Hom-coalgebra cleft extensions and braided tensor Hom-categories of Hom-entwining structures

Chen Quanguo*, Wang Dingguo
School of Mathematical Sciences, Qufu Normal University, Shandong, Qufu 273165, China

Abstract

We investigate how the category of Hom-entwined modules can be made into a monoidal category. The sufficient and necessary conditions making the category of Hom-entwined modules have a braiding are given. Also, we formulate the concept of Hom-cleft extension for a Hom-entwining structure, and prove that if (A, α) is a (C, γ)-cleft extension, then there is an isomorphism of Hom-algebras between (A, α) and a crossed product Homalgebra of $A^{c o C}$ and C.

Mathematics Subject Classification (2010). 16W30
Keywords. Hom-Hopf algebra, Hom-entwining structure, cleft extension

1. Introduction

Entwined modules were introduced by Brzeziński and Majid $[2,3]$, which contained the Long modules, Yetter-Drinfeld modules and Doi-Koppinen modules, etc. So it is very important to study entwined module. As a generalization of entwined modules, Homentwined modules were defined by Karacuha [14] as special examples of Hom-corings.

As we know, braided monoidal categories are special categories, whose importance is that the "braiding" structures provide a class of solutions to quantum Yang-Baxter equations. Thus constructing a class of braided monoidal categories is an interesting job. Caenepeel et al. studied how the category of Doi-Hopf modules can be made into a braided monoidal category [5], which have been generalized to entwined modules and Doi-Hom-Hopf modules [13, 17].

The definition of the normal basis for extension associated to a Hopf algebra was introduced by Kreimer and Takeuchi [15]. Using this notion, Doi and Takeuchi [11] characterized H-Galois extensions with normal basis in terms of H-cleft extensions. This result can be extended for Hopf algebras living in symmetric closed categories [12]. A more general formulation in the context of (weak)entwining structures can be found in $[1,3]$.

The main goal of this paper shall discuss how to make the category of Hom-entwined modules into a monoidal category, and introduce a definition of cleft extension for Homentwining structures and with it to obtain a general cleft extension theory. In Section 3, we construct a monoidal category of Hom-etwined modules and give the sufficient and

[^0]necessary conditions making the monoidal category into a braided category. In Section 4, we introduce the notion of (C, γ)-Hom-cleft extension $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}\right) \hookrightarrow(A, \alpha)$, being (A, α) a Hom-algebra, (C, γ) a Hom-coalgebra and $A^{c o C}$ a sub-Hom-algebra of A. We prove that if (A, α) is a (C, γ)-Hom-cleft extension, then there is an isomorphism of Homalgebras between (A, α) and a crossed product Hom-algebra of $A^{c o C}$ and C.

2. Preliminaries

Throughout this paper, k will be a field. More knowledge about monoidal Hom(co)algebra, monoidal Hopf Hom-algebra, Hom-entwined modules, etc. can be found in $[4,6-10,13,14,16,18-24]$. Let $\mathcal{M}=(\mathcal{M}, \otimes, k, a, l, r)$ be the monoidal category of vector spaces over k. We can construct a new monoidal category $\mathcal{H}(\mathcal{M})$ whose objects are ordered pairs (M, μ) with $M \in \mathcal{M}$ and $\mu \in \operatorname{Aut}(M)$ and morphisms $f:(M, \mu) \rightarrow(N, \nu)$ are morphisms $f: M \rightarrow N$ in \mathcal{M} satisfying $\nu \circ f=f \circ \mu$. The monoidal structure is given by $(M, \mu) \otimes(N, \nu)=(M \otimes N, \mu \otimes \nu)$ and $\left(k, i d_{k}\right)$. All monoidal Hom-structures are objects in the tensor category $\widetilde{\mathcal{H}}(\mathcal{M})=\left(\mathcal{H}(\mathcal{M}), \otimes,\left(k, i d_{k}\right), \widetilde{a}, \widetilde{l}, \widetilde{r}\right)$ introduced in [4] with the associativity and unit constraints given by

$$
\begin{gathered}
\widetilde{a}_{M, N, C}((m \otimes n) \otimes p)=\mu(m) \otimes\left(n \otimes \gamma^{-1}(c)\right), \\
\widetilde{l}(x \otimes m)=\widetilde{r}(m \otimes x)=x \mu(m),
\end{gathered}
$$

for $(M, \mu),(N, \nu)$ and (C, γ). The category $\tilde{\mathcal{H}}(\mathcal{M})$ is termed Hom-category associated to \mathcal{M}.

2.1. Monoidal Hom-algebra

Recall from [4] that a monoidal Hom-algebra is an object $(A, \alpha) \in \widetilde{\mathcal{H}}(\mathcal{M})$ together with a linear map $m_{A}: A \otimes A \rightarrow A, m_{A}(a \otimes b)=a b$ and an element $1 \in A$ such that

$$
\begin{gather*}
\alpha(a b)=\alpha(a) \alpha(b), \alpha(a)(b c)=(a b) \alpha(c), \tag{2.1}\\
\alpha(1)=1, a 1=\alpha(a)=1 a, \tag{2.2}
\end{gather*}
$$

for all $a, b, c \in A$.
A right (A, α)-Hom-module consists of an object $(M, \mu) \in \widetilde{\mathcal{H}}(\mathcal{M})$ together with a linear $\operatorname{map} \psi: M \otimes A \rightarrow M, \psi(m \otimes a)=m a$ satisfying the following conditions:

$$
\begin{equation*}
\mu(m)(a b)=(m a) \alpha(b), m 1=\mu(m), \tag{2.3}
\end{equation*}
$$

for all $m \in M$ and $a, b \in A$. For ψ to be a morphism in $\tilde{\mathcal{H}}(\mathcal{M})$ means

$$
\begin{equation*}
\mu(m a)=\mu(m) \alpha(a) . \tag{2.4}
\end{equation*}
$$

We call that ψ is a right Hom-action of (A, α) on (M, μ).
Let (M, μ) and $\left(M^{\prime}, \mu^{\prime}\right)$ be two right (A, α)-Hom-modules. We call a morphism f : $M \rightarrow M^{\prime}$ right (A, α)-linear, if $f \circ \mu=\mu \circ f$ and $f(m a)=f(m) a . \mathcal{M}_{A}$ denotes the category of all right (A, α)-Hom-modules.

2.2. Monoidal Hom-coalgebras

Recall from [4] that a monoidal Hom-coalgebra is an object $(C, \gamma) \in \widetilde{\mathcal{H}}(\mathcal{M})$ together with two linear maps $\Delta_{C}: C \rightarrow C \otimes C, \Delta_{C}(c)=c_{1} \otimes c_{2}$ (summation implicitly understood) and $\varepsilon_{C}: C \rightarrow k$ such that

$$
\begin{gather*}
\gamma^{-1}\left(c_{1}\right) \otimes \Delta_{C}\left(c_{2}\right)=c_{1_{1}} \otimes\left(c_{1_{2}} \otimes \gamma^{-1}\left(c_{2}\right)\right), \Delta_{C}(\gamma(c))=\gamma\left(c_{1}\right) \otimes \gamma\left(c_{2}\right), \tag{2.5}\\
\varepsilon_{C}(\gamma(c))=\varepsilon_{C}(c), c_{1} \varepsilon_{C}\left(c_{2}\right)=\gamma^{-1}(c)=\varepsilon_{C}\left(c_{1}\right) c_{2}, \tag{2.6}
\end{gather*}
$$

for all $c \in C$.

A right (C, γ)-Hom-comodule consists of an object $(M, \mu) \in \widetilde{\mathcal{H}}(\mathcal{M})$ together with a linear map $\rho_{M}: M \rightarrow M \otimes C, \rho_{M}(m)=m_{[0]} \otimes m_{[1]}$ (summation implicitly understood) satisfying the following conditions:

$$
\begin{gather*}
\mu^{-1}\left(m_{[0]}\right) \otimes \Delta\left(m_{[1]}\right)=m_{[0][0]} \otimes\left(m_{[0][1]} \otimes \gamma^{-1}\left(m_{[1]}\right)\right), \tag{2.7}\\
m_{[00} \varepsilon_{C}\left(m_{[1]}\right)=\gamma^{-1}(m), \tag{2.8}\\
\mu(m)_{[0]} \otimes \mu(m)_{[1]}=\mu\left(m_{[0]}\right) \otimes \gamma\left(m_{[1]}\right), \tag{2.9}
\end{gather*}
$$

for all $m \in M$. We call that ρ_{M} is a right Hom-coaction of (A, α) on (M, μ).
Let (M, μ) and $\left(M^{\prime}, \mu^{\prime}\right)$ be two right (C, γ)-Hom-comodules. We call a morphism f : $M \rightarrow M^{\prime} \operatorname{right}(A, \alpha)$-colinear, if $f \circ \mu=\mu \circ f$ and $f(m)_{[0]} \otimes f(m)_{[1]}=f\left(m_{[0]}\right) \otimes m_{[1]} . \mathcal{M}^{C}$ denotes the category of all right (C, γ)-Hom-comodules.

2.3. Monoidal Hom-Hopf algebra

A monoidal Hom-bialgebra $H=\left(H, \beta, m_{H}, 1, \Delta_{H}, \varepsilon_{H}\right)$ is a bialgebra in the category $\tilde{\mathcal{H}}(\mathcal{M})$. This means that $\left(H, \beta, m_{H}, 1\right)$ is a monoidal Hom-algebra and $\left(H, \beta, \Delta_{H}, \varepsilon_{H}\right)$ is a monoidal Hom-coalgebra such that Δ_{H} and ε_{H} are Hom-algebra maps, that is, for any $h, g \in H$,

$$
\begin{gather*}
\Delta_{H}(h g)=\Delta_{H}(h) \Delta_{H}(g), \Delta_{H}(1)=1 \otimes 1, \tag{2.10}\\
\varepsilon_{H}(h g)=\varepsilon_{H}(h) \varepsilon_{H}(g), \varepsilon_{H}(1)=1 . \tag{2.11}
\end{gather*}
$$

A monoidal Hom-bialgebra (H, β) is called a monoidal Hom-Hopf algebra, if there exists a morphism (called the antipode) $S: H \rightarrow H$ in $\widetilde{\mathcal{H}}(\mathcal{M})$ such that

$$
\begin{equation*}
S\left(h_{1}\right) h_{2}=\varepsilon_{H}(h) 1=h_{1} S\left(h_{2}\right), \tag{2.12}
\end{equation*}
$$

for all $h \in H$.

2.4. Hom-Doi-Koppinen datum

Let (H, β) be a monoidal Hom-bialgebra. Recall from [14] that a right (H, β)-Homcomodule algebra (A, α) is a monoidal Hom-algebra and a right (H, β)-Hom-comodule with a Hom-coaction ρ_{A} such that ρ_{A} is a Hom-algebra morphism, i.e., for any $a, a^{\prime} \in A$,

$$
\begin{align*}
& \left(a a^{\prime}\right)_{[0]} \otimes\left(a a^{\prime}\right)_{[1]}=a_{[0]} a_{[0]}^{\prime} \otimes a_{[1]} a_{[1]}^{\prime}, \tag{2.13}\\
& \rho_{A}(1)=1 \otimes 1, \rho_{A} \circ \alpha=(\alpha \otimes \beta) \circ \rho_{A} . \tag{2.14}
\end{align*}
$$

A right (H, β)-Hom-module coalgebra (C, γ) is a monoidal Hom-coalgebra and a right (H, β)-Hom-module such that, for any $c \in C$ and $h \in H$,

$$
\begin{gather*}
(c h)_{1} \otimes(c h)_{2}=c_{1} h_{1} \otimes c_{2} h_{2} \tag{2.15}\\
\varepsilon_{C}(c h)=\varepsilon_{C}(c) \varepsilon_{H}(h), \gamma(c h)=\gamma(c) \beta(h) \tag{2.16}
\end{gather*}
$$

A Hom-Doi-Koppinen datum is a triple $[(H, \beta),(A, \alpha),(C, \gamma)]$, where (H, β) is a monoidal Hom-Hopf algebra, (A, α) a right (H, β)-Hom-comodule algebra and (C, γ) a left (H, β) -Hom-module coalgebra. A Doi-Koppinen Hom-Hopf module (M, μ) is a left (A, α)-Hommodule which is also a right (C, γ)-Hom-comodule with the coaction structure ρ_{M} such that

$$
\rho_{M}(m a)=m_{[0]} a_{[0]} \otimes m_{[1]} a_{[1]},
$$

for all $m \in M$ and $a \in A$.

