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Abstract

We propose a data driven test to identify first order positive Markovian
dependence in a Bernoulli sequence, based on a combination of two runs
tests: a well known runs test for the same purpose conditional on the
numbers of ones in the sequence, and a modified runs test independent
of the number of ones. We give analytic expressions for the exact
distribution of the modified runs test statistic and for its power; also
we built an algorithm to calculate it explicitly. To compare the power of
the tests, we calculated these for some values of the proportion of ones
and the success probability. We show that there are some intervals
for the success probability in which the new runs test surpasses the
power of the conditional test, and that the data driven test improves
the power of the two runs tests, when they are considered separately.

Keywords: Markov-dependent Bernoulli trials, Data driven runs test, Runs
distributions, Hypothesis of randomness, Power of a test.

2000 AMS Classification: Primary 62M02; Secondary 60J10

Received : 08.03.2014 Accepted : 02.03.2015 Doi : 10.15672/HJMS.2015559562

∗Department of Statistics, Universidad Nacional de Colombia, Bogota, Colombia, Email:
jacorzos@unal.edu.co
†Corresponding Author.
‡Department of Basic Sciences, Universidad de La Salle, Bogota, Colombia, and De-

partment of Statistics, Universidad Nacional de Colombia, Bogota, Colombia Email:
mvergara@unisalle.edu.co and mevergaram@unal.edu.co



522

1. Introduction
Since the pioneering work performed by [1], in which he calculated the power of a test

for randomness based on the total number of runs conditioned on the number of successes
in a binary sequence versus the first order Markovian dependence alternative, many other
works have appeared. For instance, one year later [2] calculated the conditional distri-
bution of the longest success run for a second order Markovian dependence alternative.
Later [3] studied the power of the conditional David’s test with a parametrization of the
transition probabilities. [4] used the total number of runs conditioned on the number of
symbols of each type for pattern sequences and calculated critical values for the distribu-
tion of the number of runs conditioned on the number of symbols of each type for pattern
sequences for randomness tests. [5] proposed a randomness test for the Markovian first
order alternative based on the length of the longest run and developed methods of com-
puting the probability of the occurrence of a given success-failure run as a function of
the composition of the run, the number n of trials and the probabilities of the possible
outcomes at each trial. [6] used the total number of success runs of length greater than k
and the total number of success runs of length k as test statistics to test the randomness
hypotheses versus three alternatives: First order Markov-dependence, non-systematic
unimodal and bimodal clustering and cyclical clustering. By a Monte Carlo study they
compared the powers of their tests with the power of two known tests; some based on the
total number of success (or failure) runs and others based on the length of the longest
success run, and they found that the test based on the number of overlapping success
runs of length k is slightly less sensitive than its competitors for success probabilities near
to 1. [7] studied a randomness test based on the conditional distribution of the sum of
the exact lengths of runs of length greater than k successes. They found that when the
type I error must be kept low (α = 0.01), their test is more powerful than a test based on
the number of runs of exact length k, for the first order Markov-dependence alternative.

Many other researchers have focused their research to calculate explicit expressions for
the distributions of runs statistics in many contexts; for example, [5], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18].

We propose a data driven test to identify first order positive Markovian dependence in a
Bernoulli sequence, based on a combination of two runs tests: the well known Barton and
David’s runs test, conditional on the number of ones in the sequence, for the Markovian
alternative, and an extension of this test to an unconditional test (on the number of
ones). We give analytic expressions for the exact distribution of the original and of the
extended runs test statistic and for its power; we built an algorithm and we developed
the R code to calculated it explicitly. To compare the power of the tests, we calculate
the exact powers of both tests for some values of the proportion of ones and the success
probability. We found intervals for the success probability for which the unconditional
runs test surpasses the power of the conditional test, and we show by calculating the
powers, that the data driven test optimizes the power of the two runs tests, when they
are considered separately. Finally, as a bonus product, we developed an algorithm and
implemented it in R code to solve a polynomial with matrix coefficients, to find explicitly
the distribution of the Markov-Binomial Distribution.
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2. Two Runs Tests for Markovian Dependence
Let η1 , . . . , ηN be a two state Markov chain and let p be the success probability such
that:

P (ηt = 1) = p, P (ηt = 0) = 1− p, 0 < p < 1 for t = 1, 2, . . . , N,

and stationary transition probabilities ([3]):

P11 = P (ηt = 1 | ηt−1 = 1) = (1− θ)p+ θ,

P10 = P (ηt = 0 | ηt−1 = 1) = (1− θ)(1− p),
P01 = P (ηt = 1 | ηt−1 = 0) = (1− θ)p,
P00 = P (ηt = 0 | ηt−1 = 0) = 1− (1− θ)p,

(2.1)

where θ is the coefficient of correlation between ηt−1 and ηt for t = 2, 3, . . . , N.

Although Barton and David gave the bounds ±1 for θ, they can be improved as follows:

From (2.1), the following is true:

0 ≤ (1− θ)p+ θ ≤ 1 or 0 ≤ (1− θ)(1− p) ≤ 1 implies − p

1− p ≤ θ ≤ 1,

0 ≤ (1− θ)p ≤ 1 or 0 ≤ 1− (1− θ)p ≤ 1 implies − 1− p
p
≤ θ ≤ 1.

(2.2)

Now from (2.2) we conclude:

for p = 1/2 it follows that − 1 ≤ θ ≤ 1,

for 0 < p < 1/2 it follows that − p

1− p ≤ θ ≤ 1,

and for 1/2 < p < 1 it follows that − 1− p
p
≤ θ ≤ 1.

(2.3)

The conditions (2.3) on θ are represented graphically in Figure 1.

