A comment on "Generating matrix functions for Chebyshev matrix polynomials of the second type"

V. Soler* ${ }^{*}$

Abstract

In this comment we will demonstrate that one of the main formulas given in Ref. [1] is incorrect.

Keywords: Erratum, Generating matrix function, Chebyshev matrix polynomials.

2000 AMS Classification: 33C25, 15A60.

Received : 25.03.2013 Accepted: 14.01.2015 Doi: 10.15672/HJMS. 20164512478

1. Introduction and motivation

It is well known that for a class of orthogonal polynomials $\left\{P_{n}(x)\right\}_{n \geq 0}$ the so-called "generating functions" of this class are an useful tool for their study. A generating function is a function $F(x, t)$, analytic for some set $D \subset \mathbb{C}^{2}$, so that

$$
F(x, t)=\sum_{n=0}^{\infty} \alpha_{n} P_{n}(x) t^{n},(x, t) \in D .
$$

For example, $F(x, t)=\exp 2 x t-t^{2}$ is the generating function for Hermite polynomials $\left\{H_{n}(x)\right\}_{n \geq 0}$ because we can write:

$$
F(x, t)=\exp \left(2 x t-t^{2}\right)=\sum_{n=0}^{\infty} \frac{1}{n!} H_{n}(x) t^{n}, \forall(x, t) \in \mathbb{C}^{2} .
$$

The extension to the matrix framework for the classical families of Jacobi [3], Hermite [2], Gegenbauer [4], Laguerre [5] and Chebyshev [6] polynomials was made in recent years, and properties and applications of different classes for these matrix polynomials have been studied in several papers $[7,8,10,11,9]$.

[^0]In the matrix case, the importance of the generating function is similar to the scalar case, taking into account the possible spectral restrictions (for a matrix $A \in \mathbb{C}^{N \times N}$ we will denote by $\sigma(A)$ the spectrum of the matrix $\sigma(A)=\{z ; z$ is a eigenvalue of $A\}$). For example:

- Laguerre matrix polynomials. If A is a matrix in $\mathbb{C}^{N \times N}$ such that $-k \notin$ $\sigma(A)$ for every integer $k>0$, and λ is a complex number with $\operatorname{Re}(\lambda)>0$, the generating function [5] is given by:

$$
(1-t)^{-(A+I)} \exp \left(\frac{-\lambda x t}{1-t}\right)=\sum_{n=0}^{\infty} L_{n}^{(A, \lambda)}(x) t^{n}, \forall x, t \in \mathbb{C},|t|<1 .
$$

- Hermite matrix polynomials. If A is a matrix in $\mathbb{C}^{N \times N}$ such that $\operatorname{Re}(z)>$ $0, \forall z \in \sigma(A)$, the generating function [2] is given by

$$
e^{x t \sqrt{A}-t^{2} I}=\sum_{n=0}^{\infty} \frac{1}{n!} H_{n}(x, A) t^{n},(x, t) \in \mathbb{R}^{2}
$$

2. The detected mistake. An illustrative example

Recently, in Ref.[1], a generating matrix function for Chebyshev matrix polynomials of the second kind is presented. In theorem 2.1 of [1, p.27], the following formula (2.1) is established:

$$
\begin{equation*}
\sum_{n=0}^{\infty} U_{n}(x, A) t^{n}=\left(I-\sqrt{2 A} x t+t^{2} I\right)^{-1},|t|<1,|x|<1 \tag{2.1}
\end{equation*}
$$

where I denotes the identity matrix of order N, matrix $A \in \mathbb{C}^{N \times N}$ satisfies $\operatorname{Re}(\lambda)>0$ for all eigenvalue $\lambda \in \sigma(A)$ and $\|\sqrt{A}\|<1 / \sqrt{2}$. This formula (2.1) turns out to be the key for the development of the properties mentioned in the paper [1]. However, we will see that formula (2.1) is incorrect. For this, we only need to show that the matrix function $\left(I-\sqrt{2 A} x t+t^{2} I\right)$, regarded as a entire function of the complex variables x and t, is singular for some values of x and t under the previous hypotheses. For example, we consider $N=2$, and the matrix

$$
A=\left(\begin{array}{cc}
\frac{3}{16}+\frac{i}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right) \in \mathbb{C}^{2 \times 2}
$$

where $i^{2}=-1$. Obviously, $\sigma(A)=\left\{\frac{3}{16}+\frac{i}{4}, \frac{1}{4}\right\}$ and A satisfies condition $\operatorname{Re}(\lambda)>0$ for all eigenvalue $\lambda \in \sigma(A)$. It is easy to prove that

$$
\sqrt{A}=\left(\begin{array}{cc}
\frac{1}{2}+\frac{i}{4} & 0 \\
0 & \frac{1}{2}
\end{array}\right),
$$

which evidently satisfies $\sqrt{A} \sqrt{A}=A$, and condition $\|\sqrt{A}\|=\sqrt{5} / 4 \approx 0.559017<$ $1 / \sqrt{2} \approx 0.707107$ holds.