2.5. Hom-entwining structure

A (right-right) Hom-entwining structure is a $[(A, \alpha),(C, \gamma)]_{\psi}$ consisting of a monoidal Hom-algebra (A, α), a monoidal Hom-coalgebra (C, γ) and a linear map $\psi: C \otimes A \rightarrow A \otimes C$ in $\widetilde{\mathcal{H}}(\mathcal{M})$ satisfying the following conditions, for all $a, a^{\prime} \in A, c \in C$,

$$
\begin{align*}
\left(a a^{\prime}\right)_{\psi} \otimes \gamma(c)^{\psi} & =a_{\psi} a_{\Psi}^{\prime} \otimes \gamma\left(c^{\psi \Psi}\right) \tag{2.17}\\
\alpha^{-1}\left(a_{\psi}\right) \otimes c^{\psi}{ }_{1} \otimes c^{\psi}{ }_{2} & =\alpha^{-1}(a)_{\psi \Psi} \otimes c_{1}^{\Psi} \otimes c_{2}^{\psi} \tag{2.18}\\
1_{A \psi} \otimes c^{\psi} & =1_{A} \otimes c \tag{2.19}\\
a_{\psi} \varepsilon_{C}\left(c^{\psi}\right) & =a \varepsilon_{C}(c) \tag{2.20}
\end{align*}
$$

Here we use the following notation $\psi(c \otimes a)=a_{\psi} \otimes c^{\psi}$ for the so-called entwining map ψ. $\psi \in \widetilde{\mathcal{H}}(\mathcal{M})$ means that the relation

$$
\begin{equation*}
\alpha(a)_{\psi} \otimes \gamma(c)^{\psi}=\alpha\left(a_{\psi}\right) \otimes \gamma\left(c^{\psi}\right) \tag{2.21}
\end{equation*}
$$

If the map ψ occurs more than once in the same expression, then we use different suband superscripts: $\psi, \Psi, \psi_{1}, \psi_{2}, \cdots$.

Given a Hom-entwining structure $[(A, \alpha),(C, \gamma)]_{\psi}$. A right-right $[(A, \alpha),(C, \gamma)]_{\psi}$-entwined Hom-module is an object (M, μ) in $\widetilde{\mathcal{H}}(\mathcal{M})$ is a right (A, α)-Hom-module, and a right (C, γ) -Hom-comodule with coaction $\rho_{M}: M \rightarrow M \otimes C, m \mapsto m_{[0]} \otimes m_{[1]}$ satisfying the condition, for any $m \in M, a \in A$,

$$
\rho_{M}(m a)=m_{[0]} \alpha^{-1}(a)_{\psi} \otimes \gamma\left(m_{[1]}^{\psi}\right)
$$

We use $\widetilde{\mathcal{M}}_{A}^{C}(\psi)$ to denote the category of $[(A, \alpha),(C, \gamma)]_{\psi}$-entwined Hom-modules together with the morphisms in which are both right (A, α)-linear and right (C, γ)-colinear.

3. Braiding on the Hom-category of Hom-entwined modules

Definition 3.1. We call $[(A, \alpha),(C, \gamma)]_{\psi}$ a momoidal Hom-entwining datum, if $[(A, \alpha),(C$, $\gamma)]_{\psi}$ is a Hom-entwining structure and A and C are monoidal Hom-bialgebras with the additional compatibility relations, for all $a \in A$ and $c, c^{\prime} \in C$,

$$
\begin{gather*}
a_{1 \psi} \otimes a_{2 \Psi} \otimes c^{\psi} c^{\prime \Psi}=\Delta_{A}\left(a_{\psi}\right) \otimes\left(c c^{\prime}\right)^{\psi} \tag{3.1}\\
\varepsilon_{A}(a) 1_{C}=\varepsilon_{A}\left(a_{\psi}\right) 1_{C}^{\psi} \tag{3.2}
\end{gather*}
$$

Proposition 3.2. Let $[(A, \alpha),(C, \gamma)]_{\psi}$ be a momoidal Hom-entwining structure. Then the tensor product of two Hom-entwined modules (M, μ) and (N, ν) is again a Hom-entwined module $(M \otimes N, \mu \otimes \nu)$ with the structure maps given by

$$
\begin{gather*}
\rho_{M \otimes N}(m \otimes n)=m_{[0]} \otimes n_{[0]} \otimes m_{[1]} n_{[1]}, \tag{3.3}\\
(m \otimes n) a=m a_{1} \otimes n a_{2} \tag{3.4}
\end{gather*}
$$

for all $m \in M, n \in N$ and $a \in A$. Thus the category $\widetilde{\mathcal{M}}_{A}^{C}(\psi)$ is a Hom-category.
Proof. We show that $(M \otimes N, \mu \otimes \nu)$ is a Hom-entwined module. For all $m \in M, n \in N$ and $a \in A$, we have

$$
\begin{aligned}
\rho_{M \otimes N}((m \otimes n) a) & =\left(m a_{1}\right)_{[0]} \otimes\left(n a_{2}\right)_{[0]} \otimes\left(m a_{1}\right)_{[1]}\left(n a_{2}\right)_{[1]} \\
& =m_{[0]} \alpha^{-1}\left(a_{1}\right)_{\psi} \otimes n_{[0]} \alpha^{-1}\left(a_{2}\right)_{\Psi} \otimes \gamma\left(m_{[1]}{ }^{\psi}\right) \gamma\left(n_{[1]}{ }^{\Psi}\right) \\
& =m_{[0]} \alpha^{-1}(a)_{1 \psi} \otimes n_{[0]} \alpha^{-1}(a)_{2 \Psi} \otimes \gamma\left(m_{[1]} n_{[1]}{ }^{\Psi}\right) \\
& =m_{[0]} \alpha^{-1}(a)_{\psi 1} \otimes n_{[0]} \alpha^{-1}(a)_{\psi 2} \otimes \gamma\left(\left(m_{[1]} n_{[1]}\right)^{\psi}\right)(b y(3.1)) \\
& =\left(m_{[0]} \otimes n_{[0]}\right) \alpha^{-1}(a)_{\psi} \otimes \gamma\left(\left(m_{[1]} n_{[1]}\right)^{\psi}\right) .
\end{aligned}
$$

Thus $(M \otimes N, \mu \otimes \nu)$ is an object of $\widetilde{\mathcal{M}}_{A}^{C}(\psi)$. Let $(M, \mu),(N, \nu)$ and (W, ς) be Hom-entwined modules. The isomorphisms

$$
\begin{gathered}
\widetilde{a}_{M, N, W}:(M \otimes N) \otimes W \rightarrow M \otimes(N \otimes W) \\
(m \otimes n) \otimes w \mapsto \mu(m) \otimes\left(\nu(n) \otimes \varsigma^{-1}(w)\right), \\
\widetilde{r}_{M}: M \otimes k \rightarrow M, m \otimes x \mapsto x \mu(m), \\
\widetilde{l}_{M}: k \otimes M \rightarrow M, x \otimes m \mapsto x \mu(m),
\end{gathered}
$$

obviously satisfy the pentagon axiom and the triangle axiom. We observe that $(k, i d)$ is an object of $\widetilde{\mathcal{M}}_{A}^{C}(\psi)$ via the trivial (A, α)-Hom-action and ($\left.C, \gamma\right)$-Hom-coaction given by $x a=\varepsilon_{A}(a) x$ and $\rho_{k}=x \otimes 1_{C}$. It is clear that $(k, i d)$ is a unit object of $\widetilde{\mathcal{N}}_{A}^{C}(\psi)$. Hence $\widetilde{\mathcal{M}}_{A}^{C}(\psi)$ is a Hom-category.

Let $[(A, \alpha),(C, \gamma)]_{\psi}$ be a momoidal Hom-entwining datum. We know that a braiding on $\widetilde{\mathcal{A}}_{A}^{C}(\psi)$ is a natural family of isomorphisms

$$
t_{M, N}: M \otimes N \rightarrow N \otimes M
$$

in $\widetilde{\mathcal{M}}_{A}^{C}(\psi)$ such that, for all $(M, \mu),(N, \nu)$ and (W, ς),

$$
\begin{gather*}
\left(i d_{N} \otimes t_{M, W}\right) \circ \widetilde{a}_{N, M, W} \circ\left(t_{M, N} \otimes i d_{W}\right) \circ \widetilde{a}_{M, N, W}^{-1}=\widetilde{a}_{N, W, M} \circ t_{M, N \otimes W}, \tag{3.5}\\
\widetilde{a}_{P, M, N}^{-1} \circ t_{M, P} \otimes i d_{N} \circ \widetilde{a}_{M, P, N}^{-1} \circ i d_{M} \otimes t_{N, P} \circ \widetilde{a}_{M, N, P}=t_{M \otimes N, P} . \tag{3.6}
\end{gather*}
$$

Consider a map $Q: C \otimes C \rightarrow A \otimes A$ in $\widetilde{\mathcal{H}}(\mathcal{M})$ with twisted convolution inverse R. We use the following notations $Q(c \otimes d)=Q^{1}(c \otimes d) \otimes Q^{2}(c \otimes d)$ and $R(c \otimes d)=R^{1}(c \otimes d) \otimes R^{2}(c \otimes d)$, for all $c, d \in C$. Thus we have

$$
\begin{align*}
& Q^{1}\left(c_{2} \otimes d_{2}\right) R^{1}\left(c_{1} \otimes d_{1}\right) \otimes Q^{2}\left(c_{2} \otimes d_{2}\right) R^{2}\left(c_{1} \otimes d_{1}\right)=\varepsilon_{C}(c) 1_{A} \otimes \varepsilon_{C}(d) 1_{A}, \tag{3.7}\\
& R^{1}\left(c_{2} \otimes d_{2}\right) Q^{1}\left(c_{1} \otimes d_{1}\right) \otimes R^{2}\left(c_{2} \otimes d_{2}\right) Q^{2}\left(c_{1} \otimes d_{1}\right)=\varepsilon_{C}(c) 1_{A} \otimes \varepsilon_{C}(d) 1_{A} . \tag{3.8}
\end{align*}
$$

