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Abstract

The main purpose of this paper is to investigate some subclasses of
meromorphic functions involving the meromorphic modi�ed version
of the familiar Srivastava-Attiya operator. Such results as inclusion
relationships, convolution properties, coe�cient inequalities, integral-
preserving properties, subordination and superordination properties are
proved.
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1. Introduction

Let Σ denote the class of functions of the form

(1.1) f(z) =
1

z
+

∞∑
k=1

akz
k,

which are analytic in the punctured open unit disk

U∗ := {z : z ∈ C and 0 < |z| < 1} =: U\{0}.
Let f, g ∈ Σ, where f is given by (1.1) and g is de�ned by

g(z) =
1

z
+

∞∑
k=1

bkz
k.
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Then the Hadamard product (or convolution) f ∗ g of the functions f and g is de�ned by

(f ∗ g)(z) :=
1

z
+

∞∑
k=1

akbkz
k =: (g ∗ f)(z).

Let P denote the class of functions of the form

p (z) = 1 +

∞∑
k=1

pkz
k,

which are analytic and convex in U, and satisfy the condition

<(p (z)) > 0 (z ∈ U).

For two functions f and g, analytic in U, the function f is said to be subordinate to
g in U, or the function g is said to be superordinate to f in U, and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that

f(z) = g
(
ω(z)

)
(z ∈ U).

Indeed, it is known that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the following equivalence:

f(z) ≺ g(z) (z ∈ U)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

The following we recall a general Hurwitz-Lerch Zeta function Φ(z, s, a) de�ned by
(cf., e.g., [20, p. 121 et sep.])

(1.2) Φ(z, s, a) :=

∞∑
k=0

zk

(k + a)s

(a ∈ C \ Z−0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1),

where, as usual,

Z−0 := Z \ N (Z := {0,±1,±2, . . .}; N := {1, 2, 3, . . .}).
Several interesting properties and characteristics of the Hurwitz-Lerch Zeta function
Φ(z, s, a) can be found in the recent investigations by (for example) Choi and Srivas-
tava [1], Ferreira and López [4], Garg et al. [5], Lin et al. [7], Luo and Srivastava [10],
Srivastava et al. [21], Ghanim [6] and others.

By making use of the Hurwitz-Lerch Zeta function Φ(z, s, a), Srivastava and Attiya
[19] (see also [8, 9, 14, 17, 22, 23, 24, 27, 28, 29, 30]) recently introduced and investigated
the integral operator

Js, bf(z) = z +

∞∑
k=2

(
1 + b

k + b

)s
ckz

k (b ∈ C \ Z−; s ∈ C; z ∈ U).

Motivated essentially by the above-mentioned Srivastava-Attiya operator Js, b, we now
introduce the linear operator

Ws, b : Σ −→ Σ

de�ned, in terms of the Hadamard product (or convolution), by

(1.3) Ws, bf(z) := Θs, b(z) ∗ f(z)
(
b ∈ C \ {Z−0 ∪ {1}}; s ∈ C; f ∈ Σ; z ∈ U∗

)
,
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where, for convenience,

(1.4) Θs, b(z) := (b− 1)s
[
Φ(z, s, b)− b−s +

1

z (b− 1)s

]
(z ∈ U∗).

It can easily be seen from (1.1) to (1.4) that

(1.5) Ws, bf(z) =
1

z
+

∞∑
k=1

(
b− 1

b+ k

)s
akz

k.

Indeed, the operator Ws, b can be de�ned for b ∈ C \ {Z− ∪ {1}}, where

Ws, 0f(z) := lim
b→0
{Ws, bf(z)} .

We observe that

(1.6) W0, bf(z) = f(z),

and

(1.7) W1, γf(z) =
γ − 1

zγ

∫ z

0

tγ−1f(t)dt (<(γ) > 1) .

Furthermore, from the de�nition (1.5), we �nd that

(1.8) Ws+1, bf(z) =
b− 1

zb

∫ z

0

t b−1
Ws, bf(t)dt (<(b) > 1) .

Di�erentiating both sides of (1.8) with respect to z, we get the following useful relation-
ship:

(1.9) z (Ws+1, bf)′ (z) = (b− 1)Ws, bf(z)− bWs+1, bf(z).