2.1. The Barton-David Test. From now on, we will consider the following test prob-
lem:

H0 : θ = 0 against H1 : θ > 0 (positive Markovian dependence)

Let m be the fixed number of ones (successes), n = N−m the number of zeros (failures),
and let Rm be the total number of runs in η1 , . . . , ηN . [3] gave a conditional (on m)
runs test based on Rm, which rejects H0 in favor of the positive Markovian alternative
for few runs. The critical region was justified as follows: under H0, θ = 0 holds true
and hence η1 , . . . , ηN is a Bernoulli sequence of independent and identically distributed
(i.i.d.) random variables; under H1, either θ > 0 (positive dependence), which implies
P11 > P01 or P00 > P10, and then we expect few runs.

Let ζ =
∑N
t=1 ηt be a random variable denoting the number of ones in the sequence

η1 . . . , ηN . [3] gave the following expressions for:
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Figure 1. Relation between p and θ

a) the null distribution of Rm

(2.4) P0(Rm = r | ζ = m) =


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b) the power of the conditional Rm test

(2.5) Pθ (Rm = r | ζ = m) =


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−2p(1− p)− θ(p2 + (1− p)2) + Np(1−p(1−θ))+nθ(1−2p)

r−1
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)
×(

p(1−p)(1−θ)2
(p(1−θ)+θ)(1−p(1−θ))

) r−1
2 if r is odd,

where
S =

n∑
k=1

[
p(1− p)(1− θ)2

(p(1− θ) + θ)(1− p(1− θ))

]k (m− 1

k − 1

)(n− 1

k − 1

)
[
θ(1− θ)k + (1− θ)

[
Np(1− p) + θ(Np2 + n(1− 2p))

]
k(1− θ)(p(1− θ) + θ)(1− p(1− θ))

]
.

2.2. A Modified Runs Test. The conditional Rm test in (2.4) can be modified as fo-
llows: as we noted above, under H0, η1 , . . . , ηN is an i.i.d. Bernoulli sequence and hence
ζ is Binomial distributed with parameters N and p = P (ηt = 1), for t = 1, . . . , N . Now
let R be the total number of runs, without taking into account the number of ones in the
sequence η1 . . . , ηN . The modified R test rejects H0 in favor of the positive Markovian
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dependence alternative for few runs, with the same arguments as for the Rm test, but
now the reject region must be calculated from the unconditional distribution of R, by
means of the theorem of total probabilities, as follows:

P0(R = r) =

N∑
m=0

P0(Rm = r | ζ = m)

(
N

m

)
pm(1− p)N−m,

for r = 1, . . . , N , where the conditional distribution of Rm is calculated as in (2.4).

2.2.1. The Power of the Modified R Test. We obtain the distribution of the R, under
the Markovian alternative H1 as follows:

(2.6) Pθ (R = r) =

N∑
m=0

Pθ (Rm = r | ζ = m)Pθ (ζ = m),

for r = 1, . . . , N , where Pθ (Rm = r | ζ = m) is given in (2.5), and Pθ (ζ = m) under H1 is
calculated by means of the probability generating function (pgf) of the Markov-Binomial
Distribution ([19]) as a function of the dummy variable s:

GN (s) =
(
ps 1 − p

)( ((1 − θ)p+ θ)s (1 − θ)(1 − p)
(1 − θ)ps 1 − (1 − θ)p

)N−1 (
1
1

)
=

(
ps 1 − p

)
A
N−1

(
1
1

)
,

(2.7)

N = 1, 2, . . . , for 0 ≤ s ≤ 1, where A =
(

((1 − θ)p+ θ)s (1 − θ)(1 − p)
(1 − θ)ps 1 − (1 − θ)p

)
.

2.2.2. Algorithm to Calculate the Markov-Binomial Distribution Explicitly. To calculate
the power of the R test in (2.6), we need to extract the coefficients of s in the pgf (2.7) of
the Markov-Binomial Distribution, which contains the probability distribution of ζ. For
this, the following algorithm is useful:

(2.8)

AN−1 =

(
((1− θ)p+ θ)s (1− θ)(1− p)

(1− θ)ps 1− (1− θ)p

)N−1

=

(
c111 s+ c112 s2 + · · ·+ c11N−1 s

N−1 c120 + c121 s+ · · ·+ c12N−2 s
N−2

c211 s+ c212 s2 + · · ·+ c21N−1 s
N−1 c220 + c221 s+ · · ·+ c22N−2 s

N−2

)
=

(
c111 0
c211 0

)
s+

(
c112 0
c212 0

)
s2 + · · ·+

(
c11N−1 0

c21N−1 0

)
sN−1+(

0 c120
0 c220

)
+

(
0 c121
0 c221

)
s+ · · ·+

(
0 c12N−2

0 c22N−2

)
sN−2

=

(
0 c120
0 c220

)
+

(
c111 c121
c211 c221

)
s+

· · ·+
(

c11N−2 c12N−2

c21N−2 c22N−2

)
sN−2 +

(
c11N−1 0

c21N−1 0

)
sN−1

= C(0) + C(1)s+ · · ·+ C(N−2)sN−2 + C(N−1)sN−1

=

N−1∑
m=0

C(m)sm,

where C(m) are matrices with the role of coefficients of the polynomial in s.
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For example, for N = 3 the coefficients of the polynomial can be calculated as follows:
let A be the transition matrix whose first column is multiplied by the auxiliary variable
s. Then the power of the matrix in (2.7) can be written as:

A2 =

(
((1− θ)p+ θ)s (1− θ)(1− p)