Consider two Hom-entwined modules (M, μ) and (N, ν), we define

$$
t_{M, N}: M \otimes N \rightarrow N \otimes M, m \otimes n \mapsto\left(n_{[0]} \otimes m_{[0]}\right) Q\left(n_{[1]} \otimes m_{[1]}\right),
$$

for all $m \in M, n \in N$. It follows from (3.7) and (3.8) that $t_{M, N}$ is bijective.
Example 3.3. Let $[(A, \alpha),(C, \gamma)]_{\psi}$ a Hom-entwining structure. The $(A \otimes C, \alpha \otimes \gamma)$ can become a Hom-entwined module with the right (A, α)-Hom-action and right (C, γ)-Homcoaction given by

$$
\begin{gather*}
(a \otimes c) b=a \alpha^{-1}(b) \otimes \gamma(c), \tag{3.9}\\
\rho_{A \otimes C}(a \otimes c)=\left(\alpha^{-1}(a)_{\psi} \otimes c_{1}\right) \otimes \gamma\left(c_{2}^{\psi}\right), \tag{3.10}
\end{gather*}
$$

for all $a \in A$ and $c \in C$.
Proof. It is straightforward to check that $(A \otimes C, \alpha \otimes \gamma)$ is a right (A, α)-Hom-module. Here we shall check that $(A \otimes C, \alpha \otimes \gamma)$ is also a right (C, γ)-Hom-comodule. In fact, for $a \in A$ and $c \in C$,

$$
\begin{aligned}
& \left(\alpha^{-1} \otimes \gamma^{-1}\right)\left((a \otimes c)_{[0]}\right) \otimes \Delta_{C}\left((a \otimes c)_{[1]}\right) \\
& \quad=\alpha^{-1}\left(\alpha^{-1}(a)_{\psi}\right) \otimes \gamma^{-1}\left(c_{1}\right) \otimes\left(\gamma\left(c_{2}^{\psi}\right) \otimes \gamma\left(c_{2}^{\psi}{ }_{2}\right)\right) \\
& \quad=\alpha^{-2}(a)_{\psi \Psi} \otimes \gamma^{-1}\left(c_{1}\right) \otimes\left(\gamma\left(c_{2_{1}}{ }^{\Psi}\right) \otimes \gamma\left(c_{2}{ }^{\psi}\right)\right) \\
& =\alpha^{-1}\left(\alpha^{-1}(a)_{\psi \Psi}\right) \otimes \gamma^{-1}\left(c_{1}\right) \otimes\left(\gamma\left(c_{2_{1}}\right)^{\Psi} \otimes \gamma\left(c_{2_{2}}\right)^{\psi}\right) \\
& =\alpha^{-1}\left(\alpha^{-1}(a)_{\psi \Psi}\right) \otimes c_{1_{1}} \otimes\left(\gamma\left(c_{1_{2}}\right)^{\Psi} \otimes c_{2}^{\psi}\right) \\
& =\alpha^{-1}\left(\alpha^{-1}(a)_{\psi}\right)_{\Psi} \otimes c_{1_{1}} \otimes\left(\gamma\left(c_{1_{2}}{ }^{\Psi}\right) \otimes c_{2}{ }^{\psi}\right) \\
& \quad=(a \otimes c)_{[0][0]} \otimes\left((a \otimes c)_{[0][1]} \otimes \gamma^{-1}\left((a \otimes c)_{[1]}\right)\right),
\end{aligned}
$$

which proves that (2.7) holds. The other conditions can be checked straightforwardly. The compatibility can be proved as follows: for $a, b \in A, c \in C$,

$$
\begin{aligned}
\rho_{A \otimes C}((b \otimes c) a) & =\rho_{A \otimes C}\left(b \alpha^{-1}(a) \otimes \gamma(c)\right) \\
& =\left(\alpha^{-1}\left(b \alpha^{-1}(a)\right)_{\psi} \otimes \gamma\left(c_{1}\right)\right) \otimes \gamma\left(\gamma\left(c_{2}\right)^{\psi}\right) \\
& =\left(\left(\alpha^{-1}(b) \alpha^{-2}(a)\right)_{\psi} \otimes \gamma\left(c_{1}\right)\right) \otimes \gamma\left(\gamma\left(c_{2}\right)^{\psi}\right) \\
& =\left(\alpha^{-1}(b)_{\psi} \alpha^{-2}(a)_{\Psi} \otimes \gamma\left(c_{1}\right)\right) \otimes \gamma\left(\gamma\left(c_{2}{ }^{\psi \Psi}\right)\right) \\
& =\left(\alpha^{-1}(b)_{\psi} \alpha^{-1}\left(\alpha^{-1}(a)_{\Psi}\right) \otimes \gamma\left(c_{1}\right)\right) \otimes \gamma\left(\gamma\left(c_{2}{ }^{\psi}\right)^{\Psi}\right) \\
& =\left(\alpha^{-1}(b)_{\psi} \otimes c_{1}\right) \alpha^{-1}(a)_{\Psi} \otimes \gamma\left(\gamma\left(c_{2}^{\psi}\right)^{\Psi}\right)
\end{aligned}
$$

as desired.
Lemma 3.4. With notations as above, the map $t_{M, N}$ is right (A, α)-linear for all Homentwined modules (M, μ) and (N, ν) if and only if

$$
\begin{equation*}
\left(b_{2 \psi} \otimes b_{1 \Psi}\right) Q\left(c^{\prime \psi} \otimes c^{\Psi}\right)=Q\left(c^{\prime} \otimes c\right) \Delta_{A}(b) \tag{3.11}
\end{equation*}
$$

for all $b \in A$ and $c, c^{\prime} \in C$.
Proof. Suppose that $t_{A \otimes C, A \otimes C}$ is (A, α)-linear. Then, for $a, a^{\prime}, b \in A$ and $c, c^{\prime} \in C$, we have

$$
\begin{equation*}
t_{A \otimes C, A \otimes C}\left(\left((a \otimes c) \otimes\left(a^{\prime} \otimes c^{\prime}\right)\right) b\right)=t_{A \otimes C, A \otimes C}\left((a \otimes c) \otimes\left(a^{\prime} \otimes c^{\prime}\right)\right) b \tag{3.12}
\end{equation*}
$$

Since

$$
\begin{aligned}
\text { LHS }= & t_{A \otimes C, A \otimes C}\left((a \otimes c) b_{1} \otimes\left(a^{\prime} \otimes c^{\prime}\right) b_{2}\right) \\
= & t_{A \otimes C, A \otimes C}\left(\left(a \alpha^{-1}\left(b_{1}\right) \otimes \gamma(c)\right) \otimes\left(a^{\prime} \alpha^{-1}\left(b_{2}\right) \otimes \gamma\left(c^{\prime}\right)\right)\right) \\
= & \left(\alpha^{-1}\left(a^{\prime} \alpha^{-1}\left(b_{2}\right)\right)_{\psi} \otimes \gamma\left(c^{\prime}\right)_{1}\right) Q^{1}\left(\gamma\left(\gamma\left(c^{\prime}\right)_{2} 2^{\psi}\right) \otimes \gamma\left(\gamma(c) 2^{\Psi}\right)\right) \\
& \otimes\left(\alpha^{-1}\left(a \alpha^{-1}\left(b_{1}\right)\right)_{\Psi} \otimes \gamma(c)_{1}\right) Q^{2}\left(\gamma\left(\gamma\left(c^{\prime}\right)_{2}{ }^{\psi}\right) \otimes \gamma\left(\gamma(c)_{2}{ }^{\Psi}\right)\right) \\
= & \left(\alpha^{-1}\left(a^{\prime} \alpha^{-1}\left(b_{2}\right)\right)_{\psi} \alpha^{-1}\left(Q^{1}\left(\gamma\left(\gamma\left(c^{\prime}\right)_{2}^{\psi}\right) \otimes \gamma\left(\gamma(c)_{2}^{\Psi}\right)\right)\right) \otimes \gamma\left(\gamma\left(c^{\prime}\right)_{1}\right)\right) \\
& \otimes\left(\alpha^{-1}\left(a \alpha^{-1}\left(b_{1}\right)\right)_{\Psi} \alpha^{-1}\left(Q^{2}\left(\gamma\left(\gamma\left(c^{\prime}\right)_{2}{ }^{\psi}\right) \otimes \gamma\left(\gamma(c)_{2}{ }^{\Psi}\right)\right)\right) \otimes \gamma\left(\gamma(c)_{1}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{RHS}= & \left(\left(\left(\alpha^{-1}\left(a^{\prime}\right)_{\psi} \otimes c_{1}^{\prime}\right) \otimes\left(\alpha^{-1}(a)_{\Psi} \otimes c_{1}\right)\right) Q\left(\gamma\left(c_{2}^{\prime \psi}\right) \otimes \gamma\left(c_{2}^{\Psi}\right)\right)\right) b \\
= & \left(\left(\alpha^{-1}\left(a^{\prime}\right)_{\psi} \otimes c_{1}^{\prime}\right) Q^{1}\left(\gamma\left(c_{2}^{\prime \psi}\right) \otimes \gamma\left(c_{2}^{\Psi}\right)\right)\right) b_{1} \\
& \otimes\left(\left(\alpha^{-1}(a)_{\Psi} \otimes c_{1}\right) Q^{2}\left(\gamma\left(c_{2}^{\prime \psi}\right) \otimes \gamma\left(c_{2}^{\Psi}\right)\right)\right) b_{2} \\
= & \left(\left(\alpha^{-1}\left(a^{\prime}\right)_{\psi} \alpha^{-1}\left(Q^{1}\left(\gamma\left(c_{2}^{\prime \psi}\right) \otimes \gamma\left(c_{2}^{\Psi}\right)\right)\right)\right) \alpha^{-1}\left(b_{1}\right) \otimes \gamma^{2}\left(c_{1}^{\prime}\right)\right) \\
& \otimes\left(\left(\alpha^{-1}(a)_{\Psi} \alpha^{-1}\left(Q^{2}\left(\gamma\left(c_{2}^{\prime \psi}\right) \otimes \gamma\left(c_{2}^{\Psi}\right)\right)\right)\right) \alpha^{-1}\left(b_{2}\right) \otimes \gamma^{2}\left(c_{1}\right)\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
& \left(\alpha^{-1}\left(a^{\prime} \alpha^{-1}\left(b_{2}\right)\right)_{\psi} \alpha^{-1}\left(Q^{1}\left(\gamma\left(\gamma\left(c^{\prime}\right)_{2}^{\psi}\right) \otimes \gamma\left(\gamma(c)_{2}^{\Psi}\right)\right)\right) \otimes \gamma\left(\gamma\left(c^{\prime}\right)_{1}\right)\right) \\
& \quad \otimes\left(\alpha^{-1}\left(a \alpha^{-1}\left(b_{1}\right)\right)_{\Psi} \alpha^{-1}\left(Q^{2}\left(\gamma\left(\gamma\left(c^{\prime}\right) 2_{2}^{\psi}\right) \otimes \gamma\left(\gamma(c)_{2}{ }^{\Psi}\right)\right)\right) \otimes \gamma\left(\gamma(c)_{1}\right)\right) \\
& =\left(\left(\alpha^{-1}\left(a^{\prime}\right)_{\psi} \alpha^{-1}\left(Q^{1}\left(\gamma\left(c_{2}^{\prime \psi}\right) \otimes \gamma\left(c_{2}^{\Psi}\right)\right)\right)\right) \alpha^{-1}\left(b_{1}\right) \otimes \gamma^{2}\left(c_{1}^{\prime}\right)\right) \\
& \quad \otimes\left(\left(\alpha^{-1}(a)_{\Psi} \alpha^{-1}\left(Q^{2}\left(\gamma\left(c_{2}^{\prime \prime}\right) \otimes \gamma\left(c_{2}^{\Psi}\right)\right)\right)\right) \alpha^{-1}\left(b_{2}\right) \otimes \gamma^{2}\left(c_{1}\right)\right) .
\end{aligned}
$$

By taking $a=a^{\prime}=1_{A}$ in the above equality and then applying $i d_{A} \otimes \varepsilon_{C} \otimes i d_{A} \otimes \varepsilon_{C}$ to both sides, we can get

$$
\begin{equation*}
\left(b_{2 \psi} \otimes b_{1 \Psi}\right) Q\left(c^{\prime \psi} \otimes c^{\Psi}\right)=Q\left(c^{\prime} \otimes c\right) \Delta_{A}(b) \tag{3.13}
\end{equation*}
$$