It is easy to compute

$$
\sqrt{2 A}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}}+\frac{i}{2 \sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

which evidently satisfies $\sqrt{2 A} \sqrt{2 A}=2 A$, and then one gets:

$$
I_{2 \times 2}-\sqrt{2 A} x t+t^{2} I_{2 \times 2}=\left(\begin{array}{cc}
1+t^{2}-\frac{t x}{\sqrt{2}}-\frac{t x i}{2 \sqrt{2}} & 0 \\
0 & 1+t^{2}-\frac{t x}{\sqrt{2}}
\end{array}\right) .
$$

Taking, for example, the values

$$
x=\frac{1}{2}, t=\frac{1}{16}(-\sqrt{-250+8 i}+(2+i) \sqrt{2}) \approx 0.160967-0.89995 i,
$$

this choices meet the restrictions outlined $\left(|x|=\frac{1}{2}<1,|t|=0.914232<1\right)$, but the term $1+t^{2}-\frac{t x}{\sqrt{2}}-\frac{t x i}{2 \sqrt{2}}$ is zero and matrix $I_{2 \times 2}-\sqrt{2 A} x t+t^{2} I_{2 \times 2}$ has a column of zeros, thus is singular. Thus (2.1) is meaningless. \ddagger

Therefore, I ask the authors of Ref. [1] to clarify the domain of choice for the variables x, t in formula (2.1) in order to guarantee the validity of the remaining formulas which are derived from (2.1) and used in the remainder of the aforementioned paper.

References

[1] Altin, A and Çekim, B. Generating matrix functions for Chebyshev matrix polynomials of the second type, Hacettepe Journal of Mathematics and Statistic 41 (1), 25-32, 2012.
[2] Jódar L. and Company R. Hermite matrix polynomials and second order matrix differential equations, Journal of Approximation Theory and Applications 12 (2), 20-30, 1996.
[3] Defez E., Jódar L. and Law A.G. Jacobi matrix differential equation, polynomial solution and their properties, Computers and Mathematics with Applications 48, 789-803, 2004.
[4] Jódar L., Company R. and Navarro E. Orthogonal matrix polynomials and second order differential equations, Differential Equations and Dynamical Systems 3(3), 269-288, 1995.
[5] Jódar L., Company R. and Navarro E. Laguerre matrix polynomials and systems of second order differential equations, Applied Numeric Mathematics 15(1), 53-64, 1994.
[6] Defez E. and Jódar L., Chebyshev matrix polynomials and second order matrix differential equations, Utilitas Mathematica 61, 107-123, 2002.
[7] Defez E. and Jódar L., Some applications of the Hermite matrix polynomials series expansions, Journal of Computational and Applied Mathematics 99, 105-117, 1998.
[8] Defez E., Tung M. and Sastre J., Improvement on the Bound of Hermite Matrix Polynomials, Linear Algebra And its Applications 434, 1910-1919, 2011.
[9] Durán A. J. and Grünbaum F. A. A survey on orthogonal matrix polynomials satisfying second order differential equations, Journal of Computational and Applied Mathematics 178, 169-190, 2005.
[10] Sastre J., Ibáñez J., Defez E. and Ruiz P. Efficient orthogonal matrix polynomial based method for computing matrix exponential, Applied Mathematics and Computation 217, 6451-6463, 2011.
[11] Sastre J., Ibáñez J., Defez E. and Ruiz P. Computing matrix functions solving coupled differential models, Mathematical and Computer Modelling 50, 831-839, 2009.
\ddagger
Of course, the choice of these values are not unique. For example, taking the values

$$
x=2 i \sqrt{\frac{2}{8+\sqrt{2}}}, t=-i\left(\frac{\sqrt{9+\sqrt{2}}-1}{\sqrt{8+\sqrt{2}}}\right)
$$

this choices satisfies the restrictions outlined $(|x|=0.921835<1,|t|=0.725853<1)$, but $1+t^{2}-\frac{t x}{\sqrt{2}}=0$ and then matrix function $I_{2 \times 2}-\sqrt{2 A} x t+t^{2} I_{2 \times 2}$ is singular.

[^0]: *Departamento de Matemática Aplicada. Universitat Politècnica de València. Spain Email: vsoler@dma.upv.es
 ${ }^{\dagger}$ Corresponding Author.