(1− θ)ps 1− (1− θ)p

)2

=

(
c111 s+ c112 s2 c120 + c121 s

c211 s+ c212 s2 c220 + c221 s

)
=

(
0 c120
0 c220

)
+

(
c111 c121
c211 c221

)
s+

(
c112 0

c212 0

)
s2

= C(0) + C(1)s+ C(2)s2,

where
c120 = (1− (1− θ)p)(1− θ)(1− p)

c220 = (1− (1− θ)p)2

c111 = (1− θ)2(1− p)p

c211 = (1− (1− θ)p)(1− θ)p

c112 = ((1− θ)p+ θ)2

c212 = ((1− θ)p+ θ)(1− θ)p

c121 = ((1− θ)p+ θ)(1− θ)(1− p)

c221 = (1− θ)2(1− p)p

Using the polynomial expression for the power of the matrix A introduced in (2.8), the
pgf of ζ can be expressed as:

GN (s) =
(
ps 1− p

) [N−1∑
m=0

C(m)sm

](
1
1

)

= {
(
p 0

)
s+

(
0 1− p

)
}
[
N−1∑
m=0

C(m)sm

](
1
1

)

=
(
p 0

) N∑
m=1

C(m−1)sm
(

1

1

)
+
(

0 1− p
) [N−1∑

m=0

C(m)sm

](
1

1

)

=
(
p 0

) [N−1∑
m=1

C(m−1)sm + C(N−1)sN

](
1

1

)
+(2.9)

(
0 1− p

) [
C(0) +

N−1∑
m=1

C(m)sm

](
1
1

)

=
(
p 0

)
C(N−1)

(
1

1

)
sN+

N−1∑
m=1

[(
p 0

)
C(m−1)

(
1
1

)
+
(

0 1− p
)
C(m)

(
1
1

)]
sm+

(
0 1− p

)
C(0)

(
1

1

)
.

2.2.3. Algorithm to calculate the coefficients C(m). To obtain the coefficients C(m),m =
0, . . . , N in (2.9) we have to decompose the matrix A as follows:

A =

(
((1− θ)p+ θ)s (1− θ)(1− p)

(1− θ)ps 1− (1− θ)p

)
=(

0 (1− θ)(1− p)
0 1− (1− θ)p

)
+

(
((1− θ)p+ θ) 0

(1− θ)p 0

)
s = U + V s.
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All summands of the (N − 1)-th power of A can be generated by iterating the following
binomial expression:

AN−1 = (U + V s)N−1

= (UU . . . U)︸ ︷︷ ︸(
N−1

0

)
summands

+(UU . . . UV + UU . . . V U + · · ·+ V U . . . UU)︸ ︷︷ ︸(
N−1

1

)
summands

s+

(UUU . . . UV V + UU . . . V UV + · · ·+ V V U . . . UUU)︸ ︷︷ ︸(
N−1

2

)
summands

s2 + · · ·+(2.10)

(UV . . . V V + V U . . . V V + · · ·+ V V . . . V U)︸ ︷︷ ︸(
N−1
N−2

)
summands

sN−2 + (V V . . . V )︸ ︷︷ ︸(
N−1
N−1

)
summands

sN−1.

Comparing the coefficients in (2.8) and (2.10) we obtain:

C(0) = UU . . . U︸ ︷︷ ︸(
N−1

0

)
summands

C(1) = UU . . . UV + UU . . . V U + · · ·+ V U . . . UU︸ ︷︷ ︸(
N−1

1

)
summands

C(2) = UUU . . . UV V + UU . . . V UV + · · ·+ V V U . . . UUU︸ ︷︷ ︸(
N−1

2

)
summands

...

C(N−2) = V V . . . V U + V V . . . UV + · · ·+ UV . . . V V︸ ︷︷ ︸(
N−1
N−2

)
summands

C(N−1) = V V . . . V︸ ︷︷ ︸(
N−1
N−1

)
summands

Note that m in C(m) corresponds to the number of times that the matrix V is in the
products and it is also the number of ones in the sample. In order to generate all
summands, we can iterate over all binary numbers with N bits:
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

U U U . . . U U U

U U U . . . U U V

U U U . . . U V U
...

V U U . . . U U U

U U U . . . U V V
U U U . . . V U V

...
V V U . . . U U U

...
...

...

V V V . . . V V U
V V V . . . V U V

...
U V V . . . V V V

V V V . . . V V V


2N×(N−1)

7−→



0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 1

0 0 0 . . . 0 1 0
...

1 0 0 . . . 0 0 0

0 0 0 . . . 0 1 1

0 0 0 . . . 1 0 1
...

1 1 0 . . . 0 0 0

...
...

...

1 1 1 . . . 1 1 0

1 1 1 . . . 1 0 1
...

0 1 1 . . . 1 1 1

1 1 1 . . . 1 1 1


2N×(N−1)

The first row in the second matrix indicates that in C(0) the matrix U must be multi-
plied (N − 1) times. The following

(
N−1

1

)
rows indicate that for C(1) there are

(
N−1

1

)
summands, each one of them containing the product of (N − 2) Us and one V , and so
on. These iterations are helpful to identify the summands to calculate C(m).

2.2.4. Algorithm to Calculate the Power of the Rm Test and of the Modified R Test.
To compare the power of the modified R test with the power of the Rm test, we will
calculate it explicitly for some values of θ, p, m and N with the following algorithm:

(1) Calculate the conditional probability distribution of Rm under the alternative
as in (2.5), the probability distribution of R under the alternative as in (2.6),
and the probability distribution of ζ using (2.9):

(a) P (ζ = N) =
(
p 0

)
C(N−1)

(
1

1

)
.