By using the integral operator (1.5), we now introduce the following subclasses of the
class Σ of meromorphic functions.

1.1. De�nition. A function f ∈ Σ is said to be in the class MSs, b(η;φ) if it satis�es
the subordination

(1.10)
1

1− η

(
−z (Ws, bf)′ (z)

Ws, bf(z)
− η
)
≺ φ(z)

(s ∈ C; <(b) > 1; η ∈ [0, 1); φ ∈ P; z ∈ U).

1.2. De�nition. A function f ∈ Σ is said to be in the class MCs, b(λ;φ) if it satis�es
the condition

(1.11) (1− λ)zWs+1, bf(z) + λzWs, bf(z) ≺ φ(z) (s, λ ∈ C; <(b) > 1; φ ∈ P; z ∈ U).

For some recent investigations on meromorphic functions, see (for example) the ear-
lier works [2, 3, 15, 16, 25, 26, 31] and the references cited therein. In this paper, we
aim at deriving the inclusion relationships, convolution properties, coe�cient inequali-
ties, integral-preserving properties, subordination and superordination properties for the
function classes MSs, b(η;φ) and MCs, b(λ;φ).
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2. Preliminary results

The following lemmas will be required in the proof of our main results.

2.1. Lemma. ([11]) Let ϑ, γ ∈ C. Suppose that ψ is convex and univalent in U with

ψ(0) = 1 and <(ϑψ(z) + γ) > 0 (z ∈ U).

If p is analytic in U with p(0) = 1, then the following subordination

p(z) +
zp′(z)

ϑp(z) + γ
≺ ψ(z) (z ∈ U)

implies that

p(z) ≺ ψ(z) (z ∈ U).

2.2. Lemma. Let 0 ≤ α < 1, s ∈ C and <(b) > 1. Suppose also that the sequence
{Ak}∞k=1 is de�ned by

(2.1)

A1 = (1−α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s , Ak+1 =
2(1− α)

k + 2

∣∣∣∣ b+ k + 1

b− 1

∣∣∣∣s
(

1 +

k∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣sAm
)

(k ∈ N).

Then

(2.2) Ak = (1− α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s k−1∏
j=1

j − 2α+ 3

j + 2

∣∣∣∣ b+ j + 1

b+ j

∣∣∣∣s .
Proof. From (2.1), we �nd that

(2.3) (k + 2)

∣∣∣∣ b− 1

b+ k + 1

∣∣∣∣sAk+1 = 2(1− α)

(
1 +

k∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣sAm
)
,

and

(2.4) (k + 1)

∣∣∣∣ b− 1

b+ k

∣∣∣∣sAk = 2(1− α)

(
1 +

k−1∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣sAm
)
.

Combining (2.3) and (2.4), we get

(2.5)
Ak+1

Ak
=
k − 2α+ 3

k + 2

∣∣∣∣ b+ k + 1

b+ k

∣∣∣∣s .
Thus, for k ≥ 2, we deduce from (2.5) that

Ak =
Ak
Ak−1

· · · · · A3

A2
· A2

A1
·A1 = (1− α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s k−1∏
j=1

j − 2α+ 3

j + 2

∣∣∣∣ b+ j + 1

b+ j

∣∣∣∣s .
The proof of Lemma 2.2 is completed. �

2.3. Lemma. ([12]) Let the function Ω be analytic and convex (univalent) in U with
Ω(0) = 1. Suppose also that the function Θ given by

Θ(z) = 1 + dnz
n + dn+1z

n+1 + · · ·
is analytic in U. If

(2.6) Θ(z) +
zΘ ′(z)

ζ
≺ Ω(z) (<(ζ) > 0; ζ 6= 0; z ∈ U),

then

Θ(z) ≺ $(z) =
ζ

n
z−

ζ
n

∫ z

0

t
ζ
n
−1Ω(t)dt ≺ Ω(z) (z ∈ U),
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and $ is the best dominant of (2.6).

2.4. Lemma. ([18]) Let q be a convex univalent function in U and let σ, η ∈ C with

<
(

1 +
zq′′(z)

q′(z)

)
> max

{
0, −<

(
σ

η

)}
.

