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A class of Hartley-Ross type unbiased estimators
for population mean using ranked set sampling
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Abstract

In this paper, we propose a class of Hartley-Ross type unbiased esti-
mators for estimating the �nite population mean of the study variable
under ranked set sampling (RSS), when population mean of the auxil-
iary variable is known. The variances of the proposed class of unbiased
estimators are obtained to �rst degree of approximation. Both theo-
retically and numerically, the proposed estimators are compared with
some competitor estimators, using three di�erent data sets. It is iden-
ti�ed through numerical study that the proposed estimators are more
e�cient as compared to all other competitor estimators.
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1. Introduction

In applications, there might be a situation when the variable of interest cannot be
easily measured or is very expensive to do so, but it can be ranked easily at no cost or at
very little cost. In view of this, Mclntyre [5] was the �rst who proposed the concept of
ranked set sampling (RSS) in the context of obtaining reliable farm yield estimates based
on sampling of pastures and crop yield. He provided a clear and insightful introduction to
the basic framework of RSS and laid out the rationale for how it can be lead to improved
estimation relative to simple random sampling (SRS). Takahasi and Wakimoto [11] have
provided the necessary mathematical theory of RSS and showed that the sample mean
under RSS is an unbiased estimator of the �nite population mean and more precise than
the sample mean estimator under SRS.

The auxiliary information plays an important role in increasing e�ciency of the esti-
mator. Samawi and Muttlak [6] have suggested an estimator for population ratio in RSS
and showed that it has less variance as compared to usual ratio estimator in SRS.
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In RSS, perfect ranking of elements was considered by Mclntyre [5] and Takahasi and
Wakimoto [11] for estimation of population mean. In some situations, ranking may not
be perfect. Dell and Clutter [2] have studied the case in which there are errors in rank-
ing. They pointed out that a loss in e�ciency would be caused by the errors in ranking.
The sample mean in RSS is an unbiased estimator of the population mean regardless of
errors in ranking of the elements. To reduce the error in ranking, several modi�cations
of the RSS method had been suggested. Stokes [10] has proposed use of the concomitant
variable to aid in the ranking process to obtain ranked set data. She has also studied
the ranked set sample approach for making inferences about the population variance and
correlation coe�cient. Here, the ranking of elements was done on basis of the auxiliary
variable instead of judgment. Singh et al. [7] have proposed an estimator for population
mean and ranking of the elements is observed on basis of the auxiliary variable. Singh et
al.[9] have also proposed the ratio and the product type estimators for population mean
under strati�ed ranked set sampling (SRSS).

Hartley and Ross [3] proposed an unbiased ratio estimators for �nite population mean
in SRS. Motivated by Singh et al. [8], we suggest a class of Hartley-Ross type unbiased
estimators based on RSS for population mean, using some known population parame-
ters of the auxiliary variable. It is shown that the proposed estimators outperform as
compared to some existing estimators in RSS.

2. RSS procedure

To create ranked sets, we must partition the selected �rst phase sample into sets of
equal size. In order to plan RSS design, we must therefore choose a set of size m that is
typically small, around three or four, to minimize ranking error. Here m is the number
of sample units allocated to each set. The RSS procedure can be summarized as follows:

• Step 1:Randomly select m2 bivariate sample units from the population.
• Step 2:Allocate m2 selected units randomly as possible into m sets, each of size
m.

• Step 3:Each sample is ranked with respect to one of the variables Y or X. Here,
we assume that the perfect ranking is done on basis of the auxiliary variable X
while the ranking of Y is with error.

• Step 4:An actual measurement from the �rst sample is then taken of the unit
with the smallest rank of X, together with variable Y associated with smallest
rank of X. From second sample of size m, the variable Y associated with the
second smallest rank of X is measured. The process is continued until from the
mth sample, the Y associated with the highest rank of X is measured.

• Step 5:Repeat Steps 1 through 4 for r cycles until the desired sample size
n = mr, is obtained for analysis.