(b) P (ζ = m) =

[(
p 0

)
C(m−1)

(
1

1

)
+
(

0 1− p
)
C(m)

(
1
1

)]
, form =

1, . . . , N − 1

(c) P (ζ = 0) =
(

0 1− p
)
C(0)

(
1

1

)
where the matrix C(m) for m = 0, . . . , (N − 1), is calculated with the algorithm
2.2.3.

(2) Calculate the conditional cumulative distributions of Rm and of R under the
alternative.

(3) Fix significance level α = 0.05 and find critical values cm and c such that
P0(Rm ≤ cm | ζ = m) ≤ α, and P0(R ≤ c) ≤ α respectively.

(4) Randomize the Rm and R tests such that for 0 < γ < 1 and 0 < γ′ < 1

α = P0(Rm ≤ cm | ζ = m) + γ P0(cm < Rm ≤ cm + 1 | ζ = m)
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and

α = P0(R ≤ c) + γ′ P0(c < R ≤ c+ 1)

(5) Calculate the power of the randomized Rm and R tests as follows:

πRm (θ) = Pθ (Rm ≤ cm | ζ = m) + γ Pθ (cm < Rm ≤ cm + 1 | ζ = m).

and

πR(θ) = Pθ (R ≤ c) + γ′ Pθ (c < R ≤ c+ 1).

respectively.

3. A Comparative Power Study and Main Results
We calculated the exact power of the R and Rm tests explicitly, for sample sizes§

N = 7(1)22, 30, 40, 50, for p = 0.1(0.05)0.9 and for θ = 0(0.05)0.9. The Rm test was
compared with the R test for each value of p, for each N and each m. We have not
included the extreme cases m = 0 and m = N because for these the power of the Rm
test is zero.

We show the main results for N = 10(10)50, for θ = 0(0.1)0.9 and for some number
of ones in the observed sequence obtained as percents ([N(10%)] and [N(20%)]) of the
sample size, to find typical patterns of the powers of the compared tests¶. They are in
Tables 1 to 15, ordered as follows: Tables 1, 4, 7, 10 and 13 contain the powers of the R
test. The other tables are for the Rm test distinguished by the number of ones.

To facilitate the reading of the tables, we built three dimensional graphic illustrations,
each containing five graphics denoted by π(p, θ) for each combination of p and θ and the
five sample sizes considered. Intersections of the red lines are powers of the R test and
the blue ones are powers of the Rm test for fixed values of m.

All figures and all graphics show that the powers of the R test increase with θ as ex-
pected, that the powers increase faster for values of p around 0.5 and that the speed of
increase is lower when p tends to zero or to one. The power of the Rm test shows small
decreases for values of p around 0.5.

In Figure 4, for example, with 10% ones in the observed sequence, for success probabili-
ties p between 0.3 and 0.7, and for sample sizes N = 10(10)50, it can be noted that the
R test is more powerful than the Rm test. We specially note that for N = 10, the same
result occurs in a bit larger interval for 0.2 ≤ p ≤ 0.8, as can be verified in Tables 1
and 2, with some exceptions for values of θ less than or equal to 0.5, where the power of
the Rm test is greater than the power of the R test. The same situation occurs for the
powers showed in figure 5 for 20% ones, but now it holds for a smaller interval of values
of p: 0.4 ≤ p ≤ 0.6.

In general, the interval of values of p for which the power of the R test overtakes the
power of the Rm test is smaller when m increases up to 50% ones, the case in which the
power of the Rm test overtakes the power of the R test for all values of p. From 50% to

§N = a(step)b, c, d, . . . means that N goes from a to b, jumping a “step” each time, and after
value b, taking values c,d,. . .
¶All these calculations of this section are available on the web page

http://www.docentes.unal.edu.co/jacorzos/docs/, document: WebPotencia_R_R_m.pdf.
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100% ones, the interval of values of p for which the R test overtakes the Rm test increases.

For a fixed percent of ones, it can be observed that the length of the interval of values
of p in which the power of the R test overtakes the power of the Rm test tends to be
constant, for all compared sample sizes. It can be noted that the R test seems to be more
powerful than the Rm test because the larger the correlation between observations, the
fewer and larger are the runs.

In Tables 1, 4, 7, 10 and 13 we can see that the power of the R test increases with N
around p = 1/2. On the other hand, the power of the Rm test increases with N and with
m around N/2 when N is even, around (N − 1)/2 and (N + 1)/2 when N is odd ‖.

Although these types of Markov chains could seem rare, we highlight the conditions under
which they can occur. In Figure 2, side (a), we see that P11 increases with θ and p, whilst
P01 decreases with θ and increases with p. Moreover, in part (b) we see that P00 increases
with θ and decreases with p, whilst P10 decreases with both θ and p. We can also see in
part (a), that when θ increases it holds true that P11 > P01, and P11 tends to be much
larger than P01 when θ tends to one, and that implies few runs and large runs of ones.
In part (b), the situation is analogous, but with the zeros instead of the ones.

Figure 2. Positive association: (a) Transition Probabilities P11 (red)
and P01(green), (b) Transition Probabilities P00 (red) and P10(green)

A Data Driven Test. As we said, the power of the R test is greater than the power of
the Rm test for some intervals of values of the success probability p and for some values
of m. This suggests the following selection process of the appropriate test for a fixed
level α = 0.05:

(1) Calculate the number of ones m in the observed sequence.
(2) Estimate the success probability p, by means of the [20] estimator∗∗ p̂ = 1

N

∑N
i=1 xi.