If p is analytic in U and

σp (z) + ηzp′(z) ≺ σq(z) + ηzq′(z),

then p ≺ q and q is the best dominant.

Denote by Q the set of all functions f that are analytic and injective on U − E(f),
where

E(f) =
{
ε ∈ ∂U : lim

z→ε
f(z) =∞

}
,

and such that f ′(ε) 6= 0 for ε ∈ ∂U − E(f). Let H(U) denote the class of analytic
functions in U and let H[a, p] denote the subclass of the functions f ∈ H(U) of the form:

f(z) = a+ apz
p + ap+1z

p+1 + · · · (a ∈ C; p ∈ N).

2.5. Lemma. ([13]) Let q be convex univalent in U and κ ∈ C. Further assume that
<(κ) > 0. If

p ∈ H[q(0), 1] ∩Q,
and p+ κzp′ is univalent in U, then

q(z) + κzq′(z) ≺ p (z) + κzp′(z)

implies q ≺ p and q is the best subordinant.

3. Main results

Firstly, we derive the following inclusion relationship for the function classMSs, b(η;φ).

3.1. Theorem. Let 0 ≤ η < 1 and φ ∈ P with

(3.1) < ((1− η)φ(z) + η − b) < 0 (z ∈ U).

Then

(3.2) MSs, b(η;φ) ⊂MSs+1, b(η;φ).

Proof. Let f ∈MSs, b(η;φ) and suppose that

(3.3) ϕ(z) :=
1

1− η

(
−z (Ws+1, bf)′ (z)

Ws+1, bf(z)
− η
)

(z ∈ U).

Then ϕ is analytic in U with ϕ(0) = 1. By virtue of (1.9) and (3.3), we get

(3.4) (b− 1)
Ws, bf(z)

Ws+1, bf(z)
= −(1− η)ϕ(z)− η + b.

Di�erentiating both sides of (3.4) with respect to z logarithmically and using (3.3), we
have

1

1− η

(
−z (Ws, bf)′ (z)

Ws, bf(z)
− η
)

= ϕ(z) +
zϕ′(z)

−(1− η)ϕ(z)− η + b
≺ φ(z).(3.5)

By means of (3.1), an application of Lemma 2.1 to (3.5) yields

ϕ(z) =
1

1− η

(
−z (Ws+1, bf)′ (z)

Ws+1, bf(z)
− η
)
≺ φ(z),

that is f ∈MSs+1, b(η;φ), which implies that the assertion (3.2) of Theorem 3.1 holds. �
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Next, we derive some convolution properties of the class MSs, b(η;φ).

3.2. Theorem. Let f ∈MSs, b(η;φ). Then

(3.6) f(z) =

[
z−1 · exp

(
(η − 1)

∫ z

0

φ (ω(ξ))− 1

ξ
dξ

)]
∗

(
1

z
+

∞∑
k=1

(
b+ k

b− 1

)s
zk
)
,

where ω is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U).

Proof. Suppose that f ∈MSs, b(η;φ). We �nd from (1.10) that

(3.7)
z (Ws, bf)′ (z)

Ws, bf(z)
= (η − 1)φ (ω(z))− η,

where ω is analytic in U with ω(0) = 0 and |ω(z)| < 1 (z ∈ U). From (3.7), we get

(3.8)
(Ws, bf)′ (z)

Ws, bf(z)
+

1

z
= (η − 1)

φ (ω(z))− 1

z
,

which, upon integration, yields

(3.9) log (zWs, bf(z)) = (η − 1)

∫ z

0

φ (ω(ξ))− 1

ξ
dξ.

It follows from (3.9) that

(3.10) Ws, bf(z) = z−1 · exp

(
(η − 1)

∫ z

0

φ (ω(ξ))− 1

ξ
dξ

)
.

The assertion (3.6) of Theorem 3.2 can directly be derived from (1.5) and (3.10). �

3.3. Theorem. Let f ∈ Σ and φ ∈ P. Then f ∈MSs, b(η;φ) if and only if

(3.11)

1

z

{
f ∗

{
−1

z
+

∞∑
k=1

k

(
b− 1

b+ k

)s
zk −

[
(η − 1)φ

(
eiθ
)
− η
](1

z
+

∞∑
k=1

(
b− 1

b+ k

)s
zk
)}}

6= 0

(z ∈ U∗; 0 ≤ θ < 2π).