Conversely, suppose that (3.11) holds, and consider two Hom-entwined modules (M, μ) and (N, ν). For all $m \in M, n \in N$ and $a \in A$, we have

$$
\begin{aligned}
t_{M, N}((m \otimes n) a)= & t_{M, N}\left(m a_{1} \otimes n a_{2}\right) \\
= & \left(\left(n_{2}\right)_{[0]} \otimes\left(m a_{1}\right)_{[0]}\right) Q\left(\left(n a_{2}\right)_{[1]} \otimes\left(m a_{1}\right)_{[1]}\right) \\
= & \left(n_{[0]} \alpha^{-1}\left(a_{2}\right)_{\psi} \otimes m_{[0]} \alpha^{-1}\left(a_{1}\right)_{\Psi}\right) Q\left(\gamma\left(n_{[1]}^{\psi}\right) \otimes \gamma\left(m_{[1]}{ }^{\Psi}\right)\right) \\
= & \left(n_{[0]} \alpha^{-1}(a)_{2 \psi} \otimes m_{[0]} \alpha^{-1}(a)_{1 \Psi}\right) Q\left(\gamma\left(n_{[1]}^{\psi}\right) \otimes \gamma\left(m_{[1]}^{\Psi}\right)\right) \\
= & \nu\left(n_{[0]}\right) \alpha^{-1}\left(a_{2 \psi} Q^{1}\left(\gamma\left(n_{[1]}\right)^{\psi} \otimes \gamma\left(m_{[1]}\right)^{\Psi}\right)\right) \\
& \otimes \mu\left(m_{[0]}\right) \alpha^{-1}\left(a_{1 \Psi} Q^{2}\left(\gamma\left(n_{[1]}\right)^{\psi} \otimes \gamma\left(m_{[1]}\right)^{\Psi}\right)\right) \\
= & \nu\left(n_{[0]}\right) \alpha^{-1}\left(Q^{1}\left(\gamma\left(n_{[1]}\right) \otimes \gamma\left(m_{[1]}\right)\right) a_{1}\right) \\
& \otimes \mu\left(m_{[0]}\right) \alpha^{-1}\left(Q^{2}\left(\gamma\left(n_{[1]}\right) \otimes \gamma\left(m_{[1]}\right)\right) a_{2}\right) \\
= & \left(n_{[0]} \alpha^{-1}\left(Q^{1}\left(\gamma\left(n_{[1]}\right) \otimes \gamma\left(m_{[1]}\right)\right)\right)\right) a_{1} \\
& \otimes\left(m_{[0]} \alpha^{-1}\left(Q^{2}\left(\gamma\left(n_{[1]}\right) \otimes \gamma\left(m_{[1]}\right)\right)\right)\right) a_{2} \\
= & \left(n_{[0]} Q^{1}\left(n_{[1]} \otimes m_{[1]}\right)\right) a_{1} \otimes\left(m_{[0]} Q^{2}\left(n_{[1]} \otimes m_{[1]}\right)\right) a_{2} \\
= & t_{M, N}(m \otimes n) a,
\end{aligned}
$$

which follows that $t_{M, N}$ is (A, α)-linear.
Lemma 3.5. With notations as above, the map $t_{M, N}$ is right (C, γ)-colinear for all Homentwined modules (M, μ) and (N, ν) if and only if

$$
\begin{equation*}
Q^{1}\left(c_{2}^{\prime} \otimes c_{2}\right)_{\psi} \otimes Q^{2}\left(c_{2}^{\prime} \otimes c_{2}\right)_{\Psi} \otimes c_{1}^{\prime \psi} c_{1}^{\Psi}=Q^{1}\left(c_{1}^{\prime} \otimes c_{1}\right) \otimes Q^{2}\left(c_{1}^{\prime} \otimes c_{1}\right) \otimes c_{2} c_{2}^{\prime} \tag{3.14}
\end{equation*}
$$

for all $c, c^{\prime} \in C$.
Proof. Suppose that $t_{A \otimes C, A \otimes C}$ is (C, γ)-colinear. Then, for $c, c^{\prime} \in C$, we have

$$
\begin{aligned}
& \left(\alpha^{-1}\left(Q^{1}\left(\gamma\left(c_{2}^{\prime}\right) \otimes \gamma\left(c_{2}\right)\right)_{\psi}\right) \otimes \gamma\left(c_{11}^{\prime}\right)\right) \\
& \quad \otimes\left(\alpha^{-1}\left(Q^{2}\left(\gamma\left(c_{2}^{\prime}\right) \otimes \gamma\left(c_{2}\right)\right)_{\Psi}\right) \otimes \gamma\left(c_{11}\right)\right) \otimes \gamma^{2}\left(c_{12}^{\prime}\right)^{\psi} \gamma^{2}\left(c_{12}\right)^{\Psi} \\
& =\left(Q^{1}\left(\gamma\left(c_{12}^{\prime}\right) \otimes \gamma\left(c_{12}\right)\right) \otimes \gamma\left(c_{11}^{\prime}\right)\right) \otimes\left(Q^{2}\left(\gamma\left(c_{12}^{\prime}\right) \otimes \gamma\left(c_{12}\right)\right) \otimes \gamma\left(c_{11}\right)\right) \otimes \gamma\left(c_{2}\right) \gamma\left(c_{2}^{\prime}\right) .
\end{aligned}
$$

Applying $i d_{A} \otimes \varepsilon_{C} \otimes i d_{A} \otimes \varepsilon_{C} \otimes i d_{C}$ to both sides, we can have (3.14).
Conversely, assume that (3.14) holds. Take two Hom-entwined modules (M, μ) and (N, ν). Then, for $m \in M$, and $n \in N$, we have

$$
\begin{aligned}
\rho_{M} \otimes N & \left(t_{M, N}(m \otimes n)\right) \\
= & \rho_{M \otimes N}\left(\left(n_{[0]} \otimes m_{[0]}\right) Q\left(n_{[1]} \otimes m_{[1]}\right)\right) \\
= & \left(n_{[0][0]} \alpha^{-1}\left(Q^{1}\left(n_{[1]} \otimes m_{[1]}\right)\right)_{\psi}\right. \\
& \left.\otimes m_{[0][0]} \alpha^{-1}\left(Q^{2}\left(n_{[1]} \otimes m_{[1]}\right)\right)_{\Psi}\right) \otimes \gamma\left(n_{[0][1]} \psi^{\psi}\right) \gamma\left(m_{[0][1]}{ }^{\Psi}\right) \\
= & \left(\nu^{-1}\left(n_{[0]}\right) \alpha^{-1}\left(Q^{1}\left(\gamma\left(n_{[1] 2}\right) \otimes \gamma\left(m_{[1] 2}\right)\right)\right)\right)_{\psi} \\
& \left.\otimes \mu^{-1}\left(m_{[0]}\right) \alpha^{-1}\left(Q^{2}\left(\gamma\left(n_{[1] 2}\right) \otimes \gamma\left(m_{[1] 2}\right)\right)\right)_{\Psi}\right) \otimes \gamma\left(n_{[1] 1} \psi\right) \gamma\left(m_{[1] 1}{ }^{\Psi}\right) \\
= & \left(\left(\nu^{-1}\left(n_{[0]}\right) \alpha^{-1}\left(Q^{1}\left(\gamma\left(n_{[1]}\right)_{2} \otimes \gamma\left(m_{[1]}\right)_{2}\right)_{\psi}\right)\right)\right. \\
& \left.\left.\otimes\left(\mu^{-1}\left(m_{[0]}\right) \alpha^{-1}\left(Q^{2}\left(\gamma\left(n_{[1]}\right)_{2} \otimes \gamma\left(m_{[1]}\right)\right)_{2}\right)\right)\right) \otimes \gamma\left(n_{[1]}\right)_{1}\right)^{\psi} \gamma\left(m_{[1]}\right)_{1} \Psi^{\Psi} \\
= & \left(\left(\nu^{-1}\left(n_{[0]}\right) \alpha^{-1}\left(Q^{1}\left(\gamma\left(n_{[1] 1]}\right) \otimes \gamma\left(m_{[1] 1}\right)\right)\right)\right)\right. \\
& \left.\otimes\left(\mu^{-1}\left(m_{[0]}\right) \alpha^{-1}\left(Q^{2}\left(\gamma\left(n_{[1] 1}\right) \otimes \gamma\left(m_{[1] 1]}\right)\right)\right)\right)\right) \otimes \gamma\left(m_{[1] 2}\right) \gamma\left(n_{[1] 2}\right) \\
= & \left(n_{[0][0]} \alpha^{-1}\left(Q^{1}\left(\gamma\left(n_{[0][1]}\right) \otimes \gamma\left(m_{[0][1]}\right)\right)\right)\right. \\
& \left.\otimes\left(m_{[0][0]} \alpha^{-1}\left(Q^{2}\left(\gamma\left(n_{[0][1]}\right) \otimes \gamma\left(m_{[0][1]}\right)\right)\right)\right)\right) \otimes m_{[1]} n_{[1]}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\left(n_{[0][0]} Q^{1}\left(n_{[0][1]} \otimes m_{[0][1]}\right)\right) \otimes\left(m_{[0][0]} Q^{2}\left(n_{[0][1]} \otimes m_{[0][1]}\right)\right)\right) \otimes m_{[1]} n_{[1]} \\
& =\left(t_{M, N} \otimes i d_{C}\right)\left(\rho_{M \otimes N}((m \otimes n))\right)
\end{aligned}
$$

which follows that $\left(t_{M, N}\right)$ is (C, γ)-colinear.
Lemma 3.6. With notations as above, (3.5) holds for all Hom entwined modules (M, μ), (N, ν) and (W, ς) if and only if

$$
\begin{equation*}
\left(\Delta_{A} \otimes i d_{A}\right) Q\left(c^{\prime} c^{\prime \prime} \otimes c\right)=Q^{1}\left(c^{\prime} \otimes c_{2}\right) \otimes Q^{1}\left(c^{\prime \prime} \otimes c_{1}^{\psi}\right) \otimes Q^{2}\left(c^{\prime} \otimes c_{2}\right)_{\psi} Q^{2}\left(c^{\prime \prime} \otimes c_{1}^{\psi}\right) \tag{3.15}
\end{equation*}
$$

for all $c, c^{\prime}, c^{\prime \prime} \in C$.
Proof. Suppose that (3.5) holds. We take $M=N=W=(A \otimes C, \alpha \otimes \gamma)$. For $c, c^{\prime}, c^{\prime \prime} \in C$, on the one hand, we have