(3) Choose the data driven test as follows (see Figure 3):

‖See list of tables justifying this comments in our web page, in the cited document.
∗∗Although p̂ is the old well known plug-in estimator of p given by [21], we reference [20]

because he shows, among other things, that the maximum likelihood estimator for (p̂, θ̂) obtained
under Markovian dependence, is strongly consistent for (p, θ).
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Select the R test if:

• p̂ ∈ [0.25, 0.75] and m ∈ (0%N, 13%N) ∪ (87%N, 100%N)
• p̂ ∈ [0.30, 0.70] and m ∈ [13%N, 17%N) ∪ (83%N, 87%N ]

• p̂ ∈ [0.35, 0.65] and m ∈ [17%N, 23%N) ∪ (77%N, 83%N ]

• p̂ ∈ [0.40, 0.60] and m ∈ [23%N, 33%N) ∪ (67%N, 77%N ]
• p̂ ∈ [0.45, 0.55] and m ∈ [33%N, 43%N) ∪ (57%N, 67%N ]

• p̂ = 0.50 and m ∈ [43%N, 57%N ]

Select the Rm test otherwise.

Figure 3. Regions to choose between R and Rm Tests

4. Example
A first order homogeneous Markov Chain (fohMC) can be used to describe the behav-

ior of a buyer as follows††: a buyer at a supermarket A switches to buying in a super-
market B on her/his next shopping trip with probability λ > 0, while she/he switches to
supermarket A with probability β > 0 when her/his last shopping was in supermarket B.

To verify the Markovian assumption of the behavior of the buyer, we simulated first
order homogeneous Markov Chains using the Metropolis Hasting Algorithm, for some
values of the success probability p and the correlation between successive observations
θ. These combinations of values p and θ give values of the transition probabilities λ, β
which indicate how Markovian the behavior of the buyer is.

††Adapted from [22]
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For each combination of (p,θ), p, θ = 0.1(0.1)0.9, we simulate 1000 fohMC and we select
those with not all zeros and not all ones, because such stable buyers are not interesting.
For the remaining fohMC, we calculate the proportion of rejections of the null hypothesis,
and the ratio (1−λ)/β to find the conditions for which the fohMC is a good assumption
for the behavior of the consumer.

The results are in Table 16 for N = 20. It can be seen that the empirical powers of the
test increase up to 87% for p = 0.4 and θ = 0.9. It can be noted also that the ratio
p00/p10 = (1− λ)/β grows also with θ, as expected.

The fact that the larger the values of the ratio (1 − λ)/β, the greater the empirical
power of the runs test, indicates that the behavior of the consumer tends to be most
Markovian when the probability of continuing shopping in supermarket A is larger than
the probability of switching to supermarket B.

5. Conclusions and Discussion
We have discovered regions of values of m and p where the R test is more powerful than
the Rm test, and we have included additional information about p and m to the test
statistic, to produce a data driven test which covers the complete p × m region, and
improves the power of the test.

The power of the R test increases with N and especially around p = 1/2, while the power
of the Rm test increases with N and with m around N/2, for N even or (N − 1)/2 and
(N + 1)/2 for N odd.

Although the proposed data driven test includes information about the length of the runs
without being explicit (few runs implies long runs in most cases), a way to improve the
power of the test could be to include the length of the runs explicitly, and to use the
results of [15] or of [23] about the distribution of the longest runs test.

Acknowledgements: We are thankful to the statistician Gustavo Romero for develop-
ing the R code for the algorithm to obtain the coefficients of the pgf.
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Appendix A. Figures of the Power of the Proposed Test

N=10 and m=1 N=20 and m=2

N=30 and m=3 N=40 and m=4

N=50 and m=5

Figure 4. πR(p, θ) (red) vs. πRm (p, θ) (blue) for N = 10, 20, 30, 40, 50
with 10% ones
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N=10 and m=2 N=20 and m=4

N=30 and m=6 N=40 and m=8

N=50 and m=10

Figure 5. πR(p, θ) (red) vs. πRm (p, θ) (blue) for N = 10, 20, 30, 40, 50
with 20% ones
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Appendix B. Tables of the Power of the Proposed Test

Table 1. Power of the R Test, N=10

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0552 0.0624 0.0729 0.0815 0.0866 0.0815 0.0729 0.0624 0.0552
0.20 0.0609 0.0776 0.1047 0.1274 0.1404 0.1274 0.1047 0.0776 0.0609
0.30 0.0672 0.0959 0.1480 0.1918 0.2148 0.1918 0.1480 0.0959 0.0672
0.40 0.0740 0.1182 0.2059 0.2780 0.3116 0.2780 0.2059 0.1182 0.0740
0.50 0.0814 0.1453 0.2821 0.3879 0.4305 0.3879 0.2821 0.1453 0.0814
0.60 0.0896 0.1788 0.3797 0.5205 0.5671 0.5205 0.3797 0.1788 0.0896
0.70 0.0990 0.2213 0.5016 0.6692 0.7120 0.6692 0.5016 0.2213 0.0990
0.80 0.1100 0.2774 0.6485 0.8196 0.8495 0.8196 0.6485 0.2774 0.1100
0.90 0.1240 0.3546 0.8176 0.9447 0.9560 0.9447 0.8176 0.3546 0.1240

Table 2. Power of the Rm Test, N=10 and m=1

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0548 0.0554 0.0562 0.0571 0.0585 0.0605 0.0638 0.0700 0.0864
0.20 0.0605 0.0618 0.0633 0.0654 0.0682 0.0722 0.0786 0.0900 0.1167
0.30 0.0674 0.0694 0.0718 0.0750 0.0793 0.0853 0.0944 0.1100 0.1423
0.40 0.0758 0.0786 0.0820 0.0864 0.0921 0.1000 0.1115 0.1300 0.1643
0.50 0.0864 0.0900 0.0944 0.1000 0.1071 0.1167 0.1300 0.1500 0.1833
0.60 0.1000 0.1045 0.1100 0.1167 0.1250 0.1357 0.1500 0.1700 0.2000
0.70 0.1183 0.1237 0.1300 0.1375 0.1466 0.1577 0.1717 0.1900 0.2147
0.80 0.1441 0.1500 0.1567 0.1643 0.1731 0.1833 0.1955 0.2100 0.2278
0.90 0.1833 0.1885 0.1940 0.2000 0.2065 0.2136 0.2214 0.2300 0.2395