Proof. Suppose that f ∈MSs, b(η;φ). We know that (1.6) is equivalent to

(3.12)
1

1− η

(
−z (Ws, bf)′ (z)

Ws, bf(z)
− η
)
6= φ

(
eiθ
)

(z ∈ U; 0 ≤ θ < 2π).

It is easy to see that the condition (3.12) can be written as follows:

(3.13)
1

z

{
z (Ws, bf)′ (z)−

[
(η − 1)φ

(
eiθ
)
− η
]
Ws, bf(z)

}
6= 0 (z ∈ U∗; 0 ≤ θ < 2π).

On the other hand, we �nd from (1.5) that

(3.14) z (Ws, bf)′ (z) = −1

z
+

∞∑
k=1

k

(
b− 1

b+ k

)s
akz

k.

Combining (1.5), (3.13) and (3.14), we get the assertion (3.11) of Theorem 3.3. �
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3.4. Theorem. If f ∈MSs, b(0; [1 + (1− 2α)z]/(1− z)), then

|a1| ≤ (1− α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s ,
and

|ak| ≤ (1− α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s k−1∏
j=1

j − 2α+ 3

j + 2

∣∣∣∣ b+ j + 1

b+ j

∣∣∣∣s (k ∈ N\{1}).

Proof. Suppose that

(3.15) h(z) :=
− z(W s, bf)

′
(z)

Ws, bf(z)
− α

1− α = 1 + c1z + c2z
2 + · · · .

It follows from f ∈ MSs, b(0; [1 + (1 − 2α)z]/(1 − z)) that h ∈ P, and subsequently one
has |ck| ≤ 2 for k ∈ N.

By virtue of (3.15), we know that

(3.16) z (W s, bf)′ (z) = [(α− 1)h(z)− α]Ws, bf(z).

It now follows from (1.5), (3.15) and (3.16) that

(3.17)

1

z
+

∞∑
k=1

k

(
b− 1

b+ k

)s
akz

k =
[
−1 + (α− 1)

(
c1z + c2z

2 + · · ·
)] [1

z
+

∞∑
k=1

(
b− 1

b+ k

)s
akz

k

]
.

By evaluating the coe�cients of z k in both sides of (3.17), we get

(3.18) k

(
b− 1

b+ k

)s
ak = −

(
b− 1

b+ k

)s
ak + (α− 1)

[
ck+1 +

k−1∑
l=1

cl

(
b− 1

b+ k − l

)s
ak−l

]
.

By observing the fact that |ck| ≤ 2 for k ∈ N, we �nd from (3.18) that

(3.19) |ak| ≤
2(1− α)

k + 1

∣∣∣∣ b+ k

b− 1

∣∣∣∣s
(

1 +

k−1∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣s |am|
)
.

Now, we de�ne the sequence {Ak}∞k=1 as follows:

(3.20)

A1 = (1−α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s , Ak+1 =
2(1− α)

k + 2

∣∣∣∣ b+ k + 1

b− 1

∣∣∣∣s
(

1 +

k∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣sAm
)

(k ∈ N).

In order to prove that

|ak| ≤ Ak (k ∈ N),

we make use of the principle of mathematical induction. By noting that

|a1| ≤ A1 = (1− α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s .
Therefore, assuming that

|am| ≤ Am (m = 1, 2, 3, · · · , k; k ∈ N).
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Combining (3.19) and (3.20), we get

|ak+1| ≤
2(1− α)

k + 2

∣∣∣∣ b+ k + 1

b− 1

∣∣∣∣s
(

1 +

k∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣s |am|
)

≤ 2(1− α)

k + 2

∣∣∣∣ b+ k + 1

b− 1

∣∣∣∣s
(

1 +

k∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣sAm
)

= Ak+1.

Hence, by the principle of mathematical induction, we have

(3.21) |ak| ≤ Ak (k ∈ N)

as desired.
By virtue of Lemma 2.2 and (3.20), we know that (2.2) holds. Combining (3.21) and

(2.2), we readily get the coe�cient estimates asserted by Theorem 3.4. �

In what follows, we derive some integral-preserving properties for the classMSs, b(η;φ).