As an illustration, we select a sample of size 36 from a population by simple random
sampling with replacement (SRSWR). These data are grouped into 3 sets each of size
3 and we repeat this process 4 times. According to RSS methodology, we order the X
values from smaller to larger and assume that there is no judgment error in this ordering.
Then, the smallest unit is selected from the �rst ordered set, the second smallest unit
is selected from the second ordered set and so on. Similarly from the third ordered set,
the third smallest unit is selected. By this way, we select n = mr = 12 observations. A
ranked set sample design with set size m = 3 and number of sampling cycles r = 4 is
illustrated in Figure 1. Although 36 sample units have been selected from the population,
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only the 12 circled units are actually included in the �nal sample for quantitative analysis.

Figure 1. Illustration of ranked set sampling.

3. Symbols and Notations

We consider a situation when rank the elements on the auxiliary variable. Let
(y[i]j , x(i)j) be the ith judgment ordering in the ith set for the study variable Y based on
the ith order of the ith set of the auxiliary variable X in the jth cycle. To obtain bias
and variance of the estimators, we de�ne:
ȳ[i] = Ȳ (1 + e0), x̄(i) = X̄(1 + e1), r̄(i) = R̄(1 + e2), x̄∗(i) = X̄∗(1 + e∗1),

r̄∗(i) = R̄∗(1 + e∗2), such that

E(ei) = 0, i=0,1,2. E(e∗i ) = 0, i=1,2.
and
E(e2

0) = γC2
y −W 2

y[i], E(e2
1) = γC2

x −W 2
x(i), E(e0e1) = γCyx −Wyx(i),

E(e∗21 ) = γC2
x∗ −W 2

x∗(i), E(e0e
∗
1) = γCyx∗ −Wyx∗(i), E(e∗1e

∗
2) = γCr∗x∗ −Wr∗x∗(i),

where

Wyx(i) =
1

m2rX̄Ȳ

m∑
i=1

τyx(i), W
2
x(i) =

1

m2rX̄2

m∑
i=1

τ2
x(i), W

2
y[i] =

1

m2rȲ 2

m∑
i=1

τ2
y[i],

Wyx∗(i) = 1
m2rX̄∗Ȳ

∑m
i=1 τyx∗(i), W

2
x∗(i) = 1

m2rX̄∗2
∑m

i=1 τ
2
x∗(i),

Wr∗x∗(i) = 1
m2rX̄∗R̄∗

∑m
i=1 τr∗x∗(i),

τx(i) = (µx(i) − X̄), τy[i] = (µy([i] − Ȳ ), τyx(i) = (µy[i] − Ȳ )(µx(i) − X̄),

τx∗(i) = (µx∗(i)−X̄∗), τyx∗(i) = (µy[i]−Ȳ )(µx∗(i)−X̄∗), τr∗x∗(i) = (µr∗(i)−R̄∗)(µx∗(i)−X̄∗).
Here γ = ( 1

mr
) and Cyx = ρCyCx, where Cy and Cx are the coe�cients of variation of

Y and X respectively. Also Ȳ and X̄ are the population means of Y and X respectively.
The values of µy[i] and µx(i) depend on order statistics from some speci�c distributions
(see Arnold et al.[1]).
The following notations will be used through out this paper.
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ȳ[i] = (1/n)
∑n