Table 3. Power of the Rm Test, N=10 and m=2

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0983 0.0816 0.0763 0.0745 0.0749 0.0773 0.0827 0.0947 0.1307
0.20 0.1496 0.1216 0.1114 0.1083 0.1096 0.1153 0.1276 0.1540 0.2255
0.30 0.2042 0.1707 0.1573 0.1535 0.1564 0.1664 0.1869 0.2281 0.3271
0.40 0.2628 0.2298 0.2158 0.2127 0.2183 0.2334 0.2623 0.3165 0.4316
0.50 0.3272 0.3001 0.2887 0.2882 0.2976 0.3182 0.3547 0.4178 0.5361
0.60 0.4008 0.3834 0.3779 0.3822 0.3964 0.4222 0.4637 0.5296 0.6386
0.70 0.4891 0.4836 0.4862 0.4967 0.5158 0.5450 0.5875 0.6484 0.7374
0.80 0.6020 0.6078 0.6184 0.6343 0.6561 0.6848 0.7219 0.7696 0.8312
0.90 0.7586 0.7701 0.7837 0.7994 0.8174 0.8380 0.8616 0.8884 0.9190

Table 4. Power of the R Test, N=20

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0617 0.0736 0.0871 0.1091 0.1091 0.1049 0.0871 0.0736 0.0617
0.20 0.0759 0.1068 0.1451 0.2086 0.2086 0.1971 0.1451 0.1068 0.0759
0.30 0.0932 0.1528 0.2305 0.3525 0.3525 0.3323 0.2305 0.1528 0.0932
0.40 0.1142 0.2155 0.3482 0.5299 0.5299 0.5034 0.3482 0.2155 0.1142
0.50 0.1397 0.2994 0.4971 0.7126 0.7126 0.6861 0.4971 0.2994 0.1397
0.60 0.1704 0.4097 0.6650 0.8635 0.8635 0.8440 0.6650 0.4097 0.1704
0.70 0.2076 0.5504 0.8255 0.9565 0.9565 0.9470 0.8255 0.5504 0.2076
0.80 0.2531 0.7205 0.9428 0.9933 0.9933 0.9909 0.9428 0.7205 0.2531
0.90 0.3126 0.8988 0.9940 0.9998 0.9998 0.9997 0.9940 0.8988 0.3126
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Table 5. Power of the Rm Test, N=20 and m=2

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.1025 0.0815 0.0747 0.0715 0.0717 0.0725 0.0759 0.0840 0.1092
0.20 0.1631 0.1223 0.1079 0.1010 0.1017 0.1035 0.1112 0.1292 0.1818
0.30 0.2302 0.1739 0.1520 0.1412 0.1426 0.1457 0.1587 0.1880 0.2674
0.40 0.3017 0.2372 0.2094 0.1954 0.1979 0.2027 0.2217 0.2627 0.3649
0.50 0.3750 0.3121 0.2819 0.2668 0.2712 0.2780 0.3033 0.3552 0.4723
0.60 0.4489 0.3973 0.3703 0.3582 0.3659 0.3748 0.4062 0.4658 0.5862
0.70 0.5252 0.4922 0.4747 0.4713 0.4838 0.4951 0.5309 0.5925 0.7018
0.80 0.6119 0.6004 0.5971 0.6073 0.6254 0.6385 0.6750 0.7299 0.8133
0.90 0.7351 0.7414 0.7511 0.7728 0.7929 0.8049 0.8334 0.8694 0.9146

Table 6. Power of the Rm Test, N=20 and m=4

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.1496 0.1073 0.0940 0.0879 0.0883 0.0898 0.0961 0.1116 0.1614
0.20 0.2784 0.1912 0.1608 0.1463 0.1475 0.1511 0.1667 0.2034 0.3089
0.30 0.4211 0.3014 0.2544 0.2309 0.2333 0.2396 0.2659 0.3244 0.4702
0.40 0.5656 0.4338 0.3754 0.3449 0.3489 0.3579 0.3938 0.4679 0.6265
0.50 0.7011 0.5794 0.5191 0.4866 0.4922 0.5030 0.5439 0.6213 0.7631
0.60 0.8178 0.7244 0.6735 0.6456 0.6522 0.6629 0.7010 0.7668 0.8700
0.70 0.9078 0.8516 0.8185 0.8007 0.8068 0.8151 0.8425 0.8852 0.9426
0.80 0.9665 0.9437 0.9297 0.9229 0.9267 0.9310 0.9439 0.9619 0.9827
0.90 0.9945 0.9908 0.9885 0.9878 0.9888 0.9897 0.9920 0.9949 0.9979