3.5. Theorem. Let f ∈MSs, b(η;φ) with

<((1− η)φ(z) + η − µ) < 0 (z ∈ U; <(µ) > 1).

Then the integral operator F de�ned by

(3.22) F (z) :=
µ− 1

z µ

∫ z

0

tµ−1f(t)dt (z ∈ U∗; <(µ) > 1)

belongs to the class MSs, b(η;φ).

Proof. Let f ∈MSs, b(η;φ). We then �nd from (3.22) that

(3.23) z (Ws, bF )′ (z) + µWs, bF (z) = (µ− 1)Ws, bf(z).

By setting

(3.24) q(z) :=
1

1− η

(
−z (Ws, bF )′ (z)

Ws, bF (z)
− η
)
,

we observe that q is analytic in U with q(0) = 1. It follows from (3.23) and (3.24) that

(3.25) −(1− η)q(z)− η + µ = (µ− 1)
Ws, bf(z)

Ws, bF (z)
.

Di�erentiating both sides of (3.25) with respect to z logarithmically and using (3.24), we
get

(3.26) q(z) +
zq′(z)

−(1− η)q(z)− η + µ
=

1

1− η

(
−z (Ws, bf)′ (z)

Ws, bf(z)
− η
)
≺ φ(z).

Since

<(−(1− η)φ(z)− η + µ) > 0 (z ∈ U),

by virtue of Lemma 2.1 and (3.26), we obtain

1

1− η

(
−z (Ws, bF )′ (z)

Ws, bF (z)
− η
)
≺ φ(z),

which implies that the assertion of Theorem 3.5 holds. �
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3.6. Theorem. Let f ∈MSs, b(η;φ) with

<((1− η)δ φ(z) + η δ − µ) < 0 (z ∈ U; δ 6= 0; µ ∈ C).

Then the function K ∈ Σ de�ned by

(3.27) Ws, bK(z) :=

(
µ− δ
zµ

∫ z

0

tµ−1 (Ws, bf(t))δ dt

)1/δ

(z ∈ U∗; δ 6= 0)

belongs to the class MSs, b(η;φ).

Proof. Let f ∈MSs, b(η;φ) and suppose that

(3.28) %(z) :=
1

1− η

(
−z (W s, bK)′ (z)

W s, bK(z)
− η
)

(z ∈ U).

In view of (3.27) and (3.28), we have

(3.29) µ− η δ − (1− η)δ %(z) = (µ− δ)
(

W s, bf(z)

W s, bK(z)

)δ
.

Now, by means of (3.27), (3.28) and (3.29), we obtain

(3.30) %(z) +
z%′(z)

µ− η δ − (1− η)δ %(z)
=

1

1− η

(
−z (Ws, bf)′ (z)

Ws, bf(z)
− η
)
≺ φ(z).

Since

<(µ− η δ − (1− η)δ φ(z)) > 0 (z ∈ U),

it follows from (3.30) and Lemma 2.1 that %(z) ≺ φ(z), that is K ∈ MSs, b(η;φ). We
thus complete the proof of Theorem 3.6. �

Now, we derive the following subordination property for the class MCs, b(λ;φ).

3.7. Theorem. Let f ∈MCs, b(λ;φ) with <(λ/(b− 1)) > 0. Then

(3.31) zWs+1, bf(z) ≺ b− 1

2λ
z−

b−1
2λ

∫ z

0

t
b−1
2λ
−1φ(t)dt ≺ φ(z).

Proof. Let f ∈MCs, b(λ;φ) and suppose that

(3.32) h(z) := zWs+1, bf(z) (z ∈ U).

Then h is analytic in U. By virtue of (1.5), (1.11) and (3.32), we �nd that

(3.33) h(z) +
λ

b− 1
zh′(z) = (1− λ)zWs+1, bf(z) + λzWs, bf(z) ≺ φ(z).

Thus, an application of Lemma 2.3 to (3.33) yields the desired assertion (3.31) of Theorem
3.7. �

3.8. Theorem. Let λ2 > λ1 ≥ 0. Then MCs, b(λ2;φ) ⊂MCs, b(λ1;φ).

Proof. Suppose that f ∈MCs, b(λ2;φ). It follows that

(3.34) (1− λ2)zWs+1, bf(z) + λ2zWs, bf(z) ≺ φ(z) (z ∈ U).

