC+i−1e−(D+1)sds+

(
B

j

)
(−1)A−C+1

(A− C + j)!

1

DC−A−j

×
(

(γ + lnD)

∞∫
0

sA+je−sds+

∞∫
0

ln s sA+je−sds

+

∞∑
i=1

(−1)i
Di

i · i!

∞∫
0

sA+j+ie−sds

)

=

(
B

j

)
A−C+j∑
i=1

(−1)i+j+1Di−1(A− C + j − i)!
(A− C + j)!

(C + i− 1)!

(D + 1)C+i

+

(
B

j

)
(−1)A−C+1

(A− C + j)!

1

DC−A−j

(
(γ + lnD)(A+ j)!

+ ψ(A+ j + 1)(A+ j)! +

∞∑
i=1

(−1)i
Di

i · i! (A+ j + i)!

)

=

(
B

j

)
(C − 1)!

A−C+j∑
i=1

(−1)i+j+1 Di−1
(
C+i−1

i

)
(D + 1)C+i

(
A−C+j

i

) +
(−1)A−C+1

DC−A−j

×

(
B

j

)(
A+ j

C

)
C!

[
lnD +

∞∑
i=1

(−1)i

i

(
Di

(
A+ j + i

i

)
−

(
A+ j

i

))]
.

This type of summand appears in (.1) whenever C −A < B.
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Expressing (.1) via these summands we get (4.1).
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