$$
\begin{aligned}
& \left(i d_{N} \otimes t_{M, W}\right) \circ \widetilde{a}_{N, M, W} \circ\left(t_{M, N} \otimes i d_{W}\right) \circ \tilde{a}_{M, N, W}^{-1}\left((1 \otimes c) \otimes\left(\left(1 \otimes c^{\prime}\right) \otimes\left(1 \otimes c^{\prime \prime}\right)\right)\right) \\
& =\left(\alpha\left(Q^{1}\left(\gamma\left(c_{2}^{\prime}\right) \otimes c_{2}\right)\right) \otimes \gamma^{2}\left(c_{1}^{\prime}\right)\right) \otimes\left(\left(Q^{1}\left(\gamma\left(c_{2}^{\prime \prime}\right) \otimes \gamma\left(c_{1_{2}}{ }^{\psi}\right)\right) \otimes \gamma\left(c_{1}^{\prime \prime}\right)\right)\right. \\
& \left.\quad \otimes \alpha^{-1}\left(Q^{2}\left(\gamma\left(c_{2}^{\prime}\right) \otimes c_{2}\right)_{\psi} Q^{2}\left(\gamma\left(c_{2}^{\prime \prime}\right) \otimes \gamma\left(c_{1_{2}}{ }^{\psi}\right)\right)\right) \otimes \gamma\left(c_{1_{1}}\right)\right) \\
& =\left(\alpha\left(Q^{1}\left(\gamma\left(c_{2}^{\prime}\right) \otimes \gamma\left(c_{2_{2}}\right)\right)\right) \otimes \gamma^{2}\left(c_{1}^{\prime}\right)\right) \otimes\left(\left(Q^{1}\left(\gamma\left(c_{2}^{\prime \prime}\right) \otimes \gamma\left(c_{2_{1}}{ }^{\psi}\right)\right) \otimes \gamma\left(c_{1}^{\prime \prime}\right)\right)\right. \\
& \left.\quad \otimes \alpha^{-1}\left(Q^{2}\left(\gamma\left(c_{2}^{\prime}\right) \otimes \gamma\left(c_{2_{2}}\right)\right)_{\psi} Q^{2}\left(\gamma\left(c_{2}^{\prime \prime}\right) \otimes \gamma\left(c_{2_{1}}{ }^{\psi}\right)\right)\right) \otimes c_{1}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \widetilde{a}_{N, W, M} \circ t_{M, N \otimes W}\left((1 \otimes c) \otimes\left(\left(1 \otimes c^{\prime}\right) \otimes\left(1 \otimes c^{\prime \prime}\right)\right)\right) \\
& =\alpha\left(Q^{1}\left(\gamma\left(c_{2}^{\prime} c_{2}^{\prime \prime}\right) \otimes \gamma\left(c_{2}\right)\right)_{1}\right) \otimes \gamma^{2}\left(c_{1}^{\prime}\right) \\
& \quad \otimes\left(\left(Q^{1}\left(\gamma\left(c_{2}^{\prime} c_{2}^{\prime \prime}\right) \otimes \gamma\left(c_{2}\right)\right)_{2} \otimes \gamma\left(c_{1}^{\prime \prime}\right)\right) \otimes\left(\alpha^{-1}\left(Q^{2}\left(\gamma\left(c_{2}^{\prime} c_{2}^{\prime \prime}\right) \otimes \gamma\left(c_{2}\right)\right)\right) \otimes c_{1}\right)\right) \\
& =\left(\alpha\left(Q^{1}\left(\gamma\left(c_{2}^{\prime}\right) \otimes \gamma\left(c_{2_{2}}\right)\right)\right) \otimes \gamma^{2}\left(c_{1}^{\prime}\right)\right) \otimes\left(\left(Q^{1}\left(\gamma\left(c_{2}^{\prime \prime}\right) \otimes \gamma\left(c_{2_{1}}{ }^{\psi}\right)\right) \otimes \gamma\left(c_{1}^{\prime \prime}\right)\right)\right. \\
& \left.\quad \otimes \alpha^{-1}\left(Q^{2}\left(\gamma\left(c_{2}^{\prime}\right) \otimes \gamma\left(c_{2_{2}}\right)\right)_{\psi} Q^{2}\left(\gamma\left(c_{2}^{\prime \prime}\right) \otimes \gamma\left(c_{2_{1}}^{\psi}\right)\right)\right) \otimes c_{1}\right)
\end{aligned}
$$

Applying $i d_{A} \otimes \varepsilon_{C} \otimes i d_{A} \otimes \varepsilon_{C} \otimes \otimes i d_{A} \otimes \varepsilon_{C}$ to both sides, we get (3.15).
Conversely, if (3.15) holds. Let $(M, \mu),(N, \nu)$ and (W, ς) be Hom-entwined modules. We easily compute that

$$
\begin{aligned}
&\left(i d_{N} \otimes t_{M, W}\right) \circ \widetilde{a}_{N, M, W} \circ\left(t_{M, N} \otimes i d_{W}\right) \circ \widetilde{a}_{M, N, W}^{-1}(m \otimes(n \otimes w)) \\
&= \nu\left(n_{[0]}\right) \alpha\left(Q^{1}\left(n_{[1]} \otimes \gamma^{-1}\left(m_{[1]}\right)\right)\right) \otimes\left(w_{[0]} Q^{1}\left(w_{[1]} \otimes \gamma\left(\left(\mu^{-1}\left(m_{[0]}\right)_{[1]}\right)^{\psi}\right)\right)\right. \\
&\left.\left.\otimes\left(\mu^{-1}\left(m_{[0]}\right)_{[0]} \alpha^{-1}\left(Q^{2}\left(n_{[1]} \otimes \gamma^{-1}\left(m_{[1]}\right)\right)\right)_{\psi}\right) Q^{2}\left(w_{[1]} \otimes \gamma\left(\left(\mu^{-1}\left(m_{[0]}\right)\right)_{[1]}\right)^{\psi}\right)\right)\right) \\
&= \nu\left(n_{[0]}\right) \alpha\left(Q^{1}\left(n_{[1]} \otimes \gamma^{-1}\left(m_{[1]}\right)\right)\right) \otimes\left(w_{[0]} Q^{1}\left(w_{[1]} \otimes \gamma\left(\left(\gamma^{-1}\left(m_{[0][1]}\right)^{\psi}\right)\right)\right)\right. \\
&\left.\otimes\left(\mu^{-1}\left(m_{[0][0]}\right) \alpha^{-1}\left(Q^{2}\left(n_{[1]} \otimes \gamma^{-1}\left(m_{[1]}\right)\right)\right)_{\psi}\right) Q^{2}\left(w_{[1]} \otimes \gamma\left(\left(\gamma^{-1}\left(m_{[0][1]}\right)^{\psi}\right)\right)\right)\right) \\
&= \nu\left(n_{[0]}\right) \alpha\left(Q^{1}\left(n_{[1]} \otimes \gamma^{-1}\left(m_{[1]}\right)\right)\right) \otimes\left(w_{[0]} Q^{1}\left(w_{[1]} \otimes\left(m_{[0][1]}\right)^{\psi}\right)\right. \\
&\left.\otimes\left(\mu^{-1}\left(m_{[0][0]}\right) \alpha^{-1}\left(Q^{2}\left(n_{[1]} \otimes \gamma^{-1}\left(m_{[1]}\right)\right)_{\psi}\right)\right) Q^{2}\left(w_{[1]} \otimes\left(m_{[0][1]}\right)^{\psi}\right)\right) \\
&= \nu\left(n_{[0]}\right) \alpha\left(Q^{1}\left(n_{[1]} \otimes m_{[1]_{2}}\right)\right) \otimes\left(w_{[0]} Q^{1}\left(w_{[1]} \otimes\left(m_{[1]_{1}}\right)^{\psi}\right)\right. \\
&\left.\otimes\left(\mu^{-2}\left(m_{[0]}\right) \alpha^{-1}\left(Q^{2}\left(n_{[1]} \otimes m_{[1]_{2}}\right)_{\psi}\right)\right) Q^{2}\left(w_{[1]} \otimes\left(m_{[1]_{1}}\right)^{\psi}\right)\right) \\
&= \nu\left(n_{[0]}\right) \alpha\left(Q^{1}\left(n_{[1]} \otimes m_{[1]_{2}}\right)\right) \otimes\left(w_{[0]} Q^{1}\left(w_{[1]} \otimes\left(m_{[1]_{1}}\right)^{\psi}\right)\right. \\
&\left.\otimes \mu^{-1}\left(m_{[0]}\right)\left(\alpha^{-1}\left(Q^{2}\left(n_{[1]} \otimes m_{[1]_{2}}\right)_{\psi}\right) \alpha^{-1}\left(Q^{2}\left(w_{[1]} \otimes\left(m_{[1]_{1}}\right)^{\psi}\right)\right)\right)\right) \\
&= \widetilde{a}_{N, W, M} \circ t_{M, N \otimes W}\left(m_{M} \otimes\left(n \otimes w^{2}\right),\right.
\end{aligned}
$$

which proves that (3.5) holds.
The proof of The next lemma is similar to the proof of Lemma 3.6, so we omit it.

Lemma 3.7. With notations as above, (3.6) holds for all Hom entwined modules (M, μ), (N, ν) and (W, ς) if and only if

$$
\begin{equation*}
\left(i d_{A} \otimes \Delta_{A}\right) Q\left(c \otimes c^{\prime} c^{\prime \prime}\right)=Q^{1}\left(c_{2} \otimes c^{\prime \prime}\right)_{\psi} Q^{1}\left(c_{1}^{\psi} \otimes c^{\prime}\right) \otimes Q^{2}\left(c_{1}^{\psi} \otimes c^{\prime}\right) \otimes Q^{2}\left(c_{2} \otimes c^{\prime \prime}\right), \tag{3.16}
\end{equation*}
$$

for all $c, c^{\prime}, c^{\prime \prime} \in C$.
We summarize our results as follows:
Theorem 3.8. Let $[(A, \alpha),(C, \gamma)]_{\psi}$ a monoidal Hom-entwining datum, and $Q: C \otimes C \rightarrow$ $A \otimes A$ a twisted convolution invertible map in $\widetilde{\mathcal{H}}(\mathcal{H})$. Then the family of maps

$$
t_{M, N}: M \otimes N \rightarrow N \otimes M, m \otimes n \mapsto\left(n_{[0]} \otimes m_{[0]}\right) Q\left(n_{[1]} \otimes m_{[1]}\right)
$$

defines a braiding on the category of Hom-entwined modules $\widetilde{\mathcal{N}}_{A}^{C}(\psi)$ if and only if Q satisfies Equations (3.11) and (3.14)-(3.16).

Now, we shall apply Theorem 3.8 to Doi-Koppinen Hom-Hopf modules. Given a Hom-Doi-Koppinen datum $[(H, \beta),(A, \alpha),(C, \gamma)]$, we have a Hom-entwining datum $[(A, \alpha),(C$, $\gamma)]_{\psi}$ with ψ given by

$$
\begin{equation*}
\psi: C \otimes A \rightarrow A \otimes C, c \otimes a \mapsto \alpha\left(a_{[0]}\right) \otimes \gamma^{-1}(c) a_{[1]}=a_{\psi} \otimes c^{\psi} . \tag{3.17}
\end{equation*}
$$

The Hom-category $\widetilde{\mathcal{M}}_{A}^{C}(\psi)$ of Hom-entwined modules associated to the induced Homentwining datum $[(A, \alpha),(C, \gamma)]_{\psi}$ is denoted by $\widetilde{\mathcal{M}}(H)_{A}^{C}$.