Since

0 ≤ λ1

λ2
< 1

and the function φ is convex and univalent in U, we deduce from (3.31) and (3.34) that

(1− λ1)zWs+1, bf(z) + λ1zWs, bf(z)

=
λ1

λ2
[(1− λ2)zWs+1, bf(z) + λ2zWs, bf(z)] +

(
1− λ1

λ2

)
zWs+1, bf(z) ≺ φ(z),
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which implies that f ∈MCs, b(λ1;φ). The proof of Theorem 3.8 is thus completed. �

3.9. Theorem. Let f ∈MCs, b(λ;φ). If the function F ∈ Σ is de�ned by (3.22), then

(3.35) zWs+1, bF (z) ≺ φ(z) (z ∈ U).

Proof. Let f ∈MCs, b(λ;φ) and suppose that

(3.36) χ(z) := zWs+1, bF (z) (z ∈ U).

From (3.22), we �nd that

(3.37) z (Ws+1, bF )′ (z) + µWs+1, bF (z) = (µ− 1)Ws+1, bf(z).

By virtue of (3.31), (3.36) and (3.37), we have

(3.38) χ(z) +
1

µ− 1
z χ ′(z) = zWs+1, bf(z) ≺ φ(z).

Thus, an application of Lemma 2.3 to (3.38), we get the assertion of Theorem 3.9. �

3.10. Theorem. Let q1 be univalent in U. Suppose also that q1 satis�es the condition

(3.39) <
(

1 +
zq′′1 (z)

q′1(z)

)
> max

{
0, −<

(
b− 1

λ

)}
.

If f ∈ Σ satis�es the following subordination

(3.40) (1− λ)zWs+1, bf(z) + λzWs, bf(z) ≺ q1(z) +
λ

b− 1
zq′1(z),

then

zWs+1, bf(z) ≺ q1(z),

and q1 is the best dominant.

Proof. Let the function h be de�ned by (3.32). We know that (3.33) holds. Combining
(3.33) and (3.40), we �nd that

(3.41) h(z) +
λ

b− 1
zh′(z) ≺ q1(z) +

λ

b− 1
zq′1(z).

By Lemma 2.4 and (3.41), we obtain the assertion of Theorem 3.10. �

We now derive the following superordination result for the class MCs, b(λ;φ).

3.11. Theorem. Let q2 be convex univalent in U, λ ∈ C with <(λ) > 0. Also let
zWs+1, b f(z) ∈ H[q2(0), 1] ∩ Q and (1 − λ)zWs+1, b f(z) + λzWs, bf(z) be univalent
in U. If

q2(z) +
λ

b− 1
zq′2(z) ≺ (1− λ)zWs+1, b f(z) + λzWs, bf(z),

then

q2(z) ≺ zWs+1, bf(z),

and q2 is the best subordinant.

Proof. Let the function h be de�ned by (3.32). Then

q2(z) +
λ

b− 1
zq′2(z) ≺ (1−λ)zWs+1, bf(z) +λzWs, bf(z) = h(z) +

λ

b− 1
zh′(z).

Thus, an application of Lemma 2.5, yields the assertion of Theorem 3.11. �

Finally, combining the above-mentioned subordination and superordination results,
we obtain the following sandwich type result.
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3.12. Corollary. Let q3 be convex univalent and let q4 be univalent in U, λ ∈ C with
<(λ) > 0. Suppose also that q4 satis�es the condition

<
(

1 +
zq′′4 (z)

q′4(z)

)
> max

{
0, −<

(
b− 1

λ

)}
.

If 0 6= zWs+1, bf(z) ∈ H[q3(0), 1]∩Q and (1−λ)zWs+1, bf(z)+λzWs, bf(z) is univalent
in U, also

q3(z) +
λ

b− 1
zq′3(z) ≺ (1− λ)zWs+1, bf(z) + λzWs, bf(z) ≺ q4(z) +

λ

b− 1
zq′4(z),

then

q3(z) ≺ zWs+1, bf(z) ≺ q4(z),

and q3 and q4 are, respectively, the best subordinant and the best dominant.
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