j=1 y[i]j , x̄(i) = (1/n)
∑n

j=1 x(i)j , r̄(i) =
∑n

j=1 r(i)j
n

, r(i)j =
y[i]j
x(i)j

,

R̄ = E(r̄(i)), r̄∗(i) =
∑n

j=1 r∗(i)j
n

, r∗(i)j =
y[i]j
x∗
(i)j

, x∗(i)j = (ax(i)j + b),

x̄∗(i) = (ax̄(i) + b), X̄∗ = (aX̄ + b), R̄∗ = E(r̄∗(i)), r̄
′
(i) =

∑n
j=1 r

′
(i)j

n
,

r
′
(i)j =

y[i]j

x
′
(i)j

, x
′
(i)j = (x(i)jCx + ρ), x̄

′
(i) = (x̄(i)Cx + ρ), X̄

′
= (X̄Cx + ρ),

R̄
′

= E(r̄
′
(i)), r̄

′′
(i) =

∑n
j=1 r

′′
(i)j

n
, r

′′
(i)j =

y[i]j

x
′′
(i)j

, x
′′
(i)j = (x(i)jβ2(x) + Cx),

x̄
′′
(i) = (x̄(i)β2(x) + Cx), X̄

′′
= (X̄β2(x) + Cx), R̄

′′
= E(r̄

′′
(i)), r̄

′′′
(i) =

∑n
j=1 r

′′′
(i)j

n
,

r
′′′
(i)j =

y[i]j

x
′′′
(i)j

, x
′′′
(i)j = (x(i)jCx + β2(x)), x̄

′′′
(i) = (x̄(i)Cx + β2(x)),

X̄
′′′

= (X̄Cx + β2(x)) and R̄
′′′

= E(r̄
′′′
(i)),

where a and b are known population parameters, which can be coe�cient of variation,
coe�cient of skewness and coe�cient of kurtosis and the coe�cient of correlation of the
auxiliary variable.

Following Singh [8], the variance of the Hartley-Ross type unbiased estimator based
on Upadhyaya and Singh [12] estimator in SRS, is given by

V (ȳ
(u)

US2(SRS))
∼= γ

(
Ȳ 2C2

y + X̄
′′′2R̄

′′′2C2
x
′′′ − 2R̄

′′′
Ȳ X̄

′′′
Cyx

′′′

)
.(3.1)

Under RSS scheme, the variance of ȳRSS = ȳ[i] = (1/n)
∑n

j=1 y[i]j , is given by

(3.2) V (ȳRSS) = Ȳ 2 (γC2
y −W 2

y[i]

)
.

4. Proposed Hartley-Ross unbiased estimator in RSS

Following Singh et al. [8], we consider the following ratio estimator:

(4.1) ȳH(RSS) = r̄(i)X̄.

The bias of ȳH(RSS), is given by

B(ȳH(RSS)) = − (N − 1)

N
Sr(i)x(i)

,

where Sr(i)x(i)
= 1

N

∑N
j=1 (r(i)j − R̄)(x(i)j − X̄) and an unbiased estimator of Sr(i)x(i)

is
given by

sr(i)x(i)
=

1

n− 1

n∑
j=1

(r(i)j − r̄(i))(x(i)j − x̄(i))

=
n

n− 1
(ȳ[i] − r̄(i)x̄(i)).

So bias of ȳH(RSS) becomes

B(ȳH(RSS)) = −n(N − 1)

N(n− 1)
(ȳ[i] − r̄(i)x̄(i)).(4.2)

Thus an unbiased Hartley-Ross type estimator of population mean based on RSS is given
by

(4.3) ȳ
(u)

H(RSS) = r̄(i)X̄ +
n(N − 1)

N(n− 1)
(ȳ[i] − r̄(i)x̄(i)).

In terms of e′s, we have

ȳ
(u)

H(RSS) = X̄R̄(1 + e2) +
n(N − 1)

N(n− 1)

[
Ȳ (1 + e0) − X̄R̄(1 + e1)(1 + e2)

]
.
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Under the assumption n(N−1)
N(n−1)

∼= 1, we can write

(ȳ
(u)

H(RSS) − Ȳ ) ∼= (Ȳ e0 − X̄R̄e1).

Taking square and then expectation, the variance of ȳ
(u)

H(RSS), is given by

V (ȳ
(u)

H(RSS))
∼= Ȳ 2(γC2

y −W 2
y[i]) + X̄2R̄2(γC2

x −W 2
x(i)) − 2R̄Ȳ X̄(γCyx −Wyx(i)).(4.4)

5. Proposed class of Hartley-Ross type unbiased estimators in

RSS

Consider the following ratio estimator:

(5.1) ȳP (RSS) = r̄∗(i)X̄
∗.

The bias of ȳP (RSS), is given by

B(ȳP (RSS)) = − (N − 1)

N
Sr∗

(i)
x∗
(i)
,

where Sr∗
(i)

x∗
(i)

= 1
N

∑N
j=1 (r∗(i)j − R̄∗)(x∗(i)j − X̄∗) and an unbiased estimator of Sr∗

(i)
x∗
(i)

is given by

sr∗
(i)

x∗
(i)

=
1

n− 1

n∑
j=1

(r∗(i)j − r̄∗(i))(x
∗
(i)j − x̄∗(i))

=
n

n− 1
(ȳ[i] − r̄∗(i)x̄

∗
(i)).