A Hom-Doi-Koppinen datum $[(H, \beta),(A, \alpha),(C, \gamma)]$ is called a monoidal Hom-Doi-Koppinen datum, if it satisfies the following condition,

$$
\begin{equation*}
a_{1[0]} \otimes a_{2[0]} \otimes\left(c a_{[1]}\right)\left(c^{\prime} a_{2[1]}\right)=a_{[0] 1} \otimes a_{[0] 2} \otimes\left(c c^{\prime}\right) a_{[1]} \tag{3.18}
\end{equation*}
$$

for all $a \in A$ and $c \in C$.
From Theorem 3.8, we have the following result.
Corollary 3.9. Let $[(H, \beta),(A, \alpha),(C, \gamma)]$ be a monoidal Hom-Doi-Koppinen datum, and $Q: C \otimes C \rightarrow A \otimes A$ a twisted convolution invertible map in $\widetilde{\mathcal{H}}(\mathcal{M})$. Then the family of maps

$$
t_{M, N}: M \otimes N \rightarrow N \otimes M, m \otimes n \mapsto\left(n_{[0]} \otimes m_{[0]}\right) Q\left(n_{[1]} \otimes m_{[1]}\right)
$$

defines a braiding on the category of Doi-Koppinen Hom-Hopf modules $\widetilde{\mathcal{M}}(H)_{A}^{C}$ if and only if Q satisfies the following equations, for any $b \in A$ and $c, c^{\prime}, c^{\prime \prime} \in C$,
(1)
(2)

$$
\begin{aligned}
& \alpha\left(Q^{1}\left(c_{2}^{\prime} \otimes c_{2}\right)_{[0]}\right) \otimes \alpha\left(Q^{2}\left(c_{2}^{\prime} \otimes c_{2}\right)_{[0]}\right) \\
& \quad \otimes\left(\gamma^{-1}\left(c_{1}^{\prime}\right) Q^{1}\left(c_{2}^{\prime} \otimes c_{2}\right)_{[1]}\right)\left(\gamma^{-1}\left(c_{1}\right) Q^{2}\left(c_{2}^{\prime} \otimes c_{2}\right)_{[1]}\right) \\
& \quad=Q^{1}\left(c_{1}^{\prime} \otimes c_{1}\right) \otimes Q^{2}\left(c_{1}^{\prime} \otimes c_{1}\right) \otimes c_{2} c_{2}^{\prime},
\end{aligned}
$$

(3)

$$
\begin{aligned}
\left(\Delta_{A} \otimes i d_{A}\right) Q\left(c^{\prime} c^{\prime \prime} \otimes c\right)= & Q^{1}\left(c^{\prime} \otimes c_{2}\right) \otimes Q^{1}\left(c^{\prime \prime} \otimes \gamma^{-1}\left(c_{1}\right) Q^{2}\left(c^{\prime} \otimes c_{2}\right)_{[1]}\right) \\
& \otimes \alpha\left(Q^{2}\left(c^{\prime} \otimes c_{2}\right)_{[0]}\right) Q^{2}\left(c^{\prime \prime} \otimes \gamma^{-1}\left(c_{1}\right) Q^{2}\left(c^{\prime} \otimes c_{2}\right)_{[1]}\right),
\end{aligned}
$$

(4)

$$
\begin{aligned}
\left(i d_{A} \otimes \Delta_{A}\right) Q\left(c \otimes c^{\prime} c^{\prime \prime}\right)= & \alpha\left(Q^{1}\left(c_{2} \otimes c^{\prime \prime}\right)_{[0]}\right) Q^{1}\left(\gamma^{-1}\left(c_{1}\right) Q^{1}\left(c_{2} \otimes c^{\prime \prime}\right)_{[1]} \otimes c^{\prime}\right) \\
& \otimes Q^{2}\left(\gamma^{-1}\left(c_{1}\right) Q^{1}\left(c_{2} \otimes c^{\prime \prime}\right)_{[1]} \otimes c^{\prime}\right) \otimes Q^{2}\left(c_{2} \otimes c^{\prime \prime}\right) .
\end{aligned}
$$

4. Hom-coalgebra cleft extensions for Hom-entwining structures

Let (A, α) be a object of $\widetilde{\mathcal{M}}_{A}^{C}(\psi)$ with the Hom-coaction ρ_{A}. For $(M, \mu) \in \widetilde{\mathcal{M}}_{A}^{C}(\psi)$, The Hom-invariants of C on M are the set

$$
M^{c o C}=\left\{m \in M \mid \rho_{M}(m)=\mu^{-2}(m) 1_{[0]} \otimes \gamma\left(1_{[1]}\right)\right\} .
$$

Specially, we have $A^{c o C}=\left\{a \in A \mid \rho_{A}(a)=\alpha^{-2}(a) 1_{[0]} \otimes \gamma\left(1_{[1]}\right)\right\}$. For $m \in M^{c o C}$, it follows that $\mu(a) \in M^{c o C}$. We use $\left.\mu\right|_{M^{c o C}}$ for denoting the restriction map of μ on $M^{c o C}$.

Lemma 4.1. For $(A, \alpha),(M, \mu)$ in $\widetilde{\mathcal{M}}_{A}^{C}(\psi)$, we have
(1) $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}, 1\right)$ is a Hom-algebra.
(2) $\left(M^{c o C},\left.\mu\right|_{M^{c o C}}\right)$ is a right $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}\right)$-Hom-module.

Proof. Straightforward.
Let us put $\operatorname{Hom}^{C}(C, A)$ consisting of right (C, γ)-colinear morphisms $f: C \rightarrow A$, that is, $f(c)_{[0]} \otimes f(c)_{[1]}=f\left(c_{[0]}\right) \otimes c_{[1]}$, for $c \in C$ and $f \circ \gamma=\alpha \circ f$.

Lemma 4.2. $\operatorname{Hom}^{C}(C, A)$ is an associative algebra with the unit $\varepsilon_{C} 1_{A}$ and multiplication

$$
(f * g)(c)=f\left(c_{1}\right) g\left(c_{2}\right),
$$

for $f, g \in \operatorname{Hom}^{C}(C, A)$ and $c \in C$.
Proof. Straightforward.
By $\operatorname{Reg}(C, A)$ we denote the set of morphisms $\omega \in \operatorname{Hom}^{C}(C, A)$ which are invertible under the convolution $*$ in Lemma 4.2.
Definition 4.3. We say that $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}\right) \hookrightarrow(A, \alpha)$ is a (C, γ)-Hom-cleft extension, if there exists a morphism $\omega \in \operatorname{Reg}(C, A)$.
Proposition 4.4. If $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}\right) \hookrightarrow(A, \alpha)$ is a (C, γ)-Hom-cleft extension, we have

$$
\begin{equation*}
\omega^{-1}\left(c_{2}\right)_{\psi} \otimes c_{1}^{\psi}=\alpha^{-2}\left(\omega^{-1}(c)\right) 1_{[0]} \otimes \gamma\left(1_{[1]}\right), \tag{4.1}
\end{equation*}
$$

for all $c \in C$.
Proof. Since $(A, \alpha) \in \widetilde{\mathcal{M}}_{A}^{C}(\psi)$, the Hom-coaction can be written as $\rho_{A}(a)=1_{[0]} \alpha^{-2}(a)_{\psi} \otimes$ $\gamma\left(1_{[1]}{ }^{\psi}\right)$. Then we have, for any $c \in C$,

$$
\begin{aligned}
\varepsilon_{C}(c) & \alpha\left(1_{[0]}\right) \otimes 1_{[1]} \\
& =1_{[0]} \psi\left(1_{[1]} \otimes \omega\left(c_{1}\right) \omega^{-1}\left(c_{2}\right)\right) \\
& =1_{[0]}\left(\omega\left(c_{1}\right) \omega^{-1}\left(c_{2}\right)\right)_{\psi} \otimes 1_{[1]}{ }^{\psi} \\
& =\alpha\left(1_{[0]}\right)\left(\omega\left(c_{1}\right) \omega^{-1}\left(c_{2}\right)\right)_{\psi} \otimes \gamma\left(1_{[1]}\right)^{\psi} \\
& =\alpha\left(1_{[0]}\right)\left(\omega\left(c_{1}\right)_{\psi} \omega^{-1}\left(c_{2}\right)_{\Psi}\right) \otimes \gamma\left(1_{[1]}{ }^{\psi \Psi}\right) \\
& =\left(1_{[0]} \omega\left(c_{1}\right)_{\psi}\right) \alpha\left(\omega^{-1}\left(c_{2}\right)_{\Psi}\right) \otimes \gamma\left(1_{[1]}{ }^{\psi \Psi}\right) \\
& =\alpha^{2}\left(\omega\left(c_{1}\right)_{[0]}\right) \alpha\left(\omega^{-1}\left(c_{2}\right)_{\Psi}\right) \otimes \gamma\left(\gamma\left(\omega\left(c_{1}\right)_{[1]}\right)^{\Psi}\right) \\
& =\alpha^{2}\left(\omega\left(c_{1_{1}}\right)\right) \alpha\left(\omega^{-1}\left(c_{2}\right)_{\Psi}\right) \otimes \gamma\left(\gamma\left(c_{1_{2}}\right)^{\Psi}\right) \\
& \left.=\alpha\left(\omega\left(c_{1}\right)\right) \alpha\left(\omega^{-1}\left(\gamma\left(c_{2}\right)_{2}\right)_{\Psi}\right) \otimes \gamma\left(\gamma\left(c_{2}\right)_{1}\right)^{\Psi}\right),
\end{aligned}
$$

which implies that Eq (4.1) holds.
Lemma 4.5. Assume that $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}\right) \hookrightarrow(A, \alpha)$ is a (C, γ)-Hom-cleft extension via ω and $(M, \mu) \in \widetilde{\mathcal{M}}_{A}^{C}(\psi)$. Then, for any $m \in M, m_{[0]} \omega^{-1}\left(m_{[1]}\right) \in M^{c o C}$. As a consequence, if $M=A$, we have $a_{[0]} \omega^{-1}\left(a_{[1]}\right) \in A^{c o C}$

Proof. We compute

$$
\begin{aligned}
\rho_{M} & \left(m_{[0]} \omega^{-1}\left(m_{[1]}\right)\right) \\
& =m_{[0][0]} \alpha^{-1}\left(\omega^{-1}\left(m_{[1]}\right)\right)_{\psi} \otimes \gamma\left(m_{[0][1]}^{\psi}\right) \\
& =\mu^{-1}\left(m_{[0]}\right) \alpha^{-1}\left(\omega^{-1}\left(\gamma\left(m_{[1] 2}\right)\right)\right)_{\psi} \otimes \gamma\left(m_{[1] 1}{ }^{\psi}\right) \\
& =\mu^{-1}\left(m_{[0]}\right) \alpha^{-1}\left(\omega^{-1}\left(\gamma\left(m_{[1]}\right)_{2}\right)_{\psi}\right) \otimes\left(\gamma\left(m_{[1]}\right)_{1}\right)^{\psi} \\
& =\mu^{-1}\left(m_{[0]}\right)\left(\alpha^{-2}\left(\omega^{-1}\left(m_{[1]}\right)\right) \alpha^{-1}\left(1_{[0]}\right)\right) \otimes \gamma\left(1_{[1]}\right) \\
& =\left(\mu^{-2}\left(m_{[0]}\right) \alpha^{-2}\left(\omega^{-1}\left(m_{[1]}\right)\right)\right) 1_{[0]} \otimes \gamma\left(1_{[1]}\right) \\
& =\mu^{-2}\left(m_{[0]} \omega^{-1}\left(m_{[1]}\right)\right) 1_{[0]} \otimes \gamma\left(1_{[1]}\right) .
\end{aligned}
$$

Hence $m_{[0]} \omega^{-1}\left(m_{[1]}\right) \in M^{c o C}$.
Theorem 4.6. Suppose that $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}\right) \hookrightarrow(A, \alpha)$ is a (C, γ)-Hom-cleft extension via ω. For $(M, \mu) \in \widetilde{\mathcal{M}}_{A}^{C}(\psi)$, then $(M, \mu) \cong\left(M^{c o C} \otimes C,\left.\mu\right|_{M^{c o C}} \otimes \gamma\right)$ as right (C, γ)-Homcomodules, where the (C, γ)-Hom-coaction on $\left(M^{c o C} \otimes C,\left.\mu\right|_{M^{c o C}} \otimes \gamma\right)$ is

$$
\rho_{M^{c o C} \otimes C}(m \otimes c)=\left(\mu^{-1}(m) \otimes c_{1}\right) \otimes \gamma\left(c_{2}\right) .
$$