Table 7. Power of the R Test, N=30

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0689 0.0826 0.1025 0.1294 0.1294 0.1229 0.1025 0.0826 0.0689
0.20 0.0946 0.1322 0.1922 0.2724 0.2724 0.2537 0.1922 0.1322 0.0946
0.30 0.1294 0.2048 0.3280 0.4739 0.4739 0.4425 0.3280 0.2048 0.1294
0.40 0.1765 0.3058 0.5055 0.6918 0.6918 0.6564 0.5055 0.3058 0.1765
0.50 0.2398 0.4380 0.6985 0.8661 0.8661 0.8395 0.6985 0.4380 0.2398
0.60 0.3249 0.5972 0.8625 0.9623 0.9623 0.9500 0.8625 0.5972 0.3249
0.70 0.4388 0.7666 0.9610 0.9946 0.9946 0.9917 0.9610 0.7666 0.4388
0.80 0.5907 0.9114 0.9954 0.9998 0.9998 0.9996 0.9954 0.9114 0.5907
0.90 0.7892 0.9889 0.9999 1.0000 1.0000 1.0000 0.9999 0.9889 0.7892

Table 8. Power of the Rm Test, N=30 and m=3

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.1127 0.0878 0.0802 0.0772 0.0782 0.0796 0.0851 0.0979 0.1389
0.20 0.1959 0.1420 0.1245 0.1177 0.1204 0.1239 0.1375 0.1685 0.2597
0.30 0.3011 0.2174 0.1884 0.1771 0.1822 0.1886 0.2127 0.2649 0.4016
0.40 0.4271 0.3185 0.2779 0.2619 0.2701 0.2799 0.3155 0.3877 0.5518
0.50 0.5677 0.4474 0.3980 0.3784 0.3897 0.4027 0.4477 0.5322 0.6964
0.60 0.7110 0.5994 0.5485 0.5283 0.5415 0.5561 0.6040 0.6861 0.8215
0.70 0.8395 0.7587 0.7176 0.7013 0.7138 0.7267 0.7670 0.8292 0.9156
0.80 0.9356 0.8963 0.8746 0.8665 0.8747 0.8825 0.9052 0.9365 0.9728
0.90 0.9881 0.9802 0.9757 0.9746 0.9770 0.9790 0.9842 0.9904 0.9964
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Table 9. Power of the Rm Test, N=30 and m=6

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.2050 0.1341 0.1128 0.1028 0.1029 0.1047 0.1132 0.1348 0.2057
0.20 0.4221 0.2709 0.2181 0.1918 0.1919 0.1965 0.2182 0.2705 0.4183
0.30 0.6386 0.4498 0.3688 0.3247 0.3245 0.3321 0.3673 0.4461 0.6295
0.40 0.8099 0.6417 0.5515 0.4966 0.4958 0.5053 0.5476 0.6345 0.7992
0.50 0.9193 0.8091 0.7349 0.6837 0.6824 0.6912 0.7294 0.8008 0.9112
0.60 0.9744 0.9235 0.8806 0.8468 0.8455 0.8512 0.8758 0.9175 0.9703
0.70 0.9947 0.9801 0.9650 0.9511 0.9504 0.9527 0.9625 0.9777 0.9935
0.80 0.9995 0.9976 0.9952 0.9927 0.9925 0.9930 0.9947 0.9972 0.9993
0.90 1.0000 1.0000 0.9999 0.9998 0.9998 0.9998 0.9999 0.9999 1.0000

Table 10. Power of the R Test, N=40

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0715 0.0910 0.1138 0.1403 0.1531 0.1403 0.1138 0.0910 0.0715
0.20 0.1013 0.1576 0.2285 0.3099 0.3464 0.3099 0.2285 0.1576 0.1013
0.30 0.1421 0.2579 0.4014 0.5442 0.5986 0.5442 0.4014 0.2579 0.1421
0.40 0.1975 0.3965 0.6126 0.7743 0.8221 0.7743 0.6126 0.3965 0.1975
0.50 0.2716 0.5674 0.8100 0.9259 0.9499 0.9259 0.8100 0.5674 0.2716
0.60 0.3690 0.7476 0.9394 0.9866 0.9926 0.9866 0.9394 0.7476 0.3690
0.70 0.4947 0.8971 0.9904 0.9990 0.9996 0.9990 0.9904 0.8971 0.4947
0.80 0.6532 0.9793 0.9996 1.0000 1.0000 1.0000 0.9996 0.9793 0.6532
0.90 0.8446 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.8446

Table 11. Power of the Rm Test, N=40 and m=4

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.1372 0.1003 0.0893 0.0854 0.0851 0.0878 0.0947 0.1111 0.1637
0.20 0.2647 0.1787 0.1514 0.1414 0.1404 0.1471 0.1644 0.2040 0.3185
0.30 0.4234 0.2912 0.2441 0.2261 0.2241 0.2357 0.2654 0.3300 0.4907
0.40 0.5949 0.4375 0.3727 0.3464 0.3429 0.3592 0.4003 0.4831 0.6574
0.50 0.7548 0.6064 0.5344 0.5026 0.4978 0.5165 0.5625 0.6479 0.7988
0.60 0.8798 0.7728 0.7108 0.6807 0.6753 0.6920 0.7323 0.8007 0.9024
0.70 0.9572 0.9039 0.8667 0.8466 0.8422 0.8526 0.8774 0.9160 0.9646
0.80 0.9912 0.9767 0.9646 0.9572 0.9552 0.9587 0.9671 0.9792 0.9924
0.90 0.9995 0.9984 0.9974 0.9967 0.9965 0.9968 0.9975 0.9985 0.9995