We give the following theorem.

5.1. Theorem. An unbiased estimator of Sr∗
(i)

x∗
(i)

= 1
N

∑N
j=1 (r∗(i)j − R̄∗)(x∗(i)j − X̄∗) is

given by

sr∗
(i)

x∗
(i)

= 1
n−1

∑n
j=1 (r∗(i)j − r̄∗(i))(x

∗
(i)j − x̄∗(i)).

Proof. We have to prove that E(sr∗
(i)

x∗
(i)

) = Sr∗
(i)

x∗
(i)
. Here for �xed i, j = 1, 2, ..., n, r∗(i)j

and x∗(i)j are simple random samples of size n.

E(sr∗
(i)

x∗
(i)

) =E

[
1

n− 1

n∑
j=1

(r∗(i)j − r̄∗(i))(x
∗
(i)j − x̄∗(i))

]
,

=
1

n− 1
E

[
n∑

j=1

r∗(i)jx
∗
(i)j − nr̄∗(i)x̄

∗
(i)

]
,

=
1

n− 1

[
n∑

j=1

E(r∗(i)jx
∗
(i)j) − nE(r̄∗(i)x̄

∗
(i))

]
,

=
1

n− 1

[
n

N

N∑
j=1

r∗(i)jx
∗
(i)j − n

(
Cov(r̄∗(i), x̄

∗
(i)) + R̄∗X̄∗

)]
,

=
n

n− 1

[
1

N

N∑
j=1

r∗(i)jx
∗
(i)j − R̄∗X̄∗ −

Sr∗
(i)

x∗
(i)

n

]
,

=
n

n− 1

(
Sr∗

(i)
x∗
(i)

−
Sr∗

(i)
x∗
(i)

n

)
,

=Sr∗
(i)

x∗
(i)
.

�
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So bias of ȳP (RSS) becomes

B(ȳKP (RSS)) = −n(N − 1)

N(n− 1)
(ȳ[i] − r̄∗(i)x̄

∗
(i)).(5.2)

Thus an unbiased class of Hartley-Ross type estimators of population mean based on
RSS is given by

(5.3) ȳ
(u)

P (RSS) = r̄∗(i)X̄
∗ +

n(N − 1)

N(n− 1)
(ȳ[i] − r̄∗(i)x̄

∗
(i)).

In terms of e′s, we have

ȳ
(u)

P (RSS) = X̄∗R̄∗(1 + e∗2) +
n(N − 1)

N(n− 1)

(
Ȳ (1 + e0) − X̄∗R̄∗(1 + e∗1)(1 + e∗2)

)
.

Under the assumption n(N−1)
N(n−1)

∼= 1, we have

(ȳ
(u)

P (RSS) − Ȳ ) ∼= (Ȳ e0 − X̄∗R̄∗e∗1).

Taking square and then expectation, the variance of ȳ
(u)

P (RSS), is given by

V (ȳ
(u)

P (RSS))
∼=Ȳ 2(γC2

y −W 2
y[i]) + X̄∗2R̄∗2(γC2

x∗ −W 2
x∗(i))

− 2R̄∗Ȳ X̄∗(γCyx∗ −Wyx∗(i)).(5.4)

Note: (i). If a = Cx and b = ρ, then from Equation (5.3), we get the Hartley-Ross type

unbiased estimator based on Kadilar and Cingi [4] estimator ȳ
(u)

KC(RSS), as:

(5.5) ȳ
(u)

KC(RSS) = r̄
′

(i)X̄
′

+
n(N − 1)

N(n− 1)
(ȳ[i] − r̄

′

(i)x̄
′

(i)).

The variance of ȳKC(RSS), is given by

V (ȳ
(u)

KC(RSS))
∼=Ȳ 2(γC2

y −W 2
y[i]) + X̄

′2R̄
′2(γC2

x
′ −W 2

x
′
(i)

)

− 2R̄
′
Ȳ X̄

′
(γCyx

′ −Wyx
′
(i)).(5.6)

(ii). If a = β2(x) and b = Cx, then Equation (5.3) becomes the Hartley-Ross type

unbiased estimator based on Upadhyaya and Singh [12] estimator ȳ
(u)

US1(RSS) and is given

by

(5.7) ȳ
(u)

US1(RSS) = r̄
′′

(i)X̄
′′

+
n(N − 1)

N(n− 1)
(ȳ[i] − r̄

′′

(i)x̄
′′

(i)).