In particular, if we consider $M=A$, we have $(A, \alpha) \cong\left(A^{c o C} \otimes C,\left.\alpha\right|_{A^{c o C}} \otimes \gamma\right)$ as both right (C, γ)-Hom-comodules and left ($A^{c o C},\left.\alpha\right|_{A^{c o C}}$)-Hom-modules, where the $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}\right)$-Homaction on $A^{c o C} \otimes C$ defined by $b \cdot(a \otimes c)=\alpha^{-1}(b) a \otimes \gamma(c)$, for all $a, b \in A^{c o C}$ and $c \in C$.
Proof. We define $\Theta_{M}:\left(M^{c o C} \otimes C,\left.\mu\right|_{M c o C} \otimes \gamma\right) \rightarrow(M, \mu)$ by $\Theta_{M}(m \otimes c)=m \omega(c)$ and $\Omega_{M}:(M, \mu) \rightarrow\left(M^{c o C} \otimes C,\left.\mu\right|_{M^{c o c} \otimes \gamma}\right)$ by $\Omega_{M}(m)=m_{[0][0]} \omega^{-1}\left(m_{[0][1]}\right) \otimes m_{[1]}$. For $m \in M$, we have

$$
\begin{aligned}
\Theta_{M} \circ \Omega_{M}(m) & =\left(m_{[0][0]} \omega^{-1}\left(m_{[0][1]}\right)\right) \omega\left(m_{[1]}\right) \\
& =\left(\mu^{-1}\left(m_{[0]}\right) \omega^{-1}\left(m_{[1]_{1}}\right)\right) \omega\left(\gamma\left(m_{[1]_{2}}\right)\right) \\
& =\left(\mu^{-1}\left(m_{[0]}\right) \omega^{-1}\left(m_{[1]_{1}}\right)\right) \alpha\left(\omega\left(m_{[1]_{2}}\right)\right) \\
& =m_{[0]}\left(\omega^{-1}\left(m_{[1]_{1}}\right) \omega\left(m_{[1]_{2}}\right)\right) \\
& =m_{[0]} \varepsilon_{C}\left(m_{[1]}\right) 1_{A}=m,
\end{aligned}
$$

which follows that $\Theta_{M} \circ \Omega_{M}=i d$. Next, we check that $\Omega_{M} \circ \Theta_{M}=i d$ holds. In fact, for any $m \in M^{c o C}$ and $c \in C$, we compute

$$
\begin{aligned}
& \Omega_{M} \circ \Theta_{M}(m \otimes c) \\
& =(m \omega(c))_{[0][0]} \omega^{-1}\left((m \omega(c))_{[0][1]}\right) \otimes(m \omega(c))_{[1]} \\
& =\left(m_{[0][0]} \alpha^{-1}\left(\alpha^{-1}(\omega(c))_{\psi}\right)_{\Psi}\right) \omega^{-1}\left(\gamma\left(m_{[0][1]}{ }^{\Psi}\right)\right) \otimes \gamma\left(m_{[1]}{ }^{\psi}\right) \\
& =\left(m_{[0][0]} \alpha^{-1}\left(\alpha^{-1}(\omega(c))_{\psi \Psi}\right)\right) \omega^{-1}\left(\gamma\left(m_{[0][1]}\right)^{\Psi}\right) \otimes \gamma\left(m_{[1]}{ }^{\psi}\right) \\
& =\left(\mu^{-1}\left(m_{[0]}\right) \alpha^{-1}\left(\alpha^{-1}(\omega(c))_{\psi \Psi}\right)\right) \omega^{-1}\left(\gamma\left(m_{[1]}\right)_{1}^{\Psi}\right) \otimes \gamma\left(\gamma\left(m_{[1]}\right)_{2}{ }^{\psi}\right) \\
& =\left(\mu^{-1}\left(\mu^{-2}(m) 1_{[0]}\right) \alpha^{-1}\left(\alpha^{-1}(\omega(c))_{\psi \Psi}\right)\right) \omega^{-1}\left(\gamma^{2}\left(1_{[1]}\right)_{1}^{\Psi}\right) \otimes \gamma\left(\gamma^{2}\left(1_{[1]}\right)_{2}{ }^{\psi}\right) \\
& =\left(\mu^{-2}(m)\left(\alpha^{-1}\left(1_{[0]}\right) \alpha^{-2}\left(\alpha^{-1}\left(\omega(c)_{\psi \Psi}\right)\right)\right)\right) \omega^{-1}\left(\gamma^{2}\left(1_{[1]}\right)_{1}^{\Psi}\right) \otimes \gamma\left(\gamma^{2}\left(1_{[1]}\right)_{2}{ }^{\psi}\right) \\
& =\left(\mu^{-2}(m)\left(\alpha^{-1}\left(1_{[0]}\right) \alpha^{-3}\left(\omega(c)_{\psi}\right)\right)\right) \omega^{-1}\left(\gamma^{2}\left(1_{[1]}\right)_{1}^{\psi}\right) \otimes \gamma\left(\gamma^{2}\left(1_{[1]}\right)^{\psi}\right) \\
& \left.=\left(\mu^{-2}(m) \alpha^{-3}\left(1_{[0]} \omega(c)_{\psi}\right)\right) \omega^{-1}\left(1_{[1]}{ }^{\psi}\right)\right) \otimes \gamma\left(1_{[1]}{ }_{2}{ }_{2}\right) \\
& =\left(\mu^{-2}(m) \alpha^{-1}\left(\omega(c)_{[0]}\right)\right) \omega^{-1}\left(\gamma\left(\omega(c)_{[1]}\right)_{1}\right) \otimes \gamma\left(\gamma\left(\omega(c)_{[1]}\right)_{2}\right) \\
& =\left(\mu^{-2}(m) \alpha^{-1}\left(\omega\left(c_{1}\right)\right)\right) \omega^{-1}\left(\gamma\left(c_{2}\right)_{1}\right) \otimes \gamma\left(\gamma\left(c_{2}\right)_{2}\right) \\
& =\left(\mu^{-2}(m) \alpha^{-1}\left(\omega\left(c_{1}\right)\right)\right) \omega^{-1}\left(\gamma\left(c_{2_{1}}\right)\right) \otimes \gamma\left(\gamma\left(c_{2_{2}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\mu^{-2}(m) \omega\left(c_{1_{1}}\right)\right) \omega^{-1}\left(\gamma\left(c_{1_{2}}\right)\right) \otimes \gamma\left(c_{2}\right) \\
& =\mu^{-1}(m)\left(\omega\left(c_{1_{1}}\right) \omega^{-1}\left(c_{1_{2}}\right)\right) \otimes \gamma\left(c_{2}\right) \\
& =\mu^{-1}(m) 1_{A} \otimes c \\
& =m \otimes c
\end{aligned}
$$

as desired.
Let $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}\right) \hookrightarrow(A, \alpha)$ be a (C, γ)-Hom-cleft extension via ω. From Theorem 4.6, we have that Ω_{A} is an isomorphism of monoidal Hom-algebras, where the monoidal Hom-algebra structure on $A^{c o C} \otimes C$ can be induced by Ω_{A} :

$$
1_{A^{c o C} \times C}=\Omega_{A}\left(1_{A}\right), \tilde{m}_{A^{c o C} \times C}=\Omega_{A} \circ m_{A} \circ\left(\Omega_{A}^{-1} \otimes \Omega_{A}^{-1}\right)
$$

The induced monoidal Hom-algebras on $A^{c o C} \otimes C$ is called a crossed product Hom-algebra of $A^{c o C}$ and C, and denoted by $A^{c o C} \ltimes C$.

Next, we can obtain $\widetilde{m}_{A^{c o C} \times C}$ in other way. First, we need some preliminary results.
Lemma 4.7. Suppose that $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}\right) \hookrightarrow(A, \alpha)$ is a (C, γ)-Hom-cleft extension via ω. We define a morphism $\varpi: C \otimes A \rightarrow A$ by

$$
\varpi(c, a)=\left(\omega\left(c_{1}\right) \alpha^{-1}(a)_{\psi}\right) \omega^{-1}\left(\gamma\left(c_{2}^{\psi}\right)\right) .
$$

Then $\rho_{A}(\varpi(c, a)) \in A^{c o C}$, for all $c \in C$ and $a \in A$.
Proof. For if $c \in C, a \in A$, then

$$
\begin{aligned}
\rho_{A}(\varpi(c, a)) & =\alpha\left(\omega\left(c_{1}\right)\right)_{[0]} \alpha^{-1}\left(\alpha^{-1}(a)_{\psi} \omega^{-1}\left(c_{2}{ }^{\psi}\right)\right)_{\Psi} \otimes \gamma\left(\alpha\left(\omega\left(c_{1}\right)\right)_{[1]}^{\Psi}\right) \\
& =\alpha\left(\omega\left(c_{1}\right)_{[0]}\right) \alpha^{-1}\left(\alpha^{-1}(a)_{\psi} \omega^{-1}\left(c_{2}{ }^{\psi}\right)\right)_{\Psi} \otimes \gamma\left(\gamma\left(\omega\left(c_{1}\right)_{[1]}\right)^{\Psi}\right) \\
& =\alpha\left(\omega\left(c_{1}\right)_{[0]}\right) \alpha^{-1}\left(\alpha^{-1}(a)_{\psi} \omega^{-1}\left(c_{2}^{\psi}\right)\right)_{\Psi} \otimes \gamma\left(\gamma\left(\omega\left(c_{1}\right)_{[1]}\right)^{\Psi}\right) \\
& =\alpha\left(\omega\left(c_{1}\right)_{[0]}\right) \alpha^{-1}\left(\left(\alpha^{-1}(a)_{\psi} \omega^{-1}\left(c_{2}^{\psi}\right)\right)_{\Psi}\right) \otimes \gamma\left(\gamma\left(\omega\left(c_{1}\right)_{[1]}\right)\right)^{\Psi} \\
& =\alpha\left(\omega\left(c_{1}\right)_{[0]}\right) \alpha^{-1}\left(\alpha^{-1}(a)_{\psi \Psi} \omega^{-1}\left(c_{2}^{\psi}\right)_{\Psi^{\prime}}\right) \otimes \gamma\left(\gamma\left(\omega\left(c_{1}\right)_{[1]}\right)^{\Psi \Psi^{\prime}}\right) \\
& =\alpha\left(\omega\left(c_{1_{1}}\right)\right) \alpha^{-1}\left(\alpha^{-1}(a)_{\psi \Psi} \omega^{-1}\left(c_{2}^{\psi}\right)_{\Psi^{\prime}}\right) \otimes \gamma\left(\gamma\left(c_{1_{2}}\right)^{\Psi \Psi^{\prime}}\right) \\
& =\omega\left(c_{1}\right) \alpha^{-1}\left(\alpha^{-1}(a)_{\psi \Psi} \omega^{-1}\left(\gamma\left(c_{2}\right)_{2}^{\psi}\right)_{\Psi^{\prime}}\right) \otimes \gamma\left(\gamma\left(c_{2}\right)_{1} \Psi^{\Psi}\right) \\
& =\omega\left(c_{1}\right) \alpha^{-1}\left(\alpha^{-1}\left(a_{\psi}\right) \omega^{-1}\left(\gamma\left(c_{2}\right)^{\psi}\right)_{\Psi^{\prime}}\right) \otimes \gamma\left(\gamma\left(c_{2}\right)_{1}^{\psi} \Psi^{\prime}\right) \\
& =\omega\left(c_{1}\right) \alpha^{-1}\left(\alpha^{-1}\left(a_{\psi}\right)\left(\alpha^{-2}\left(\omega^{-1}\left(\gamma\left(c_{2}\right)^{\psi}\right) 1_{[0]}\right)\right)\right) \otimes \gamma\left(\gamma\left(1_{[1]}\right)\right) \\
& =\left(\alpha^{-1}\left(\omega\left(c_{1}\right)\right) \alpha^{-3}\left(a_{\psi} \omega^{-1}\left(\gamma\left(c_{2}\right)^{\psi}\right)\right)\right) 1_{[0]} \otimes \gamma\left(1_{[1]}\right) \\
& =\left(\left(\alpha^{-2}\left(\omega\left(c_{1}\right)\right) \alpha^{-3}\left(a_{\psi}\right)\right) \alpha^{-2}\left(\omega^{-1}\left(\gamma\left(c_{2}\right)^{\psi}\right)\right)\right) 1_{[0]} \otimes \gamma\left(1_{[1]}\right) \\
& =\alpha^{-2}\left(\left(\omega\left(c_{1}\right) \alpha^{-1}\left(a_{\psi}\right)\right) \omega^{-1}\left(\gamma\left(c_{2}\right)^{\psi}\right)\right) 1_{[0]} \otimes \gamma\left(1_{[1]}\right) \\
& =\alpha^{-2}\left(\left(\omega\left(c_{1}\right) \alpha^{-1}(a)_{\psi}\right) \omega^{-1}\left(\gamma\left(c_{2}^{\psi}\right)\right)\right) 1_{[0]} \otimes \gamma\left(1_{[1]}\right) .
\end{aligned}
$$