Table 12. Power of the Rm Test, N=40 and m=8

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.2286 0.1478 0.1239 0.1149 0.1131 0.1172 0.1293 0.1592 0.2579
0.20 0.4804 0.3124 0.2530 0.2296 0.2250 0.2359 0.2675 0.3407 0.5350
0.30 0.7150 0.5226 0.4364 0.3993 0.3918 0.4098 0.4594 0.5615 0.7663
0.40 0.8769 0.7300 0.6450 0.6041 0.5957 0.6163 0.6696 0.7651 0.9079
0.50 0.9606 0.8847 0.8278 0.7969 0.7903 0.8066 0.8457 0.9057 0.9731
0.60 0.9916 0.9670 0.9433 0.9287 0.9254 0.9335 0.9513 0.9748 0.9947
0.70 0.9990 0.9949 0.9899 0.9863 0.9855 0.9876 0.9917 0.9964 0.9994
0.80 1.0000 0.9997 0.9994 0.9991 0.9991 0.9992 0.9995 0.9998 1.0000
0.90 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 13. Power of the R Test, N=50

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0766 0.0992 0.1249 0.1678 0.1678 0.1565 0.1249 0.0992 0.0766
0.20 0.1156 0.1831 0.2645 0.3936 0.3936 0.3618 0.2645 0.1831 0.1156
0.30 0.1716 0.3118 0.4708 0.6719 0.6719 0.6292 0.4708 0.3118 0.1716
0.40 0.2499 0.4846 0.7018 0.8841 0.8841 0.8539 0.7018 0.4846 0.2499
0.50 0.3559 0.6800 0.8839 0.9773 0.9773 0.9668 0.8839 0.6800 0.3559
0.60 0.4926 0.8535 0.9743 0.9981 0.9981 0.9966 0.9743 0.8535 0.4926
0.70 0.6568 0.9603 0.9977 1.0000 1.0000 0.9999 0.9977 0.9603 0.6568
0.80 0.8304 0.9961 1.0000 1.0000 1.0000 1.0000 1.0000 0.9961 0.8304
0.90 0.9659 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9659

Table 14. Power of the Rm Test, N=50 and m=5

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.1703 0.1159 0.0995 0.0918 0.0919 0.0933 0.1000 0.1167 0.1715
0.20 0.3459 0.2221 0.1808 0.1606 0.1607 0.1643 0.1813 0.2225 0.3438
0.30 0.5451 0.3706 0.3020 0.2660 0.2659 0.2722 0.3013 0.3682 0.5366
0.40 0.7298 0.5494 0.4629 0.4131 0.4125 0.4210 0.4598 0.5426 0.7166
0.50 0.8697 0.7303 0.6472 0.5934 0.5921 0.6011 0.6413 0.7202 0.8569
0.60 0.9530 0.8766 0.8192 0.7767 0.7750 0.7820 0.8125 0.8672 0.9449
0.70 0.9891 0.9632 0.9386 0.9173 0.9161 0.9195 0.9342 0.9581 0.9861
0.80 0.9988 0.9949 0.9902 0.9854 0.9850 0.9858 0.9890 0.9938 0.9983
0.90 1.0000 0.9999 0.9997 0.9996 0.9996 0.9996 0.9997 0.9998 1.0000

Table 15. Power of the Rm Test, N=50 and m=10

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.2674 0.1660 0.1357 0.1241 0.1210 0.1246 0.1371 0.1690 0.2761
0.20 0.5604 0.3630 0.2890 0.2584 0.2503 0.2602 0.2933 0.3717 0.5787
0.30 0.7963 0.5992 0.4998 0.4536 0.4410 0.4569 0.5071 0.6121 0.8142
0.40 0.9293 0.8048 0.7195 0.6740 0.6610 0.6781 0.7279 0.8169 0.9397
0.50 0.9828 0.9326 0.8862 0.8575 0.8490 0.8608 0.8923 0.9396 0.9865
0.60 0.9974 0.9857 0.9713 0.9609 0.9577 0.9624 0.9738 0.9880 0.9982
0.70 0.9998 0.9986 0.9966 0.9949 0.9944 0.9952 0.9970 0.9989 0.9999
0.80 1.0000 1.0000 0.9999 0.9998 0.9998 0.9998 0.9999 1.0000 1.0000
0.90 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Appendix C. Results of the Example

Table 16. Estimated power π (first entry for each value of p) and
Ratio (1− λ)/β second entry for the same value of p), for the simulate
Markov Chains

θ

N=20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1
0.04 0.08 0.19 0.25 0.38 0.49 0.61 0.73 0.78

1.12 1.28 1.48 1.74 2.11 2.67 3.59 5.44 11

0.2
0.05 0.11 0.19 0.30 0.42 0.55 0.63 0.77 0.84

1.14 1.31 1.54 1.83 2.25 2.88 3.92 6 12.25

0.3
0.06 0.12 0.21 0.35 0.47 0.61 0.74 0.78 0.85

1.16 1.36 1.61 1.95 2.43 3.14 4.33 6.71 13.86

0.4
0.06 0.14 0.20 0.39 0.51 0.67 0.75 0.82 0.87

1.19 1.42 1.71 2.11 2.67 3.5 4.89 7.67 16

p 0.5
0.06 0.12 0.24 0.37 0.50 0.67 0.75 0.83 0.84

1.22 1.5 1.86 2.33 3 4 5.67 9 19

0.6
0.08 0.13 0.21 0.35 0.52 0.68 0.76 0.82 0.85

1.28 1.63 2.07 2.67 3.5 4.75 6.83 11 23.5

0.7
0.06 0.13 0.23 0.32 0.51 0.58 0.73 0.78 0.83

1.37 1.83 2.43 3.22 4.33 6 8.78 14.33 31

0.8
0.04 0.11 0.21 0.30 0.43 0.58 0.66 0.76 0.81

1.56 2.25 3.14 4.33 6 8.5 12.67 21 46

0.9
0.05 0.08 0.16 0.23 0.35 0.51 0.58 0.69 0.81

2.11 3.5 5.29 7.67 11 16 24.33 41 91