The variance of ȳUS1(RSS), is given by

V (ȳ
(u)

US1(RSS))
∼=Ȳ 2(γC2

y −W 2
y[i]) + X̄

′′2R̄
′′2(γC2

x
′′ −W 2

x
′′

(i)
)

− 2R̄
′′
Ȳ X̄

′′
(γCyx

′′ −Wyx
′′

(i)).(5.8)

(iii). If a = Cx and b = β2(x), then Equation (5.3) becomes the Hartley-Ross type

unbiased estimator based on Upadhyaya and Singh [12] estimator ȳ
(u)

US2(RSS) and is given

by

(5.9) ȳ
(u)

US2(RSS) = r̄
′′′

(i)X̄
′′′

+
n(N − 1)

N(n− 1)
(ȳ[i] − r̄

′′′
(i)x̄

′′′
(i)).

The variance of ȳUS2(RSS), is given by

V (ȳ
(u)

US2(RSS))
∼=Ȳ 2(γC2

y −W 2
y[i]) + X̄

′′′2R̄
′′′2(γC2

x
′′′ −W 2

x
′′′

(i)
)

− 2R̄
′′′
Ȳ X̄

′′′
(γCyx

′′′ −Wyx
′′′

(i)).(5.10)
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6. E�ciency comparison

The proposed estimator ȳ
(u)

US2(RSS) is more e�cient than ȳ
(u)

US2(SRS), ȳ(RSS), ȳ
(u)

H(RSS),

ȳ
(u)

KC(RSS) and ȳ
(u)

US1(RSS) respectively if the following conditions hold:

(i). −(Ȳ Wy[i] − X̄
′′′
R̄
′′′
Wx
′′′

(i))
2 < 0

(ii). X̄
′′′
R̄
′′′

(γC2
x
′′′ −W 2

x
′′′

(i)
) − 2Ȳ (γCyx

′′′ −Wyx
′′′

(i)) < 0

(iii). X̄
′′′2R̄

′′′2(γC2
x
′′′ −W 2

x
′′′

(i)
) − 2X̄

′′′
R̄
′′′
Ȳ (γCyx

′′′ −Wyx
′′′

(i))

− X̄2R̄2(γC2
x −W 2

x(i)) + 2R̄X̄Ȳ (γCyx −Wyx(i)) < 0

(iv). X̄
′′′2R̄

′′′2(γC2
x
′′′ −W 2

x
′′′

(i)
) − 2X̄

′′′
R̄
′′′
Ȳ (γCyx

′′′ −Wyx
′′′

(i))

− X̄
′2R̄

′2(γC2
x
′ −W 2

x
′
(i)

) + 2R̄
′
X̄
′
Ȳ (γCyx

′ −Wyx
′
(i)) < 0.

(v). X̄
′′′2R̄

′′′2(γC2
x
′′′ −W 2

x
′′′

(i)
) − 2X̄

′′′
R̄
′′′
Ȳ (γCyx

′′′ −Wyx
′′′

(i))

− X̄
′′2R̄

′′2(γC2
x
′′ −W 2

x
′′

(i)
) + 2R̄

′′
X̄
′′
Ȳ (γCyx

′′ −Wyx
′′

(i)) < 0.

7. Numerical Illustration

To observe performances of the estimators, we use the following three data sets. The
descriptions of these populations are given below.

Population I [source: Valliant et al.[13]]
The summary statistics are:
y : Breast cancer mortality in 1950-1969,
x : Adult female population in 1960.