Thus $\varpi(c, a) \in A^{c o C}$.
Now, we construct a morphism Λ as follows:

$$
\Lambda: C \otimes A \rightarrow A \otimes C, \Lambda(c \otimes d)=\varpi\left(c_{1} \otimes \alpha^{-1}(\omega(d))_{\psi}\right) \otimes \gamma\left(c_{2}^{\psi}\right) .
$$

By Lemma 4.7, we have $\Lambda(c \otimes d) \in A^{c o C} \otimes C$. Using Λ, we define a multiplication $m_{A^{c o C} \otimes C}$ on $A^{c o C} \otimes C$ by

$$
\begin{aligned}
m_{A^{c o C} \otimes C}= & \left(m_{A} \otimes i d_{C}\right) \circ\left(m_{A} \otimes \Lambda \circ\left(i d_{C} \otimes \omega\right)\right) \circ \widetilde{a}_{A, A, C \otimes C} \\
& \circ\left(i d_{C} \otimes \widetilde{a}_{A, C, C}\right) \circ\left(i d_{C} \otimes \Lambda \otimes i d_{C}\right) \circ\left(i d_{A} \otimes \widetilde{a}_{C, A, C}^{-1}\right) \circ \widetilde{a}_{A, C, A \otimes C}
\end{aligned}
$$

Concretely,

$$
\begin{aligned}
(a \otimes c)(b \otimes d)= & \left(\alpha^{-1}(a)\left(\left(\alpha^{-2}\left(\omega\left(c_{1}\right)\right) \alpha^{-2}\left(\alpha^{-1}(b) \psi\right)\right) \omega^{-1}\left(c_{2}{ }_{1}\right)\right)\right) \\
& \times\left(\left(\omega\left(\gamma\left(c_{2}^{\psi}{ }_{2}\right)\right) \alpha^{-2}\left(\omega(d)_{\Psi}\right)\right) \omega^{-1}\left(\gamma^{3}\left(c_{2}{ }_{2} 2_{2}\right)^{\Psi}\right)\right) \otimes \gamma^{5}\left(c_{2}{ }^{\psi}{ }_{2}\right)^{\Psi}{ }_{2} .
\end{aligned}
$$

Proposition 4.8. Suppose that $\left(A^{c o C},\left.\alpha\right|_{A^{c o C}}\right) \hookrightarrow(A, \alpha)$ is a (C, γ)-Hom-cleft extension via ω. Then $m_{A^{c o C} \otimes C}=\widetilde{m}_{A^{c o C} \otimes C}$.
Proof. It suffice to prove that $m_{A^{\operatorname{coC}} \times C}=\Omega_{A} \circ m_{A} \circ\left(\Omega_{A}^{-1} \otimes \Omega_{A}^{-1}\right)$ holds. Indeed, for any $a, b \in A$ and $c, d \in C$, we have

$$
\begin{aligned}
& \Omega_{A}^{-1} \circ m_{A^{c o C} \otimes C}((a \otimes c) \otimes(b \otimes d)) \\
& =\left(\left(\alpha^{-1}(a)\left(\left(\alpha^{-2}\left(\omega\left(c_{1}\right) \alpha^{-1}(b)_{\psi}\right) \omega^{-1}\left(c_{2}^{\psi}{ }_{1}\right)\right)\right)\right)\right. \\
& \left.\times\left(\left(\omega\left(\gamma\left(c_{2}^{\psi} 2_{1}\right)\right) \alpha^{-2}\left(\omega(d)_{\Psi}\right)\right) \omega^{-1}\left(\gamma^{3}\left(c_{2}^{\psi} 2_{2}\right)^{\Psi}\right)\right)\right) \omega\left(\gamma^{5}\left(c_{2}^{\psi} 2_{2}\right)^{\Psi}{ }_{2}\right) \\
& =\left(a\left(\left(\alpha^{-1}\left(\omega\left(c_{1}\right) \alpha^{-1}(b)_{\psi}\right) \alpha\left(\omega^{-1}\left(c_{2}^{\psi}{ }_{1}\right)\right)\right)\right)\right) \\
& \times\left(\left(\left(\omega\left(\gamma\left(c_{2}^{\psi}{2_{1}}_{1}\right)\right) \alpha^{-2}(\omega(d) \Psi)\right) \omega^{-1}\left(\gamma^{3}\left(c_{2}^{\psi} 2_{2}\right)^{\Psi}\right)\right) \omega\left(\gamma^{4}\left(c_{2}{ }^{\psi} 2_{2}\right)^{\Psi}\right)\right) \\
& =\left(a\left(\left(\alpha^{-1}\left(\omega\left(c_{1}\right) \alpha^{-1}(b)_{\psi}\right) \alpha\left(\omega^{-1}\left(c_{2}^{\psi}{ }_{1}\right)\right)\right)\right)\right) \\
& \times\left(\left(\alpha\left(\omega\left(\gamma\left(c_{2}{ }_{2}{ }_{1}\right)\right)\right) \alpha^{-1}\left(\omega(d)_{\Psi}\right)\right)\left(\omega^{-1}\left(\gamma^{3}\left(c_{2}{ }_{2} 2_{2}\right)^{\Psi}\right) \omega\left(\gamma^{3}\left(c_{2}{ }_{2}{ }_{2}\right)^{\Psi}\right)\right)\right) \\
& =\left(a\left(\left(\alpha^{-1}\left(\omega\left(c_{1}\right) \alpha^{-1}(b)_{\psi}\right) \alpha\left(\omega^{-1}\left(c_{2}^{\psi}{ }_{1}\right)\right)\right)\right)\right)\left(\alpha^{2}\left(\omega\left(c_{2}^{\psi}{ }_{2}\right) \omega(d)\right)\right) \\
& =\alpha(a)\left(\left(\alpha^{-1}\left(\omega\left(c_{1}\right) \alpha^{-1}(b)_{\psi}\right) \alpha\left(\omega^{-1}\left(c_{2}^{\psi}{ }_{1}\right)\right)\right)\left(\alpha\left(\omega\left(c_{2}^{\psi}{ }_{2}\right)\right) \alpha^{-1}(\omega(d))\right)\right) \\
& =\alpha(a)\left(\left(\omega\left(c_{1}\right) \alpha^{-1}(b)_{\psi}\right)\left(\alpha\left(\omega^{-1}\left(c_{2}{ }^{\psi} 1\right)\right)\left(\omega\left(c_{2}^{\psi}{ }_{2}\right) \alpha^{-2}(\omega(d))\right)\right)\right) \\
& =\alpha(a)\left(\left(\omega\left(c_{1}\right) \alpha^{-1}(b)_{\psi}\right)\left(\left(\omega^{-1}\left(c_{2}^{\psi}{ }_{1}\right) \omega\left(c_{2}^{\psi}{ }_{2}\right)\right) \alpha^{-1}(\omega(d))\right)\right) \\
& =\alpha(a)\left(\left(\omega\left(\gamma^{-1}(c)\right) \alpha^{-1}(b)\right) \omega(d)\right) \\
& =\alpha(a)\left(\omega(c)\left(\alpha^{-1}(b) \alpha^{-1}(\omega(d))\right)\right) \\
& =(a \omega(c))(b \omega(d)) \\
& =m_{A} \circ\left(\Omega_{A}^{-1} \otimes \Omega_{A}^{-1}\right)((a \otimes c) \otimes(b \otimes d)) .
\end{aligned}
$$

Thus we gain the desired result.
Acknowledgment. The authors sincerely thank the referee for his/her numerous very valuable comments and suggestions on this article. This work was supported by the National Natural Science Foundation of China (Nos.11261063, 11471186 and 11501317) and the Natural Foundation of Shandong Province (No. ZR2018MA012).

References

[1] J.N. Alonso Álvarez, J.M. Fernández Vilaboaa, R. González Rodriguez, et al. Weak C-cleft extensions, weak entwining structures and weak Hopf algebras, J. Algebra 284, 679-704, 2005.
[2] T. Brzeziński and S. Majid, Coalgebra bundles, Comm. Math. Phys. 191, 467-492, 1998.
[3] T. Brzeziński, On modules associated to coalgebra Galois extensions, J. Algebra 215, 290-317, 1999.
[4] S. Caenepeel and I. Goyvaerts Monoidal Hom-Hopf algebras, Comm. Algebra 39 (6), 2216-2240, 2011.
[5] S. Caenepeel, F. van Oystaeyen and B. Zhou, Making the category of Doi-Hopf modules into a braided monoidal category, Algebr. Represent. Theory 1 (1), 75-96, 1998.
[6] Q.G. Chen and D.G. Wang, Constructing quasitriangular Hopf algebras, Comm. Algebra 43 (4), 1698-1722, 2015
[7] Q.G. Chen and D.G. Wang, A class of coquasitriangular Hopf group algebras, Comm. Algebra 44 (1), 310-335, 2016.
[8] Q.G. Chen and D.G. Wang, A duality Theorem for $L-R$ crossed product, Filomat 30 (5), 1305-1313, 2016.
[9] Q.G. Chen, D.G. Wang and X.D. Kang, Twisted partial coactions of Hopf algebras, Front. Math. China 12, 63-86, 2017.
[10] Y.Y. Chen, Z.W. Wang and L.Y. Zhang, The fundamental theorem and Maschke's theorem in the category of relative Hom-Hopf modules, Colloq. Math. 144 (1), 55-71, 2016.
[11] Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14, 801-817, 1986.
[12] J.M. Fernández Vilaboa and E. Villanueva Novoa, A Characterization of the cleft comodule triples, Comm. Algebra 16, 613-622, 1988.
[13] S.J. Guo, X.H. Zhang and S.X. Wang, Braided monoidal categories and Doi-Hopf modules for monoidal Hom-Hopf algebras, Colloq. Math. 143 (1), 79-103, 2016.
[14] S. Karacuha, Hom-entwining structures and Hom-Hopf-type modules, arXiv:1412.2002v2.
[15] H.F. Kreimer and M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30, 675-691, 1981.
[16] L. Liu and B.L. Shen, Radford's biproducts and Yetter-Drinfel'd modules for monoidal Hom-Hopf algebras, J. Math. Phys. 55, 031701, 2014.
[17] L. Liu and S.H. Wang, Making the category of entwined modules into a braided monoidal category, J. Southeast Univ. (English Ed.) 24 (2), 250-252, 2008.
[18] A. Makhlouf and F. Panaite, Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys. 55, 013501, 2014.
[19] A. Makhlouf and S.D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2(2), 51-64, 2008.
[20] A. Makhlouf and S.D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (4), 553-589, 2010.
[21] D. Yau, Hom-Yang-Baxter-equation, Hom-Lie algebras and quasitriangular bialgebras, J. Phys. A 42, 165202, 2009.
[22] D. Yau, Hom-algebras and homology, J. Lie Theory 19, 409-421, 2009.
[23] D. Yau, Hom-quantum groups I: Quasitriangular Hom-bialgebras, J. Phys A 45, 065203, 2012.
[24] X.F. Zhao and X.H. Zhang, Lazy 2-cocycles over monoidal Hom-Hopf algebras, Colloq. Math. 142, 61-81, 2016.

[^0]: *Corresponding Author.
 Email addresses: cqg211@163.com (C. Quanguo), dingguo95@126.com (W. Dingguo)
 Received: 31.12.2016; Accepted: 18.10.2017