N = 301, n = 12, m = 3, r = 4,

X̄ = 11288.1800, Ȳ = 39.8500, ρ = 0.9671, β2(x) = 10.79,

R̄ = 0.0039, R̄
′

= 0.0032, R̄
′′

= 0.00036, R̄
′′′

= 0.0032,

X̄
′

= 13780.84, X̄
′′

= 121852.40, X̄
′′′

= 13290.67, Cy = 1.2794,

Cx = 1.2207, Cx
′ = 1.2206, Cx

′′ = 1.2207, Cx
′′′ = 1.2198,

Cyx = 1.5105, Cyx
′ = 1.5104, Cyx

′′ = 1.5104, Cyx
′′′ = 1.5093,

W 2
y[i] = 0.014502, W 2

x(i) = 0.002234, Wyx(i) = 0.022478, W 2
x
′
(i)

= 0.002234,

Wyx
′
(i) = 0.022476, W 2

x
′′

(i)
= 0.002234, Wyx

′′
(i) = 0.022478, W 2

x
′′′

(i)
= 0.002231,

Wyx
′′′

(i) = 0.022461.

Population II [source: Valliant et al. [13]]
The summary statistics are:
y : Number of patients discharged,
x : Number of beds.

Population III [source: Valliant et al. [13]]
The summary statistics are:
y : Population, excluding residents of group quarters in 1960,
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N = 393, n = 15, m = 3, r = 5,

X̄ = 274.70, Ȳ = 814.65, ρ = 0.9105, β2(x) = 3.5670,

R̄ = 3.1548, R̄
′

= 3.6842, R̄
′′

= 0.9286, R̄
′′′

= 3.5520,

X̄
′

= 214.13, X̄
′′

= 980.63, X̄
′′′

= 216.78, Cy = 0.7239,

Cx = 0.7762, Cx
′ = 0.7729, Cx

′′ = 0.7756, Cx
′′′ = 0.7634,

Cyx = 0.5116, Cyx
′ = 0.5094, Cyx

′′ = 0.5112, Cyx
′′′ = 0.5031,

W 2
y[i] = .016234, W 2

x(i) = 0.003354, Wyx(i) = 0.041280, W 2
x
′
(i)

= 0.003353,

Wyx
′
(i) = 0.041277, W 2

x
′′

(i)
= 0.003354, Wyx

′′
(i) = 0.041279, W 2

x
′′′

(i)
= 0.003348,

Wyx
′′′

(i) = 0.04148.

x : Number of households in 1960.

N = 304, n = 12, m = 3, r = 4,

X̄ = 8931.17, Ȳ = 32916.19, ρ = 0.9979, β2(x) = 14.6079,

R̄ = 3.7993, R̄
′

= 2.9703, R̄
′′

= 0.2589, R̄
′′′

= 2.9580,

X̄
′

= 11627.52, X̄
′′

= 130466.90, X̄
′′′

= 11641.13, Cy = 1.2390,

Cx = 1.3018, Cx
′ = 1.3017, Cx

′′ = 1.3018, Cx
′′′ = 1.3002.98,

Cyx = 1.6096, Cyx
′ = 1.6094, Cyx

′′ = 1.6095, Cyx
′′′ = 1.6075,

W 2
y[i] = .006744, W 2

x(i) = 0.005193, Wyx(i) = 0.023651, W 2
x
′
(i)

= 0.005192,

Wyx
′
(i) = 0.023649, W 2

x
′′

(i)
= 0.005193, Wyx

′′
(i) = 0.023652, W 2

x
′′′

(i)
= 0.005179,

Wyx
′′′

(i) = 0.023622.

Table 1. Comparison values

Population V (ȳ
(u)

US2(RSS)) V (ȳ
(u)

US2(RSS)) V (ȳ
(u)

US2(RSS)) V (ȳ
(u)

US2(RSS)) V (ȳ
(u)

US2(RSS))

< V (ȳ
(u)

US2(SRS)) < V (ȳRSS) < V (ȳ
(u)

H(RSS)) < V (ȳ
(u)

KC(RSS)) < V (ȳ
(u)

US1(RSS))

I −7.7800 < 0 −3.0556 < 0 −3.5006 < 0 −4.2868 < 0 −3.4670 < 0

II −3509.73 < 0 −0.55052 < 0 −0.43858 < 0 −0.39893 < 0 −0.43292 < 0

III −50649.03 < 0 −2773.45 < 0 −199146.50 < 0 −185356.01 < 0 −197541.90 < 0

We investigate the percent relative e�ciency (PRE) of Hartley-Ross unbiased estima-

tor ȳ
(u)

H(RSS) = θ̂1 (say), Hartley-Ross type unbiased estimator based on Kadilar and Cingi

[4] estimator ȳ
(u)

KC(RSS) = θ̂2, Hartley-Ross type unbiased estimator based on Upadhyaya
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and Singh [12] estimator ȳ
(u)

US1(RSS) = θ̂3 and ȳ
(u)

US2(RSS) = θ̂4 with respect to conventional

estimator ȳRSS = θ̂0 (say) .

The PRE of proposed estimators θ̂j , j = 1, 2, 3, 4, with respect to conventional

estimator ȳRSS = θ̂0, is de�ned as:

(7.1) PRE(θ̂0, θ̂j) =
V (θ̂0)

V (θ̂j)
× 100, j = 1, 2, 3, 4.

The PRE′s of our proposed estimators and other existing estimators for Populations
I, II and III are given in Tables 2, 3 and 4 respectively.
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Table 2. PRE′s of various estimators for Population I.

m r n ȳRSS ȳ
(u)

H(RSS) ȳ
(u)

KC(RSS) ȳ
(u)

US1(RSS) ȳ
(u)

US2(RSS)

3 3 9 100 178.37 178.40 178.38 178.74

4 12 100 354.74 354.77 354.75 354.92

5 15 100 326.14 326.23 326.22 326.96

4 3 12 100 397.23 397.30 397.25 397.80

4 16 100 119.37 119.40 119.38 119.56

5 20 100 114.70 114.75 114.74 114.86

5 3 15 100 217.06 217.10 217.09 217.30

4 20 100 108.68 108.71 108.70 108.85

5 25 100 177.16 177.20 177.18 177.50

10 50 100 355.90 355.98 355.94 356.77

Table 3. PRE′s of various estimators for Population II.

m r n ȳRSS ȳ
(u)

H(RSS) ȳ
(u)

KC(RSS) ȳ
(u)

US1(RSS) ȳ
(u)

US2(RSS)

3 3 9 100 199.15 201.21 199.54 207.09

4 12 100 147.75 149.47 148.08 154.18

5 15 100 119.02 119.06 119.04 119.45

4 3 12 100 259.28 259.33 259.29 259.86

4 16 100 177.56 177.60 177.57 177.96

5 20 100 141.97 142.01 141.98 142.78

5 3 15 100 111.53 111.56 111.54 112.72

4 20 100 138.47 138.50 138.48 139.75

5 25 100 167.65 167.69 167.67 168.08

10 50 100 260.15 260.20 260.17 260.66
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Table 4. PRE′s of various estimators for Population III.

m r n ȳRSS ȳ
(u)

H(RSS) ȳ
(u)

KC(RSS) ȳ
(u)

US1(RSS) ȳ
(u)

US2(RSS)

3 3 9 100 158.03 158.08 158.04 158.66

4 12 100 330.60 330.71 330.61 332.27

5 15 100 288.63 288.68 288.64 289.37

4 3 12 100 194.50 194.56 194.51 195.34

4 16 100 116.76 116.82 116.78 117.51

5 20 100 322.73 322.84 322.75 324.23

5 3 15 100 146.69 146.73 146.70 147.21

4 20 100 122.19 122.23 122.20 122.71

5 25 100 124.24 124.28 124.26 124.76

10 50 100 215.39 215.46 215.40 216.32

From Tables 2, 3 and 4, we see that the proposed Hartley-Ross type unbiased esti-
mators are more e�cient than usual conventional estimator in RSS. Thus, if population
coe�cient of variation, population coe�cient of kurtosis and population correlation co-
e�cient are known in advance, then our proposed estimators can be used in practice.

8. Conclusion

Table 1 has established the conditions obtained in Section 6 numerically. It is shown
that all conditions are satis�ed for all considered populations. On the basis of results
given in Tables 2, 3 and 4, we conclude that the proposed class of Hartley-Ross type
unbiased estimators are preferable over its competitive estimators under RSS. It is also

observed that the proposed unbiased estimator ȳ
(u)

US2(RSS) has highest PRE in compari-

son to all other considered estimators in all three populations.
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